
RECONFIGURABLE SIGNAL PROCESSOR FOR
CHANNEL CODING & DECODING

IN LOW SNR WIRELESS COMMUNICATIONS

Steve Halter†, Mats Öberg*, Paul M. Chau†, Paul H. Siegel*
†ICAS Center, University of California, San Diego

*Center for Wireless Communications, University of California, San Diego

Abstract - An area and computational-time efficient turbo decoder
implementation on a reconfigurable processor is presented. The turbo decoder takes
advantage of the latest sliding window algorithms to produce a design with minimal
storage requirements as well as offering the ability to configure key system
parameters via software. The parameter programmability allows the decoder to be
used in a research environment to study less understood aspects of turbo codes.

1. INTRODUCTION

The flexibility and quick response of FPGA technology to the changing market
scene has led it to be utilized to perform a variety of different tasks. In the process,
a natural progression in terms of usage has quietly been transpiring. At first,
systems were used primarily for their rapid prototyping capability in industry and
system emulation in academia, and this remains largely the case today. However,
as more people become aware of the applications of configware, this is beginning
to change. Furthermore, as partial reconfigurable FPGAs with increasing circuit
density become available, the technology will progress from dynamic to the more
demanding on-the-fly reconfiguration necessary for the next generation of smart,
adaptive hardware.

Configware represents a hybridization of the conventional usage of standard
central processing units (CPUs) and full custom ASICs. Innovative hardware
platforms, such as the UCSD-L3 ReConfigurable Processor Board (RCP) [1], blur
the traditional boundaries that exist between hardware and software to bring out
the best features of both worlds: a system that is blazingly fast but extremely
adaptive to its operating environment. Configware systems like the RCP are
fundamentally defined by their ability to adapt or completely reconfigure
themselves, making them suitable for a whole host of traditional adaptive
algorithms. Although current generation FPGAs do not have the circuit density
nor low power advantages as do custom ASICs for small form factor wireless
products, they can still significantly reduce the footprint in the other electronics in
wireless and satellite communication (SATCOM) such as in the mobile base or
ground stations.

The RCP has been designed to be a flexible processor and internal interconnect
reconfigurable application-specific embedded computer. Current and forthcoming
algorithms incorporated into the RCP include variable constraint length
convolutional forward error correction, wavelet image compression, data
encryption/decryption, and common signal processing algorithms such as filtering

and fast Fourier transforms. A novel feature of the RCP is the capability to
facilitate the optimization of the partitioning, mapping and scheduling of
communications signal processing algorithms through Index Mapping [2], a
processor-to/from-memory interconnection mapping and scheduling technique
developed at UCSD. This method, applicable to both systolic and non-systolic
parallel-pipelined datapath processing, allows the characterization of the
intermediate algorithmic processing interconnection, memory and dataflow
configuration, and scheduling. This characterization can then be transformed to
optimize a desired figure of merit, such as area, speed, or power.

In this paper, we describe a flexible RCP-based architecture for an advanced
forward-error-correction coding technique known as turbo coding. Turbo codes,
introduced in 1993 [3], represent perhaps the most significant advance in coding
for digital communications since the development of trellis-coded modulation in
the early 1980's as they have been shown to achieve performance very close to the
information-theoretic limits determined 50 years ago by Claude Shannon.
Consequently, there has been an explosion of research on the theoretical and
practical aspects of turbo coding, and it is expected that these techniques will find
wide use in low signal-to-noise ratio applications, ranging from deep-space
communications to cellular mobile radio systems.

A flexible, hardware embodiment of a turbo decoder, as described in this
paper, may be used to investigate many of the design parameters that affect turbo
code performance, including constituent convolutional encoder polynomials,
interleaver mappings [4], puncturing rules [5], and information frame length.
Issues pertaining to decoder convergence and stopping rules are also amenable to
experimental study with this design. In addition, the hardware implementation
provides a vehicle for evaluating the space-time-performance trade-offs of
proposed architectures for various elements of a turbo coding system.

The outline of the paper is as follows. In Section 2, we review the important
features of the RCP system. In Section 3, we describe the principles of turbo code
design, as well as some of their planned and proposed applications in future digital
communications systems. In Section 4, we present the details of the flexible turbo
decoder implementation on the RCP. In Section 5, we summarize the paper and
indicate directions for future research based upon our turbo decoder
implementation .

