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Abstract—Advancements in DNA synthesis and sequencing
technologies have enabled the storage of data on synthetic DNA
strands. However, realizing its potential relies on the design of
tailored coding techniques and algorithms. This survey paper
offers an overview of past contributions, accompanied by a special
issue that showcases recent developments in this field.

Index Terms—DNA-based data storage, sequence recon-
struction problem, deletions, insertions, constrained coding,
homopolymer runs, balanced codes, synthesis, sequencing.

I. BACKGROUND

INCREASED use of data and energy conservation issues
pose new challenges for the storage community in terms of

identifying extremely high volume, non-volatile and durable
recording media. In addition to progress in conventional
data recording techniques using tapes, HDDs, and NAND
flash, innovative approaches must be developed to meet these
challenges [1]. The potential for using macromolecules for
ultra-dense storage was recognized as early as the 1960s [2].
DNA stands out due to its information density, stability, and
robustness. Furthermore, current technologies for synthesizing
artificial DNA and for sequencing are highly efficient and
accurate [3]. These technologies will continue to evolve as
DNA is of central interest in medicine and life science more
broadly. DNA as a storage medium will therefore never
become obsolete. As a result, DNA-based storage is emerging
as a technology with applications that will, as evidenced by
some proof-of-concept demonstrations, plausibly materialize
in the near future. However, to meet this potential, sequencing
and synthesis technologies need to be dramatically more
cost-effective. This can only be accomplished by developing
reduced-cost synthesis and sequencing coupled with the design
of appropriate coding techniques and algorithms that will be
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Fig. 1. DNA storage system model.

specifically designed for these methods. This goal of this
special issue is to highlight new developments in this direction,
while this survey paper provides an overview of some of the
past contributions.

A typical DNA storage system consists of three components
(see Fig. 1): (1) DNA synthesis that produces the molecules
encoding the data. In state of the art technology acceptable
error rates are achieved for synthetic oligonucleotides (in short
- oligos) of length no more than 250-300nt [1]; (2) a storage
container to store the synthetic DNA strands; (3) a DNA
sequencing (aka NGS) device that serves for reading and for
retrieving the data. The encoding and decoding are external
processes to the storage system that convert the binary data
into molecules of DNA in a way that enables reconstruction
even in the presence of errors. From a mathematical/coding
perspective, DNA as a storage system has several attributes
that distinguish it from other storage systems. The most
prominent one is that the oligos are not ordered in the memory
and thus it is not possible to know the order in which they
were stored. One solution uses indices, or barcodes, that are
stored as part of the oligos [1], [4], [5].

Errors in DNA are typically substitutions, insertions, and
deletions, and most published studies [6], [7] report that
either substitutions or deletions are the most prominent ones,
depending upon the specific technology used for synthesis
and sequencing [8], [9], [10], [11], [12], [13], [14]. For
example, in surface-based DNA oligo synthesis the dominant
errors are deletions that result from either failure to remove
the dimethoxytrityl (DMT) or combined inefficiencies in the
coupling and capping steps [11], while NGS often introduces
substitutions [6].

Church et al. [15] and Goldman et al. [16] presented
the first DNA storage experiments, in which they stored
643KB and 739KB of digital information in DNA molecules,
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respectively. However, in both experiments, the data was
not recovered completely due to the lack of proper coding
solutions. Later, in [17], Grass et al. reported the first DNA
storage experiment in which error-correcting codes were used.
They were able to perfectly recover 81KB of information.
Bornholt et al. similarly retrieved a 42KB message [18].
Later, several groups have managed to successfully store and
recover messages in DNA storage systems. Among these
groups, Erlich and Zielinski [10] stored 2.11MB of data with
high storage rate, Blawat et al. [8] successfully stored 22MB,
and Organick et al. [12] stored the largest experiment so far
of 200MB. Yazdi et al. [5], [19] developed a method that
supports random access and rewritable storage. More recently,
Anavy et al. [4] and Choi et al. [20] suggested a new approach
that utilizes the inherent redundancy of synthesis to build
composite symbols, which are symbols consisting of the com-
position of more than one base. Hence, the alphabet size can be
extended, and the potential information capacity can increase
even further. This method was later generalized to work with
shortmers, which are short DNA sequences [21]. Deep and
machine learning methods for DNA storage were discussed
in [22], [23]. For a comprehensive survey on previous works
and experiments of DNA storage the reader is referred to [24],
where recommended surveys on coding-related problems can
be found in [25], [26], [27].

To date, the papers of Church et al. [15] and
Goldman et al. [16] have accumulated more than one thousand
citations in a short span of ten years. Hence, our survey
is clearly neither exhaustive nor representative. To some
extent, the selection of works reflects our personal preferences.
Nevertheless, we aim to provide a summary of some beautiful
ideas in prior literature and hope to illustrate the interrela-
tionships of these ideas. At the same time, we hope that this
survey will be a useful reference for future work in this area.

II. THE SEQUENCE RECONSTRUCTION PROBLEM

Proposed by Levenshtein in 2001, the sequence reconstruc-
tion problem addresses a communication scenario where an
input is transmitted over several identical channels, resulting
in several noisy outputs. In the context of data storage
applications, these noisy outputs are often referred to as reads.
Formally, we use X and Y to denote the input and output space,
respectively. To characterize the channel, we use an error-ball
function B that maps an input x ∈ X to a subset B(x ) ⊂ Y.
As always, we have a codebook C ⊆ X which is a subset of
the input space.

A. Maximum Intersection of Error Balls

The original sequence reconstruction problem defined by
Levenshtein is as follows. Given a codebook C ⊆ X and error-
ball function B, determine the following quantity

ν(C;B) � max{|B(x ) ∩B
(
x ′)| : x ,x ′ ∈ C,x �= x ′}. (1)

In other words, ν(C;B) is the maximum intersection
between the error-balls of any two distinct codewords in C.
The quantity ν(C;B) was introduced by Levenshtein [28],
where he showed that the number of noisy outputs, or reads,
required to uniquely reconstruct a codeword in C is at least

ν(C;B)+1. The sequence reconstruction problem was studied
in a variety of storage and communication scenarios. To keep
this special issue succinct, we review the instructive case
where X = {0, 1}n ; C is either the entire input space or a
classical error-correcting code; and the error-ball is one of
the following three sets: (a) St - all words obtained by at
most t substitutions, (b) Dt - all words obtained by exactly t
deletions, (c) It - all words obtained by exactly t insertions.
To enable easier comparison across different various scenarios,
we provide asymptotic estimates here. Exact formulas can be
found in the original works. For our asymptotic regime, we fix
t and allow the blocklength n to grow. Here, we use f (n) ∼
g(n) to mean that limn→∞ f (n)/g(n) = 1.

In Levenshtein’s seminal work [28], we have the following
result concerning substitutions. If C is a code with Hamming
distance d, then ν(C;Bt ) ∼ Ct ,dn

t−�d/2� where Ct ,d is a
constant that depends on d and t. Now, a key observation in
Levenshtein’s derivation is that the intersection size |St (x ) ∩
St (x

′)| is completely determined by the Hamming distance
x and x ′. However, this observation is no longer true for the
case of deletions and insertions. Specifically, let C be a code
that corrects e deletions. Then, Levenshtein showed that it is
both necessary and sufficient that C corrects e insertions [29].
However, the quantities ν(C, It ) and ν(C,Dt ) are generally
not equal for t > e.

Now, when e = 0, that is, C = {0, 1}n , Levenshtein
determined ν(C, It ) and ν(C,Dt ) in [30]. For e ≥ 1, the
problem was not studied until more than a decade later.
The case of insertions was resolved by Sala et al. [31], where
the quantity ν(C, It ) was determined for e ≥ 1. For the case
of deletions, the quantity ν(C,Dt ) was determined by Gabrys
and Yaakobi [32] when e ≥ 1, and by Pham et al. [33]
when e = t − 1. While the exact quantity is not known for
other parameters of e and t, Pham et al. provided asymptot-
ically sharp estimates [33]. Coincidentally, both ν(C; It ) and
ν(C;Dt ) are asymptotically equal. In summary, we have that:
if C is a code that corrects exactly (d − 1) deletions, then

ν(C; It ) ∼ ν(C;Dt ) ∼ (2dd )
(t−d)!

nt−d .

B. Code Design

Now, in most storage scenarios, the number of noisy reads
N is a fixed system parameter. Therefore, rather than using an
existing codebook C and assessing whether ν(C;B) is strictly
less than N, Cai et al. [34] proposed the following task of code
design. Given an error-ball function B and integer N, design
a codebook C such that ν(C;B) < N . If X = {0, 1}n , we say
that C is an (n,N ;B)-reconstruction code.

As always, for fixed n, N and B, we are interested in design-
ing (n,N ;B)-reconstruction codes of large size. Equivalently,
we want to minimize the redundancy of such codebooks.
In other words, we are interested in the following quantity
of interest that measures the trade-off between codebook
redundancy and the number of reads. Given an error-ball
function B and integers n, N, determine

ρ(n,N ;B) � min{n − log |C|:
C is an (n,N ;B)− reconstruction code}.(2)
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When N = 1, we recover the usual notion of error-correcting
codes. Code constructions for substitution errors, equivalently,
codes in the Hamming metric, are extensively studied (see for
example, [35]). In Sections III-A and III-B, we survey the
results of deletion- and insertion-correcting codes.

When the error-ball B = St , it follows from earlier
discussion that designing a reconstruction code for St is
equivalent to designing a code with certain Hamming distance.
Specifically, we have the following result. Define N (n, d ; t) �
|St (x )∩ St (y)| for some x and y with Hamming distance d.
Then we have that ρ(n,N ; St ) = n − logA(n, d), where d is
the smallest integer such that N (n, t , d) < N .

When B ∈ {It ,Dt}, upper bounds for optimal redun-
dancy are known via code constructions. When t ∈ {1, 2},
we list the best known explicit code constructions in
Table I. Here, we only state the redundancy values. For the
lower bound for redundancy when N > 1, very little is
known. This is partly because there is no known metric
that characterizes the intersection size of the two balls.
In [36], Chrisnata et al. used clique covers to showed that
ρ(n, 2;D1) ≥ log log(n)− 1− o(1).

C. Efficient Reconstruction

While results from the previous two subsections determine
the possibility of unique reconstruction for a given codebook,
the solutions may not provide insight into the recovery process
of the transmitted word. Therefore, Levenshtein [28] initially
proposed the problem (and later revisited by Abu-Sini and
Yaakobi [42]) of designing a decoder that efficiently retrieves
the transmitted word. Specifically, given an (n,N ;B)-
reconstruction code C, design a decoder Decode such that

Decode(R) = c for all c ∈ C and R ⊆ B(c) with |Y| ≥ N .