2. RCP OVERVIEW

The ReConfigurable Processor Board (RCP) is designed as a flexible, high
internal bandwidth application specific coprocessor that fits into a PC chassis
utilizing a Peripheral Component Interconnect (PCI) interface. Its primary
advantage over other systems is its ability to adapt to perform multiple functions
efficiently. It is envisioned that the RCP can revolutionize satellite telemetry and
data transfer tasks by providing extremely fast and flexible digital signal
processing (DSP) functionality for forward error correction,

compression/decompression, encryption/decryption and other necessary tasks
required for communication over satellite links.

The RCP board layout consists of four Altera FLEX 10K70 FPGA processing
elements that are connected to each other through direct local buses and through
four field programmable interconnect ICube IQX160 PSID chips. These
processing elements each have their own fast dual port 32k x 16 RAM that can be
directly accessed by the PSIDs. Two more Altera 10K70 processing elements are
utilized to take care of pre- and post-processing tasks such as data conversion,
pruning and sorting. These processors are connected to the PCI bus through 4k x
18 FIFOs. The post-processor is further connected to a 1 M x 32 single port RAM
for data storage of array calculation results and for storing additional data
specifically for packet burst communications. Dedicated PCI control logic is used
for programming, configuration and PCI interface tasks. A global bus connects all
the processors together to a Altera PCI 10K20 device. Figure 1 is a picture of the
RCP board.

Figure 1: RCP Board

3. TURBO CODING FOR LOW SNR COMMUNICATIONS

Turbo codes were introduced by Berrou, Glavieux, and Thitimajshima [3] [6]
in 1993 and are now widely recognized as a landmark development in error
control coding. By combining a concatenation of convolutional codes, connected
by an interleaver, with an iterative decoding algorithm, these codes achieve
performance very close to information-theoretic limits. For example, in [3], a rate
1/2 turbo code was shown via simulation to achieve a bit error rate (BER) of 10-5

at a signal-to-noise ratio (SNR) of Eb/N0 = 0.7 dB, only 0.5 dB from the theoretical
limit for rate 1/2 codes on binary input Gaussian channels [7]. In comparison, the
far more complex code designed for the Galileo spacecraft, consisting of a
memory 14 convolutional inner code and a 16-byte Reed-Solomon outer code [8],
requires SNR of about Eb/N0 = 1.0 dB at rate R=0.22 for comparable error-rate
performance, which corresponds to a gap of almost 2 dB from the Shannon-
theoretic limit for that rate.

3.1 Background on Turbo Codes: Encoding and Decoding
 A block diagram of a turbo coding system is shown in Figure 2. The turbo
encoder is implemented with two recursive, systematic convolutional (RSC)
encoders in parallel concatenation. A frame of N information bits is encoded by
the first encoder, while the interleaver creates a prespecified, random-like
permutation of the information, which is then encoded by the second encoder. The
transmitted code sequence consists of the information bits along with the parity
bits produced by the two encoders. Puncturing, or periodic deletion, of the parity
bits is sometimes used to increase the overall code rate. The interleaver endows
the turbo code with structural properties similar to those of a random block code,
which Shannon proved could, on average, achieve performance close to the
information-theoretic limit with maximum-likelihood decoding.

R S C
Encoder 0

R S C
Encoder 1

Inter leaver

Punctur ing &
Mult ip lexing

c 1
1..cN

1

c 1
0..cN

0

u1..uN Transmit ter
AWGN Channe l

Receiver

Depunctur ing &
Demul t ip lex ing

SISO Decoder 0SISO Decoder 1 Inter leaver

xy0

Le1
0. .LeN

0

y1

Deinter leaver

Le1
1. .LeN

1

Hard
Decis ion

∆1..∆N

û1..ûN

Figure 2: Turbo Code Encoder, Channel, and Turbo Code Decoder

However, the implementation of a maximum-likelihood (ML) sequence
decoder for the turbo code would be prohibitively complex. Instead, a sub-
optimal, but simple and effective, decoding architecture is used [3]. The decoder
incorporates separate soft-input, soft-output decoders for each of the constituent
convolutional codes, operating in an iterative and cooperative manner.