Here, c denotes the transmitted codeword, while R denotes
the set of noisy outputs corresponding to c. Suppose that the
output space is {0, 1}m . Then the decoder Decode is given at
least N words of length m. Hence, we want Decode to run in
time polynomial in Nm. If the decoder runs in linear in Nm,
then we say that the decoder is optimal.

Recall that when the error-ball B = St , a code C

with Hamming distance d is an (n,N (n, d ; t) + 1, St )-
reconstruction code. Furthermore, N (n, d ; t) = Θ(nt−�d/2�).
In his seminal paper [28], when d = 0, Levenshtein showed
by simply applying majority function, we obtain an optimal
decoder. However, when d > 0, Levenshtein observed that sim-
ple majority logic is insufficient. Nevertheless, this problem
was later solved in series of papers [42], [43]. Specifically,
for fixed values of t and d, given any code C with Hamming
distance d, there is an explicit optimal decoder.

When the error-ball B ∈ {Dt , It}, much less in known.
When C = {0, 1}n , Levenshtein in [28] provided efficient
decoders using so-called threshold functions. When C corrects
t - 1 deletions and B = Dt , Pham et al. provided an efficient
decoder under the assumption that C admits an efficient
(t − 1)-deletion-correcting decoder [33].

Finally, we list certain works related to Levenshtein’s
sequence reconstruction problem that are relevant to DNA data
storage.

• In [44], Junnila et al. consider the scenario where the
number of reads is not sufficient to reconstruct a unique
codeword. As with classical list-decoding, they deter-
mined the size of the list of possible codewords and study
algorithmic issues with the list-decoder.

• In addition to the results listed in this section, Abu-Sini
and Yaakobi [42] investigated the case where errors are
combinations of single substitution and single insertion.
Furthermore, they also simplified the reconstruction algo-
rithm when the number of noisy copies exceeds the
minimum required, i.e., N > ν(C;B) + 1.

• Design of reconstruction codes for other variations of
the error models has also been studied. Cai et al. looked
at single edits and its variants [34]; Wu and Zhang
looked at the case where all codewords are balanced [45];
and Sun et al. looked at single bursts of edits and its
variants [46].

• Finally, all errors described here are assumed to be
adversarial. The scenario where errors are probabilistic
has been extensively studied and is also known as the
trace reconstruction problem (see [47] for a survey that is
related to computational biology). The problem of code
design has also been proposed and is studied in [48], [49].

III. ERROR-CORRECTING CODES FOR DNA STORAGE:
INDEL CODES, CODING OVER SETS, AND MORE

PROBLEMS

Investigating codes correcting insertions and deletions has
regained significant attention due to emerging applications,
including wireless communication, disk and DNA-based data
storage, racetrack memories, file synchronization, and com-
pression. Codes correcting substitution errors that only change
the value of symbols in sequences are very well understood
in the literature [50], [51], [52] and are applied in com-
munication and storage systems. However, the problem of
correcting insertions and deletions has proven to be more
challenging. Investigating this problem has started with the
work of Levenshtein in the 1960s [53]. Levenshtein derived a
lower bound on the redundancy of codes correcting insertions
and deletions and proved that the Varshamov-Tenengolts (VT)
codes [54] constructed to correct asymmetric substitution
errors can, in fact, correct one insertion or one deletion and
are asymptotically optimal [55]. Recently, codes correcting an
arbitrary fixed number of insertion and deletion errors whose
redundancy is a multiplicative factor away from Levensthein’s
lower bound are constructed in [40], [56], [57]. To approach
this problem, simplified versions of those codes are being
studied in the hope of building the right toolbox to correct
insertions and deletions.

Besides errors arising from insertions and deletions, DNA-
based storage is also fundamentally different from other
storage media. One key property that sets DNA apart is
the lack of ordering among the strands. This new channel
model is sometimes referred to as the shuffling channel in
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TABLE I
BEST KNOWN (n,N ;B)-RECONSTRUCTION CODES FOR B ∈ {D1, I1,D2, I2}

(see [58], [59] and the references therein), while the code
design problem is referred to as coding over sets [60]. We
elaborate more about the latter in Section III-C.

A. Insertion/Deletion-Correcting Codes

The problem of coding for the insertion/deletion channel
dates back to the work of Levenshtein and others [29],
[61], [62], [63] in the early 1960s. A code is referred as
a t-deletion-correcting code if it can correct any t dele-
tions. Similarly, we define t-insertion-correcting codes for the
correction of t insertions and t-insertion/deletion-correcting
code for the correction of any t insertions and deletions.
Since it is well known, as was proved by Levenshtein [29],
that a code can correct t deletions if and only if it can
correct any combination of t insertions and deletions, we
mostly discuss in this review deletion-correcting codes. It is
well known that the Varshamov-Tenengolts (VT) code [54]
can correct a single deletion and that this code is nearly
optimal with respect to the number of redundant bits, while
it is strictly optimal for n ≤ 14 [64]. Levenshtein further
showed [29] that the minimum asymptotic redundancy of
a t-deletion-correcting code is tlog(n) and by a Gilbert-
Varshamov (GV) bound argument there exist codes with
asymptotic redundancy 2tlog(n). Even starting with the case
where t = 2, there was a lack of good codes until very
recently, when codes correcting insertions and deletions have
recently gained interest and attracted significant attention. For
example, several specific code constructions [56], [65], [66]
have been proposed which generalize the old single-deletion-
correcting codes by Varshamov-Tenengolts [54] to correct
multiple deletion errors. In [67], Brakensiek et al. presented
binary multiple-deletion correcting codes with small asymp-
totic redundancy. For an explicit small number of deletions,
their construction however needs redundancy c log n where
c is a large constant. The recent parallel works by Gabrys
and Sala [65] and Sima et al. [66] have presented construc-
tions of double-deletion-correcting codes with redundancy

8 log(n) + O(log(log(n))) [65] and 7log (n) + o(log
(n)) [66], respectively. Sima et al. [57] provided a con-
struction of textitt-deletion-correcting codes with redundancy
4tlog(n) + o(log(n)) and this result was also established
by Li and Farnoud in [68]. Currently, the best binary
double-deletion correcting codes were proposed recently by
Guruswami and Håstad with redundancy of 4log (n) [40],
which matches the existential lower bound [29].

In addition to the theoretical worst-case codes, several
works design codes that correct deletion or edit errors (which
are insertions, deletions or substitutions) for the probabilistic
case with efficient implementation of encoding and decoding
algorithms. These codes are of high importance since in many
applications, codes correcting a fixed number of deletions are
not appropriate since the channel deletes symbols with some
given probability. Such works include, for example, HEDGES
codes [69], segmented error correcting codes [70], Guess and
Check codes [71], polar codes [72], DNA-Aeon codes [73],
codes based upon LDPC codes such as [74], and constructions
based upon convolutional codes [75].

Another interesting question refers to the maximal deletion
fraction δ, for which for every ε > 0, there exists a code
with rate bounded away from 0 that can handle δ− ε fraction
of adversarial deletions. One can easily see that δ = 1/2 is
an upper bound (for any codeword, the adversary can choose
the deletions to guarantee the output to be all zeroes or all
ones). In [76], the authors presented binary codes that can
correct

√
2− 1 fraction of deletions and have a positive rate.

On the other hand, it was proven in [77] that there exists a tiny
absolute constant δ0 (≈ 10−40) such that any binary code C ⊆
{0, 1}n that can decode from (1/2− δ0) fraction of deletions
must satisfy |C| ≤ 2poly log n . In particular, we cannot hope
to decode a fraction of deletions arbitrarily close to 1/2 with
codes of positive rate. We emphasize that determining the
exact threshold is still an interesting open question.

There are many other interesting problems regarding inser-
tions and deletions that are out of the scope of this review.
One major such problem that was extensively studied in the
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literature is that of constructing efficient codes that can correct
a fraction of insertions and deletions (not a fixed number) [78],
[79], [80], [81], [82], and the state-of-the art binary codes
are given in [83], [84]. This problem is also studied for
linear codes [85] where it was recently shown that there
are asymptotically explicit and efficient good linear binary
codes that can correct a fraction of deletions [86], [87], [88].
Other examples include insertion/deletion burst correcting
codes [89], multidimensional deletion correcting codes [90],
list decoding from deletions [91], and more.

B. Bounds and the Capacity of the Insertion/Deletion
Channel

Let Aq (n, t) be the largest size of a t-deletion-correcting
code of length n over an alphabet of size q, and asymptotically,

for δ ∈ [0, 1], let Rq (δ) � lim infn→∞
logq (Aq (n,�δn	))

n . In
this section, we review known results on the values of Aq (n, t)
and Rq (δ). First, note that according to Levensthein [29], it
is already known that Ωt (

qn

n2t ) ≤ Aq (n, t) ≤ Ot (
qn

nt ).
The Levenshtein distance between two words x ,y (not

necessarily of the same length) dL(x ,y) is the minimum
number of symbol insertions and deletions to transform x
into y . The minimum Levenshtein distance of a code C is
the minimum Levenshtein distance between its codewords.
It is well known that a code has minimum Levenshtein
distance 2t + 2 if and only if it is a t-deletion correcting
code. Furthermore, let Dt (x ), It (x ) be the radius-t deletion,
insertion ball of a word x , respectively, and more generally for
nonnegative integers t1, t2, Lt1,t2(x ) is the insertion-deletion
ball containing all words that can be received by t1 deletions
and t2 insertions to x . One of the important tasks in analyzing
bounds for deletion-correcting codes is the study of the sizes
of the deletion balls, insertion balls, and insertion-deletion
balls. While the size of the insertion ball for any radius is
well-known [92] and is the same for all words (i.e., regular),
the deletion ball size is not known for all words. However,
its minimum, maximum, and average values are known and
several upper and lower bound which are based on the number
of runs (a run is a maximal repeat of the same symbol in the
word) were studied; see e.g. [93], [94]. On the other hand,
the knowledge on the ball size Lt1,t2(x ) is rather limited,
while only the single-deletion single-insertion case was studied
in [95], [96], [97], where the ball size was calculated for all
words together with the minimum, maximum, and average size
values.

For a given word x ∈ {0, 1}n the size of the insertion ball
It (x ) does not depend on x and it is given by |It (x )| �
In,t =

∑t
i=0

(n+t
i

)
(q − 1)i [92]. Hence, a trivial upper

bound on Aq (n, t) is given by Aq (n, t) ≤ qn+t
∑t

i=0 (
n+t
i )(q−1)i

.