Each constituent decoder generates soft outputs in the form of a posteriori
probabilities (APP) for the information bits. From these probabilities, the decoder
extracts “extrinsic information” values that are provided to the other decoder as
soft inputs that play the role of a priori probabilities for the information bits. At
the start of the decoding, the noisy channel outputs corresponding to the
information bits are used to initialize the prior probabilities. They are also
available to each constituent decoder throughout the decoding procedure. The
number of repetitions of this cycle of decoding and exchange of the extrinsic
information is dictated by some stopping rule, often a prespecified limit on the

number of iterations. The turbo decoder output is a hard-quantized log-APP ratio
of an information bit un produced by the final decoding cycle.

More precisely, the a posteriori log-likelihood ratio (LLR) of an information
bit un is expressed as

Λ n
n

n

u observation

u observation
=

=
=

log
Pr()

Pr()

1

0
(1)

where we use observation to denote the noisy channel output sequence. The
implementation of the APP calculation can use a modification of the BCJR
algorithm, which was introduced by Bahl, Cocke, Jelinek, and Raviv [9] in the
context of maximum-a-posteriori (MAP) bit decoding. The algorithm computes

Λ n

n
N

n
N

u R

u R
=

=

=
log

Pr()

Pr()

1

0

1

1

 (2)

where R R R RN
N1 1 2= (, , ... ,) denotes the received samples or observations, with

Ri = (xi , yi , Li

ext) consisting of the information samples xi , the parity bit samples yi,
and the extrinsic information Li

ext. The APP decoder computes the a posteriori
probabilities

∑
=

− =====
iumm

N
nnN

N
n

n

n RmSmSiu
R

Riu
:',

111),',,Pr(
)Pr(

1
)Pr(

1

. (3)

Here Sn refers to the state at time n in the trellis of the constituent convolutional
code.

The terms in the summation can be expressed in the form

)(),'()'(),',,Pr(111 mmmmRmSmSiu n
i
nn

N
nnn βγα −− ==== , (4)

where the quantity

)',,Pr(),'(1 mSRiumSmm nnnn
i
n ==== −γ (5)

is called a branch metric,

),Pr()(1
n

nn RmSm ==α (6)

is called a forward state metric, and

βn n
N

nm R S m() Pr()= =+1 (7)

is called a reverse (or backward) state metric.
The branch metric depends upon the nominal information and parity bits

labeling the trellis branch from state m′ to state m, the noisy samples, and the
extrinsic information provided by the other decoder. The forward and reverse state
metrics are computed recursively by forward and backward recursions given by

α α γn n n
i

m i
m m m m() (') (' ,)

',
= −∑ 1 , (8)

and

∑=−
im

i
nnn mmmm

,
1),'()()'(γββ . (9)

In the implementation of the APP calculation, further simplifications are often
used to reduce the computational complexity, as described in Section 4.1.

3.2 Turbo Code Performance and Applications
The simulated performance of a rate 1/2 turbo code, with constituent RSC

encoder polynomials (37,21)octal and a pseudo-random interleaver of length
N=10,000, is shown in Figure 3 below. A BER of 10-5 is achieved at a SNR of
approximately 1 dB. For purposes of comparison, the figure also shows the
performance of a rate 1/2, memory 14, maximum free-distance (2,1,14)
convolutional code [10]. The modified MAP decoders for the turbo code require
only 16 states each, while the ML decoder for the (2,1,14) convolutional code
requires 214 states. The performance improvement offered by the turbo code at low
SNR is evident.

0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 dB

B
E

R

(37,21,10000)
(2,1,14)

Figure 3: Performance of a rate ½ turbo code

The remarkable performance of turbo codes opens up a huge array of possible
applications. Turbo codes have been shown to be viable for mobile radio
communications in, for example, bearer services defined in the pan European
FRAMES project [11]. Rowitch et al. [12] proposed a hybrid rate-compatible
punctured turbo coding/ARQ scheme, which showed higher throughput than
previous schemes based on conventional convolutional codes.

For latency critical applications such as two-way vocal communication in
personal communication systems (PCS), the performance advantage provided by
large interleaver lengths may be offset by unacceptable decoding delay. Divsalar
and Pollara [13] have derived turbo codes with greatly reduced interleaver sizes
that might be suitable for PCS applications. Turbo codes are currently being
examined for use in the next generation of Code-Division Multiple-Access
(CDMA) wireless systems.

4. TURBO DECODER IMPLEMENTATION ON THE RCP

The goal of the design is the implementation of a turbo decoder with a
minimum rate of 1/3, which can be realized in the RCP FPGA array for
prototyping and later be mapped to an ASIC with minimal storage requirements.
Turbo decoders require the use of soft-input, soft-output (SISO) decoders in order
to achieve good error-rate performance, and this motivates the use of MAP
decoders, which were described in Section 3.1. Unfortunately, the MAP decoding
algorithm is significantly more complex than the Viterbi algorithm because its
implementation requires memory for metric storage that is proportional to the
code block length. SISO Viterbi decoders, which have lower complexity than
MAP decoders, have therefore been considered; however, it has been shown that
their performance is inferior to that of MAP decoders [14].

Recently, Viterbi [15] proposed a MAP decoder architecture employing a
“sliding window” technique which decouples the required memory size from the
code block length. This permits the use of large interleavers, which give the best
performance, without requiring prohibitively large memory resources. The sliding
window architecture will be used for the MAP decoder implementation in this
turbo decoder design.

Another issue arising in the implementation of the traditional MAP decoding
algorithm is the extensive use of multiplication and exponentiation functions,
which do not translate efficiently into hardware. Therefore, the turbo decoder
design uses the log-MAP algorithm [16], obtained by transforming the MAP
algorithm to the log-domain. This form of the algorithm requires only additions
and eccumulation functions, which can be easily mapped to hardware.

4.1 Log-MAP Algorithm
In the interest of describing the algorithm being implemented, the

mathematical formulas for the log-MAP algorithm are presented. For derivations
of the following equations, refer to [3] and [16]. The log-likelihood ratio can be

calculated based on an eccumulation of the forward and reverse state metrics and
the branch metrics:

() ()L A D B A D Bk
m

k
m

k
m

k
f m

m
k
m

k
m

k
f m= + + − + +

=

−

+
=

−

+
0

2 1
0

1
0

0

2 1
1

1
1

υ υ

Ε Ε, (,) , (,) (10)

where υ is the encoder memory, m is the trellis state, f(j,m) is the next state based
on the input j going forward in time, Ak are the forward state metrics, Bk are the
reverse state metrics, Dk are the branch metrics, and eccumulation is defined as:

()a b a b a bΕ = − + − −min(,) logε ε1 . (11)

The state metrics are recursive calculations of branch metrics and the previous
state metrics. They can be determined by forward and backward recursions
through the trellis:

()A A Dk
m

j
k
b j m

k
j b j m= +

=
− −

0

1

1 1Ε (,) , (,) (12)

()B B Dk
m

j
k
f j m

k
j m= +

=
+

0

1

1Ε (,) , (13)

D K z x i y ck
i m

k k k k
i m, ,()= − − + − (14)

where Kk is a constant, b(j,m) is the next state based on the input j going
backwards in time, ci,m is the parity bit from state m given input bit i, and zk is the
input APP. Equation (15) represents another form of the log-likelihood ratio:

L z x zk k k k= + + +1 (15)

Using the value calculated from (10), the output APP zk+1 can be determined from
(15).

4.2 Viterbi Sliding Window Architecture for MAP Decoders
The central concept behind the Viterbi Sliding Window architecture (VSWA)

is that the reverse state metric calculation, which is performed via a backward
recursion through the trellis, does not have to start from the last time step of the
trellis. Through the use of a sliding window of some length L and starting from
some time point k in the trellis, reverse state metric calculations through L time
steps will produce a good approximation of the reverse state metrics at time step k-
L. The next L reverse state metrics can then be calculated starting from the
approximation at time k-L. Hence, it is possible to “build-up” good
approximations of reverse state metrics starting from any point in the trellis.

Without the use of this sliding window technique either all of the reverse or all of
the forward state metrics would have to be stored while the other is being
calculated. In the case of a code with a block length of 16,384 and an encoder of
memory 7, the required state metric storage would be over 2M x q, where q is the
quantization value of the state metrics. With the sliding window technique, the
storage requirement for forward state metrics is now a function of the window
length, L, equal to L2ν+1, where ν is the memory length of the encoder. For
comparison, using this sliding window technique, the state metric storage for a
code of arbitrary block length, encoder memory 7 and window length L=64 would
be no more than 16k x q. The window length L will be one of the programmable
parameters in this design.