Asymptotically, this implies the bound Rq (δ) ≤ (1 + δ)(1 −
Hq (

δ
1+δ )), where Hq (x ) = −x logq (x ) − (1 − x ) logq (1 −

x ) + x logq (q − 1). Recently, Yasunaga [98] showed that
for any t-deletion-correcting code C and any integer s such
that s <

n(t+1)
n−(t+1)

, it holds that |C| ≤ � (n+s)(2t+2)
(n+s)(2t+2)−2ns

·
qn+s

Iq (n,s)
, and this bound results with the asymptotic bound

Rq (δ) ≤ 1−Hq (δ)
1−δ , which is the best known asymptotic

upper bound, at least for the binary case. Explicit upper
bounds on Aq (n, t) based on the deletion balls are more
challenging to derive since the deletion balls are not regular.
However, despite this irregularity, nonasymptotic upper bounds
were derived by Kulkarni and Kiyavash [99], based upon a
translation of the problem to a hypergraph and finding upper
bounds on the independence number of the hypergraph using
linear programming. In particular, it was shown in [99] that
Aq (n, 1) ≤ qn−q

(q−1)(n−1)
and in general

Aq (n, t) ≤
n−t∑

r=3

q(q − 1)r−1
(n−t−1

r−1

)

δ(r , t) +
∑min(t−2,r−3)

i=t+r−(n−t)−1
δ(r − 2, i)

+

2∑

r=1

q(q − 1)r−1
(
n − t − 1

r − 1

)
,

which also provides the asymptotic bound Aq (n, t) ≤
t !qn

(q−1)tnt and the following bound on the rate Rq (δ)

for 0 ≤ δ < 0.5: Rq (δ) ≤ maxρ∈[0,1−δ](N (ρ; δ) −
D(ρ; δ)), where N (ρ; δ) = (1 − δ)hq (

ρ
1−δ ) and N (ρ; δ) =

maxmax(2δ+ρ−1,0)≤μ≤min(δ,ρ)
(ρ−μ)min( μ

ρ−μ
,0.5)

log(q)
.

As for a lower bound, in order to apply a Gilbert-Varshamov
lower bound, one should consider the t-deletion t-insertion
ball, i.e., Lt ,t (x ). However, since this ball size is not reg-
ular, the lower bound should be derived according to [100]
which uses the average size of the ball Lt ,t (x ) to derive
a lower bound on Aq (n, t) and is given by Aq (n, t) ≥

qn

1/qn
∑

x∈[q]n |Lt,t (x )| . Since the average size of the ball

Lt ,t (x ) is not known in general, Yasunaga calculated an
upper bound on this value and derived the bound Aq (n, t) ≥

qn

q−t Iq (n−t ,t)2−(1−q−n+1)Iq (n−t+1,t−1)
[98]. Although this

bound improves the one given by Levenshtein [101]
Aq (n, t) ≥ qn

q−t ·(Iq (n−t ,t))2
, asymptotically they behave

the same. The first asymptotic improvement was given
recent by Alon et al. [102] where they used the asymp-
totic improvement of the Gilbert-Varshamov bound by Jiang
and Vardy [103] and derived the following lower bound
Aq (n, t) ≥ Ωq,t (log(n)

qn

n2t ). Their approach required to
calculate the number of triangles in the confusability graph
that its vertices set is [q ]n and there is an edge between two
nodes if and only if they share a common subsequence of
length n − t.

Insertion and deletion errors were also studied in the
average-case setting. The most studied channel is the binary
deletion channel (BDCp) that models the setup where bits
of a transmitted message are deleted from the message
randomly and independently with probability p. Perhaps the
most important question regarding the BDC is determining
its capacity, i.e., the maximum achievable transmission rate
over the channel that still allows recovering from the errors
introduced by the channel, with high probability. In spite
of many efforts (see the excellent surveys [104], [105]),
the capacity of the BDCp is still not known and it is an
outstanding open challenge to determine it.
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In the extremal parameter regimes, the behavior of the
capacity of the BDC is partially understood. When d → 0
the capacity approaches 1 − h(d) [106]. Mitzenmacher and
Drinea [107] and Kirsch and Drinea [108] showed a method
by which distributions on run lengths can be converted to
codes for the BDC, yielding a lower bound of C(BDCd ) >
0.1185(1 − d). Fertonani and Duman [109], Dalai [110] and
Rahmati and Duman [111] used computer aided analyses
based on the Blahut-Arimoto algorithm [112], [113] to prove
an upper bound of C(BDCd ) < 0.4143(1 − d) in the high
deletion probability regime (d > 0.65). Recently, Rubinstein
and Con [114] showed that the Blahut-Arimoto algorithm can
be implemented with a lower space complexity, allowing to
extend the upper bound analyses, and proved an upper bound
of C(BDCd ) < 0.3745(1− d) for all d ≥ 0.68. Furthermore,
they also showed that an extension of the Blahut-Arimoto
algorithm can be used to select better run length distributions
for Mitzenmacher and Drinea’s construction, yielding a lower
bound of C(BDCd ) > 0.1221(1− d).

Another closely related studied channel is the Poisson repeat
channel (PRC). It was first introduced by Mitzenmacher and
Drinea [107]. In the PRC with parameter λ, each bit is
(randomly and independently) replaced with a discrete number
of its copies, distributed according to the Poisson distribution
with parameter 0 < λ. In particular, with probability e−λ the
bit is deleted from the message. This channel is closely related
to the BDC as demonstrated in several works [107], [115],
[116], [117], while the lower bound on the capacity of BDCp

relies on a reduction from the PRCλ [107].