Viterbi [15] also suggests a method of implementing the sliding window
technique that prevent pipeline delays through the use of dual reverse state metric
calculators. Table 1 shows the timing information for the various metric
calculators, where FSMC is the forward state metric calculator, RSMC0 and
RSMC1 are the reverse state metric calculators, and LLC is the log-likelihood
ratio (LLR) calculator. The shaded areas of the table indicate where the RSMCs
are constructing approximate reverse state metrics; the non-shaded areas indicate
where they are generating valid reverse state metrics. The LLR at time k is
denoted λk, and the notation λx-λy in the table indicates that the LLRs for time
steps x through y are being generated.

The table also shows the contents of the memory storing the forward state
metrics. The notation Ax,y indicates that the forward state metrics for time steps x
through y are currently being stored in memory.

Time 2L 3L 4L 5L 6L 7L 8L
FSMC 0-L L-2L 2L-3L 3L-4L 4L-5L 5L-6L
RSMC0 2L-L L-0 4L-3L 3L-2L 6L-5L 5L-4L
RSMC1 3L-2L 2L-L 5L-4L 4L-3L 6L-5L
Output λL-λ0 λ2L-λL λ3L-λ2L λ4L-λ3L λ5L-λ4L λ6L-λ5L

Memory A0,L A0,2L AL,3L A2L,4L A3L,5L A4L,6L A4L,6L

Table 1: Viterbi Sliding Window Architecture Pipeline Timing

4.3 Architecture
4.3.1 Overview Due to resource limitations on the RCP board, only one MAP
decoder is instantiated in this design. However, this “restriction” in the
architecture actually does not reduce the flexibility of the system. Lowering the
non-punctured rate of a turbo code simply adds decoding stages to the iterative
loop. Since all the MAP decoders are identical, this architecture can be easily
expanded to support lower rate turbo codes with the only cost being additional
control logic and computation time.

Received
Code

Symbol
R A M

Interleaver
α

Forward State
Metr ic Calculator

(FSMC)

Reverse State
Metr ic Calculator

(RSMC0)

Reverse State
Metr ic Calculator

(RSMC1)

F S M
R A M 0

F S M
R A M 1

Log-Likel ihood
Calculator

(LLC)

APoP
R A M 1

Hard
Decis ion

Inter leaver
α/α-1

APoP
R A M 0

M A P
Decoder
Global

Control Logic
MAP Decoder

Turbo
Decoder
Global

Control Logic

Figure 4: Turbo Decoder Block Diagram

This implementation of a turbo decoder consists of the three state metric
calculators (SMC) and the log-likelihood calculator (LLC) which constitute the
MAP decoder, interleaver/deinterleaver memory, the temporary storage memory
for the state metrics, and the hard decision block. In order to reduce computational
complexity of the MAP decoder algorithm, the log-MAP algorithm is
implemented. The architecture is designed to complete one MAP decoder stage at
a time based on an inner-outer loop algorithm, where the outer loop steps through
time, and the inner loop steps through the trellis states. The term “time instance”
will be used frequently in describing the architecture. A “time instance” is one
cycle of the outer loop or one set of trellis states. Figure 4 shows a high-level
block diagram of the turbo decoder system.

4.3.2 State Metric Calculators (SMC) The state metric calculators are
independent engines, running in parallel, with each metric calculator computing a
single state metric every three clock cycles. The branch metrics are calculated on-
the-fly with each SMC containing a pair of branch metric calculators. A branch
metric calculator also yields a single branch metric every three clock cycles. The
branch metrics could be computed once and stored for future use; however, a
design trade-off was made in favor of a small amount of additional power
consumption as opposed to significantly increased storage requirements. Due to
the pipelined architecture, the additional computation time of computing the
branch metrics on-the-fly is negligible except in cases of very small sliding
window lengths with low encoder memory where the minimal overhead starts to
become significant. The following diagram shows the datapath of a branch metric
calculator.

neg

neg

z

-K

y

x 8

D k
i,m8

8

8

8

Figure 5: Branch Metric Calculator Datapath

4.3.2.1 Add-Eccumulate As revealed by examining the structure of the forward
and reverse state metric equations of the log-MAP function, both metrics can be
computed by add-eccumulation functions, where the add-eccumulation is
analogous to the common multiply-accumulate function present in digital signal
processors. The following diagrams show a high-level block diagram of the
datapath of the 16-bit add-eccumulate block.

Min(a,b)

-f(z)

neg

(a
1
+ b

1
) E (a

2
+ b

2
)1 6

1 6

1 6

1 6

a

b

c

Q0

Q1

.
Figure 6: Add-Eccumulate Unit Datapath

The log(⋅) portion of the eccumulate function (11) is designated as f(z) in the
block diagram above where z = |a-b| and the input c is equal to 1 / ln(ε). The f(z)
block is a series of lookup tables for various values of c.

The add-eccumulate block performs add-eccumulation in three clock cycles.

4.3.2.2 Forward State Metric Calculator (FSMC) The FSMC consists of a pair
of branch metric calculators with a pair of add-eccumulate units and computes two
state metrics every six clock cycles. The first three clock cycles are used to add the

first pair of previous forward state metrics to their respective branch metrics, and
the final three clock cycles are used to do the add-eccumulate with the next pair of
previous forward state metrics and their respective branch metrics. The FSMC
utilizes a pipelined architecture to enable the add-eccumulate units to calculate a
pair of state metrics, while the branch metric calculators are determining the
branch metrics from the next set of state metrics. This prevents the on-the-fly
branch metric calculation from impacting the computation time.

In order to save power by reducing the amount of fetching of previous state
metrics, the FSMC uses a butterfly calculation which is frequently used in Viterbi
decoder implementations. The butterfly calculation exploits the fact that the states
of the convolutional code trellis can be grouped into pairs of states with identical
outgoing branch properties, except for their associated input bits. Figure 7 shows
an example of a butterfly.

The forward state metrics of states S1′ and S2′ both require the forward state
metrics of states S1 and S2. By using this butterfly technique, the forward state
metrics of S1′ and S2′ are both calculated but the state metrics of S1 and S2 are only
fetched once. This will yield a 2x reduction in the number of fetches from memory
which can lead to a substantial savings in power consumption.

S 1 = (sk
1,sk

2,...,sk
υ-1,sk-1

υ-1)

S 2 = (sk
1,sk

2,...,sk
υ-1,sk-1

υ-1)

i=0

i=0

i=1

i=1

S 1' = (0,sk
1,sk

2,...,sk
υ-1)

S 2' = (1,sk
1,sk

2,...,sk
υ-1)

kk-1

Figure 7: Forward State Metric Butterfly

The FSMC uses a pair of storage RAMs in order to prevent RAM resource
contention between the FSMC and log-likelihood calculator, which also needs to
fetch forward state metrics. Each FSMC storage RAM stores the forward state
metrics for a single sliding window.

4.3.2.3 Reverse State Metric Calculator (RSMC) The RSMC is very similar to
the FSMC in the sense that it features a pair of branch metric calculators and
produces a state metric every three clock cycles. However, unlike the FSMC, the
RSMC only contains a single add-eccumulate unit in addition to a single adder.
The second add-eccumulate unit can be simplified in the RSMC due to the fact the
branch metrics are derived from the same trellis state whose reverse state metric is
being calculated. The RSMC also uses a butterfly technique similar to the
technique used in the FSMC to reduce the number of memory fetches.

The RSMC also contains a small block of internal memory for previous RSMC
storage. The VSWA requires only the reverse state metrics from the previous time
instance to be stored.

4.3.3 Log-Likelihood Calculator (LLC) The LLC is an independent engine
which operates in parallel with the FSMC and RSMCs. Due to the fact that the
log-likelihood function is also an add-eccumulate calculation, the LLC consists of
a pair of add-eccumulate units which are used to eccumulate the two halves of the
log-likelihood function. While the RSMCs and FSMCs are running, the LLC is
adding and eccumulating the forward and reverse state metrics accordingly. When
the FSMC and RSMCs have finished calculating state metrics for all trellis states
for a given time instance, the LLC performs the subtraction to calculate the log-
likelihood ratio and then performs two additional subtractions in order to calculate
the APP value for the current time instance. The APoP RAMs in the block
diagram are used to hold the APP values of the current MAP decoder as well as
the values from the previous MAP decoder. Each APoP RAM has storage equal to
the block length of each turbo decoder iteration. Upon completion of the LLC
calculations, the log-MAP decoder moves on to the next time instance.

4.3.4 System Pipeline Figure 8 shows the steady-state pipeline of the log-MAP
decoder. The subscripts to the various calculators show the current clock cycle.
For example, FSMC1 indicates the FSMC is in its second clock cycle. It is
important to note that, as shown in the VSWA discussion, the FSMC and RSMCs
are not processing the same trellis states at any given time.