C. Coding Over Sets

In this subsection, we discuss coding schemes that address
the unordered nature of the DNA storage medium. Specifically,
we outline the coding over sets framework as formulated by
Lenz et al. [60], along with subsequent research and variations.

Throughout this subsection, we consider the set of all q-ary
length-L strings ΣL

q and use XL
M the denote the collection of

M-subsets of ΣL
q . In other words, XL

M = {S ⊆ ΣL
q : |S | =

M }. Hence, XL
M represents the input space and a channel

input is a set S ∈ XL
M . After passing through the channel, a

sequence x in the input S undergoes one of three possibilities.
• It is received correctly without errors and we set (x ∈ C).
• It is lost and we set x ∈ L.
• It is received with errors and we set x ∈ E.

In other words, (C,L,E) is a partition of S. We have the formal
definition of error-ball.

For S ∈ XL
M , the error-ball BT

s,t ,ε(S ) is defined to be the
collection of received sets S ′ when s (or fewer) sequences
have been lost and t (or fewer) sequences have been distorted
by errors of type T ∈ {Sε,Dε, Iε}.

More precisely, let Parts,t (S ) be the set of all partitions
(C,L,E) of S with |L| ≤ s and |E| ≤ t . Then we define

BT
s,t ,ε(S ) =

{
S ′ = C ∪ E′ : (C,L,E) ∈ Parts,t (S ),

E′ = {x′ ∈ T(x ) : x ∈ E}.
}

Here, E′ denotes the set of all distinct erroneous received
sequences x ′ after removing duplicates. So, |E′| ≥ |E|.

Now, we are ready to define task of code design. Given an
error-ball type T ∈ {Sε,Dε, Iε} and integers s , t , ε, design a
codebook C ⊆ XL

q such that

BT
s,t ,ε(S ) ∩BT

s,t ,ε

(
S ′) = ∅ for S , S ′ ∈ C, S �= S ′.

We say that C is an (s , t , ε)-correcting code.
As always, for fixed (s , t , ε) and input space XL

M , we are
interested in designing (s , t , ε)-correcting code of large size.
Equivalently, we want to minimize the redundancy of such
codebooks. As before, we define the following quantity of
interest.

ρ(L,M ; s , t , ε)T � min

{

log

(
qL

M

)
− log |C| : C is an

(s , t , ε;B)T − correcting code

}

. (3)

Lower and upper bounds for ρ(L,M ; s , t , ε)T were studied
in [60], and later, some bounds were improved in [118].
Below we list the best known asymptotic estimates for
ρ(L,M ; s , t , ε)T when T ∈ {Sε,Dε}. Here, q = 2 and the
asymptotics are taken where M = 2βL for some constant β
and L going to ∞.

1) We have ρ(L,M ; s , t ,L)SL
∼ (s + 2t)L.

2) We have ρ(L,M ; s , t ,L)DL
∼ (s + t)L.

3) We have t logM + tε logL � ρ(L,M ; 0, t , ε)Sε �
2t logM + 2tε logL.

4) We have ρ(L,M ; 0, t , ε)Dε � �t/2 logM . Also,
ρ(L,M ; 0, t , ε)Dε � t logM + 2tε log(L/2) if t > 1
and � t logM + 4ε logL if t = 1.

More results about other error types can be found
in [60], [118]. In these same works, explicit code constructions
with efficient encoding and decoding procedures are also
given. Of significance, Wei and Schwartz constructed a class
of explicit codes whose redundancy that is logarithmic in
M [118].

Next, we list certain related works that are similar to this
“coding over sets” framework.

• In [119], Kovačević and Tan considered a more general
setup where unordered multisets are transmitted. In this
work, both upper and lower bounds for optimal code sizes
are obtained and several code constructions were given.

• In [120], [121], Sima et al. considered the case where
s = 0 and the total number of substitution errors is
bounded (but not limited to some number ε). In this
regime, Sima et al. provided a class of explicit codes
whose redundancy is logarithmic in M and L.

• In [122], Song et al. proposed a new metric to correct
both sequence loss and substitution errors. Using this
metric, they established Singleton-like and Plotkin-like
upper bounds on the code size.

Now, besides the above-mentioned coding solution, an
index-based solution is typically adopted in most practi-
cal experiments. Here, we have a set of addresses A =
{a1, . . . ,aM } and we store this address information as a
prefix to each DNA strand. That is, the information stored
in the DNA storage system is an indexed set of strands
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{(a i ,d i ) : i ∈ [M ]}, where d i is the data part of the i-
th strand (see also, [58], [123]). As the addresses A are also
known to the user, the user can identify the information after
the decoding process. As these addresses along with the stored
data are prone to errors, this solution needs further refinements.

Now, in the experiment [12], Organick et al. first clustered
the strands with respect to the edit distance. Then they
determine a consensus output amongst the strands in each
cluster and finally, decode these consensus outputs using a
classic concatenation scheme. For this approach, the clustering
step is computationally expensive. When there are M reads,
the usual clustering method involves M2 pairwise comparisons
to compute distances. This is costly when the data strands are
long, and the problem is further exacerbated if the metric is the
edit distance. Therefore, in [124], Rashtchian et al. developed
a distributed approximate clustering algorithm and clustered 5
billion strands in 46 minutes on 24 processors.