FSMC:
BMC 0

FSMC 0
Store Am

BMC 1
FSMC 1

Store Am+1

BMC 2
FSMC 2

Fetch Ak-1
m

BMC 0
FSMC 3

X

BMC 1
FSMC 4

X

BMC 2
FSMC 5

Fetch Ak-1
m

BMC 0
FSMC 0

Store Am+2

m+2 m+3 m+4

RSMC0/1:
BMC 0

RSMC 0
Store Bm+1

BMC 1
RSMC 1

Fetch Bk-1
m0

BMC 2
RSMC 2

Fetch Bk-1
m1

BMC 0
RSMC 0

Store Bm+2

BMC 1
RSMC 1

X

BMC 2
RSMC 2

X

BMC 0
RSMC 0

Store Bm+3

LLC: LLC0 LLC1
LLC2

Fetch Ak
m+3 LLC1LLC0

LLC2
Fetch Ak

m+4
LLC2

Fetch Ak
m+2

Trell is
State:

Figure 8: Steady-State Turbo Decoder Pipeline

4.4 System Parameters
As mentioned before, the architecture is designed to support programmable

system parameters in order to allow their effects on performance to be measured
in a research environment. Table 2 shows the range of the programmable system
parameters.

Parameter Range
Number of Encoder States (m = 2υ): 2 – 512
Sliding Window Length (L): 1 – 16384
Iteration Block Length (n):1 1 – 65536
Decoder Iterations (j): 1 – 512
Code Symbol Quantization (in bits): 1 – 8
Branch Metric Quantization (in bits): 1 – 8
State Metric Quantization (in bits): 1 – 16
Log-Likelihood Quantization (in bits): 1 – 16
APP Quantization (in bits): 1 – 8

1Note that the iteration block length is limited by the receive data storage on the RCP, not by the
design.

Table 2: Programmable System Parameters

The only constraint on the system is L2υ+1 < 65536, which is the maximum
available forward state metric storage. The quantization factors were determined
based on the predefined storage resources on the RCP board. The encoder
generator matrix is also programmable via software, allowing the turbo decoder to
support any convolutional encoder with a maximum of 512 states. The interleavers
and deinterleavers, in order to support any possible type of interleaver, are
implemented in RAM.

The system storage requirements are summarized in Table 3.

Data Max. Storage Requirements
Forward State Metrics: L2υ+1 x 16
Reverse State Metrics (per RSMC): 2υ+1 x 16
APP Storage: 2υ+1 x 8
Received Code Symbols: N x 8

Table 3: Maximum Storage Requirements

4.5. Computation Performance and Area
The computation performance in terms of clock cycles / information bits can

be determined by the following formula:

)()(#))3(10(
.

iterationsdecodersSISOofstatesencoder
bitsinfo

cyclesclock
×××+=

The term 10 in the equation is the decoder overhead and the factor 3 is the
number of clock cycles needed to calculate a single state metric.

The turbo decoder implementation uses approximately 70,000 gates and has an
estimated critical path delay equivalent to the delay through two 3-input 16-bit
multiplexers added to the delay of a 16-bit adder. The maximum frequency of the
design can be determined when the critical path information is applied to the
respective performance specifications of the fabrication process or programmable

gate array desired. It is estimated that at least removing the programmable
parameter features of the design could eliminate 20% of the gate count.

The decoder has been shown to be functionally correct via software
simulations of the VHDL code. At the time of writing, the decoder is being
integrated into the RCP board and performance simulations will soon be available.

5. CONCLUSIONS

In this paper, an RCP-based turbo decoder implementation has been presented
which offers the unique feature of system-parameter programmability while still
maintaining an area, power, and computation-time efficient design. This design
can facilitate the study of viable turbo coding systems for commercial applications
though the use of parameter programmability, in addition to offering the ability to
process amounts of data which are simply not feasible with computer simulations.

The RCP turbo decoder architecture can also find use in other applications
exploiting the turbo decoding principle, such as combined channel equalization
and decoding for fading and intersymbol interference (ISI) channels [17], as well
as serial and hybrid concatenation of convolutional and/or block error correcting
codes [18][19].

ACKNOWLEDGMENTS

The authors are grateful for the assistance of Jeanette Arrigo, Dr. Kevin Page of
Xenotran, Michael Crawford, Farhad Razavian and Farbod Samadian of L3
Communications and the California MICRO program in the development of the
RCP. The authors also acknowledge the support provided by the NSF ICAS
Center and the Center for Wireless Communications at UCSD. P. H. Siegel also
acknowledges support by NSF grant NCR-9612802.

REFERENCES

[1] K.J. Page, J. Arrigo, and P. M. Chau, “ReConfigurable hardware based digital
signal processing for wireless communications,” Proc. of the SPIE: Adv. Signal
Processing Algorithms, Architectures & Impl. VIII, July 1997.

[2] K.J. Page, and P.M. Chau, “Index mapping for reconfigurable communications
architectures,” 4th Reconfigurable Architectures Workshop (RAW-97) part of the
11th Int. Parallel Processing Symp. (IPPS-97), held April 1 - 5, 1997 at University
of Geneva, Switzerland.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: turbo codes,” Proc. 1993 IEEE Int. Conf.
Commun. (ICC), Geneva, Switzerland, pp. 1064-1070, May 1993

[4] M. Öberg, and P.H. Siegel, “Application of distance spectrum analysis to turbo
code performance improvement,” Proc. 35th Allerton Conf. Commun. Contr.
Comp., Monticello, IL, pp 701-710, Sept.-Oct. 1997.

[5] M. Öberg, A. Vityaev, and P.H. Siegel, “The effect of puncturing in turbo
encoders,” Proc. Int. Symp. on Turbo Codes & Related Topics, Brest, France, pp.
184-187, Sept. 1997.

[6] C. Berrou, and A. Glavieux, “Near Shannon limit error-correcting coding and
decoding: turbo codes,” IEEE Trans. Commun., vol. 44, pp. 1261-1271, Oct.
1996.

[7] S. A. Butman, and R. J. McEliece, “The ultimate limits of binary coding for a
wideband Gaussian channel,” DSN PR 42-22, May and June 1974, pp. 78-80,
Aug. 15, 1974.

[8] D. J. Costello, Jr., and G. Cabiel, “The effect of turbo codes on Figure 1”,
Proc. Inform. Theory Workshop, San Diego, CA, pp. 41-42, Feb. 1998.

[9] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20,
pp. 248-287, Mar. 1974.

[10] L. Perez, J. Seghers, and D. J. Costello Jr., “A distance spectrum
interpretation of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp.
1698-1709, Nov. 1996.

[11] P. Jung, J. Plechinger, M. Doetsch, and F. M. Berens, “Advances on the
application of turbo-codes to data services in third generation mobile networks,”
Proc. Int. Symp. on Turbo Codes & Related Topics, Brest, France, pp. 135-142,
Sept. 1997.

[12] D. Rowitch, and L. B. Milstein, “Rate compatible punctured turbo (RCPT)
codes in a hybrid FEC/ARQ system,” Proc. Commun. Theory Mini-Conference of
Globecom'97, Phoenix, AZ, pp. 55-59, Nov. 1997.

[13] D. Divsalar, and F. Pollara, “Turbo codes for PCS applications,” 1995 Proc.
IEEE Int. Conf. Commun., Seattle WA, pp. 54-59, June 1995.

[14] S. Benedetto, D. Divsalar, G, Montorsi, and F. Pollara, “A soft-input soft-
output maximum a posteriori (MAP) module to decode parallel and serial
concatenated codes,” TDA Progress Report 42-127, Nov. 15, 1996

[15] A. Viterbi, “An intuitive justification and simplified implementation of the
MAP decoder for convolutional codes,” IEEE Journal on Select. Areas Commun.,
vol. 16, no. 2, pp. 260-264, Feb. 1998.

[16] S. S. Pietrobon, “Implementation and performance of a turbo/MAP decoder,”
Int. Journal of Sat. Commun., To appear.
Available at http://charli.Levels.UniSA.Edu.Au:80/~steven/turbo/turboMAP.ps.gz

[17] J.H. Lodge and M. Gertsman, “Joint detection and decoding by turbo
processing for fading channel communications,” Proc. Int. Symp. on Turbo Codes
& Related Topics, Brest, France, pp. 88-95, Sept. 1997.

[18] D. Divsalar and F. Pollara, “Serial and hybrid concatenated codes with
applications,” Proc. Int. Symp. on Turbo Codes & Related Topics , Brest, France,
Sept. 1997.

[19] F. Burkert and J. Hagenauer, “A serial concatenated coding scheme with
iterative 'turbo' and feedback decoding,” Proc. Int. Symp. on Turbo Codes &
Related Topics, Brest, France, pp. 227-30, Sept. 1997.