In [125], Chrisnata et al. proposed an approach that avoids
clustering, using the bee-identification problem. Informally,
the bee-identification problem requires the receiver to identify
M “bees” using a set of M unordered noisy measure-
ments [126], [127]. Later, in [125], Chrisnata et al. generalized
the setup to multi-draw channels where every bee (strand)
results in N noisy outputs (reads). The task then is to identify
each of the M bees from the MN noisy outputs and it turns out
that this task can be reduced to a minimum-cost network flow
problem. In contrast to previous works, the approach in [125]
utilizes only the noisy addresses, which are of significantly
shorter length, and the method does not take into account the
associated noisy data. Hence, this approach involves no data
comparisons.

Later on, in [128], Singhvi et al. considered an intermediate,
data-driven approach to the identification task by drawing
ideas from the clustering and the bee identification problems.
By proposing a data-driven pruning procedure, they demon-
strated that on average the pruning procedure uses only a
fraction of M2 data comparisons (when there are M reads).

IV. CONSTRAINED CODES

Constrained codes have a long history, dating back to
Claude Shannon’s landmark 1948 paper, in which he intro-
duced the discrete noiseless channel model [129]. They have
found manifold applications in digital communications and
data storage systems. Background on the theory and practice
of constrained coding for storage can be found in texts,
such as Immink [130] and Marcus et al. [131], as well as
several expository and survey articles, including [132], [133],
[134], [135]. In magnetic recording, classical runlength-limited
(d, k) codes, which require at least d and not more than k
zero symbols between consecutive one symbols, improved the
system performance by reducing intersymbol interference to
support peak and amplitude detection and avoiding synchro-
nization loss in data-driven timing recovery [134]. Codes with
spectral nulls at certain frequencies, notably balanced or DC-
free codes with a null at zero frequency, found application in
magnetic tape recorders and optical disk systems [130], [136].
In multilevel flash memory, constrained coding techniques

have been proposed to reduce intercell interference (ICI) along
wordlines, bitlines, and, more generally, in two-dimensional
arrays to improve the accuracy of data recovery [137].

Constrained coding is also very relevant to DNA storage.
Experimental studies have shown that certain properties of
DNA sequences increase the likelihood of insertion, dele-
tion, and substitution errors in the synthesis and sequencing
steps of the DNA storage process. Repetitions of the same
nucleotide, referred to as homopolymer runs, that exceed
even as few as four to six nucleotides in length have been
observed to significantly increase the likelihood of insertion
and deletion errors [13], [138]. The fraction of G and C
nucleotides in a strand, referred to as the GC-content, has
also been found to contribute to insertion, deletion, and
substitution errors when it deviates from the 40% to 60%
range [13], [139]. These experimental results have motivated
the development of constrained codes satisfying maximum
homopolymer runlength (MHR) constraints and balanced GC
constraints, either separately or in combination. Secondary
structures formed when a DNA strand folds back upon itself
are also detrimental to DNA storage. These structures can
arise when a strand contains non-overlapping substrings that
are reverse complementary, in the sense of the Watson-Crick
complement property for nucleotides: A = T,G = C,C =
G,T = A. Secondary structure avoidance codes that avoid
secondary structures by eliminating or reducing the likelihood
of reverse complementary substrings are therefore also of
interest.

An early overview paper by Yazdi et al. [19] on DNA-based
storage discussed the important role of constrained coding
in archival and random access applications and introduced
coding schemes that incorporate several sequence and address
constraints. More recent surveys of information encoding
techniques for DNA are found in [25], [26], [27]. In the
following sections, we summarize the progress that has been
made on various aspects of constrained coding.

A. Maximum Homopolymer Runlength (MHR) Constraints

Grass et al. [17] used a mapping of 2 bytes of information
to 3 nucleotides that yielded MHR constrained sequences
with m = 3, for an encoding rate of 1.78 bits/nt. In [18],
Bornholt et al. proposed a simple variable-length coding
scheme that completely eliminates repetitions of nucleotides;
that is, the strings AA, GG, CC, TT are forbidden. The scheme
uses a Huffman code to translate binary bytes into strings
of 5 (or occasionally 6) digits over the alphabet {0, 1, 2}.
The ternary strings are then translated into nucleotides using
a rotating mapping in which the nucleotide associated with
each ternary digit depends on the previous nucleotide. This
code has a maximum homopolymer runlength m = 1, with a
rate of 1.6 bits/nt. Immink and Cai [140] sought to overcome
the efficiency loss associated with the coding scheme in [18].
By means of a precoding operation, they associated q-ary
sequences satisfying the MHR constraint with m = k + 1 to
k-constrained q-ary sequences in which nonzero symbols are
separated by a run of zero symbols of length 0 to k, and they
determined the information capacity of the q-ary k-constrained
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system. They then presented three methods for converting
binary sequences into q-ary k-constrained sequences. The first
method employs the classical method of cascadable block
codes of maximum size. The second method uses sequence
replacement methods to construct rate n−1

n , k-constrained
codes. The third method generates a 4-ary code sequence from
a k ′-constrained binary sequence by means of two precoding
operations followed by a simple arithmetic mapping from
pairs of binary digits to a 4-ary symbol. The resulting symbol
sequence satisfies the m = �k ′/2� MHR constraint, for k ′ > 2.

B. Balanced GC Constraints and MHR Constraints

In [19], Yazdi et al. noted that DNA strands with approx-
imately 50% GC content are more stable than those with
lower or higher GC-content and have better coverage during
sequencing. They considered the well-studied class of binary
codes with a D-bounded running digital sum (D-BRDS)
constraint, in which any codeword prefix has an imbalance in
the number of zeroes and ones of no more than D. By mapping
each binary 0 to one of the nucleotides {A, T} and each binary
1 to a nucleotide {G, C}, they created a large set of DNA
codewords satisfying a D-bounded GC-prefix-balanced (D-
GCPB) constraint. Note that these codewords implicitly satisfy
a MHR constraint, as well as certain bounds on minimum
distance.

Several authors then considered the combination of GC-
content constraints and MHR constraints. In [10], Erlich
and Zielinski proposed the use of fountain codes, screening
the DNA oligos for homopolymer runs of no more than
3 nucleotides and GC-content in the 45% to 55% range.
Song et al. [141] further investigated codes satisfying a
3-MHR constraint with GC-content close to 50%. For 3 ≤
n ≤ 35, they designed a mapping of k(2n − 1) bits into an
ordered list of concatenations of k length-n words satisfying
the 3-MHR constraint and with GC-content as close to 50%
as possible. Simulation studies for n ∈ {5, 6, . . . , 121} and
k = 20 confirmed that the GC-content of a large random
sample of codewords fell within the 40% to 60% range. For n
≥ 10, the codes achieve rates at least 1.9 bits/nt. The scheme
also ensured error propagation of not more than 2n bits due
to an erroneous nucleotide.

Wang et al. [142] presented an algorithm for generating
content-balanced, runlength-limited (C-RLL) codewords, with
40% to 60% GC-content and MHR constraint m = 3.
Longer codewords that satisfy the constraints both locally
and globally were constructed via concatenation of selected
C-RLL codewords. For C-RLL codeword length n = 12, a rate
1.917 bits/nt was achieved. Immink and Cai [143] presented
a new method for precoding k-constrained DNA sequences
into (k + 1)-MHR sequences with constrained GC-content
that facilitates the construction of longer sequences satisfying
the (k + 1)-MHR constraint with GC-content in the range of
40% to 60%. Generating functions were used to enumerate the
length-n, k-constrained words of specified GC-content. Most
of the constructed codes are highly efficient, with rate 2− 1

n .
In [144], they further investigated properties and constructions
for codes with m-MHR and balanced GC-content constraints.

Generating functions and approximations for the number of
binary and quaternary sequences with maximum runlength
and weight constraints were derived. The relative merits of
two coding approaches, one of which directly maps binary
source sequences to constrained DNA sequences while the
other utilizes an intermediate binary mapping, were compared
with respect to redundancy and code complexity.

McBain et al. [145] designed a quaternary Markov source
that generates sequences satisfying MHR and stochastic GC-
content constraints. They designed a homophonic code that
maps i.i.d. binary source sequences to the Markov source in
such a way that the empirical distribution of the generated
sequences approximates the source. Fan et al. [146] proposed
a method for computing the channel capacity of m-MHR
constraints that are also strong-(l , δ)-locally-GC-balanced,
meaning that the number of G and C symbols in every sub-
sequence of length l ′ ≥ l is bounded between [ l

′
2 − δ, l

′
2 + δ].

The calculation makes use of the relationship between the
capacities of the binary and quarternary constrained channels.

C. Error-Correcting Constrained Codes

Schemes that integrate code constraints with
error-correction properties have been proposed.
Limbachiya et al. [147] enumerated the sequences of length n
with the m = 1 MHR constraint (the “no-runlength” constraint)
and GC-weight w, where the GC-weight refers to the number
of G and C nucleotides. They also provided a lower bound
on the number of codewords of length n satisfying these
two constraints with minimum Hamming distance d. They
provided an altruistic algorithm for constructing a codebook
with these properties. Weber et al. [148] provided an easily
computed recursive formula to determine the number of
quaternary words with any fixed length, GC-weight, and MHR
constraint. For the no-runlength constraint, they compute
the maximum size of a single error-detecting code, i.e.,
with minimum distance two, with a specified GC-weight.
Deng et al. [149] considered asymmetric error models for
DNA sequencers. They combined the MHR constrained
code design methodology of Wang et al. [142] with a an
optimized protograph low-density parity-check (LDPC) code.
This combined coding scheme achieving improved error rate
performance in computer simulations with an overall code
rate of about 1.98 bits/nt.

Cai et al. [150] studied a segmented edit error model, under
which a sequence is divided into segments of fixed length, each
of which can undergo at most one insertion or deletion error.
For a q-ary alphabet, q ≥ 3, they proposed reduced redundancy
code constructions to correct a single insertion or deletion per
code segment. Specializing to the quaternary DNA alphabet,
they provide an efficient construction of a segmented error-
correcting code that enforces a constraint on GC-content in
each segment.

Cai et al. [151], [152] and Nguyen et al. [153] devised
coding schemes that combine code constraints with the ability
to correct a single indel (insertion or deletion) error or single
edit (insertion, deletion, or substitution) error. The former
codes are GC-balanced codes, obtained by a modification
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of the Knuth balancing method. The latter codes satisfy
a (	, ε) MHR, GC-content constraint where the maximum
homopolymer runlength is 	, and the GC-content is within ±ε
of 50%. Both of these schemes are asymptotically capacity-
achieving and offer linear time encoding, and the latter codes
also limit error propagation. Liu et al. [154] provided another
construction of (	, ε) MHR, GC-content constrained codes
based on enumeration coding techniques that increase code
efficiency at shorter block lengths. The encoding and decoding
have polynomial time complexity. They also introduced codes
that satisfy MHR, GC-content constraints on all prefixes of
the codewords. Park et al. [155] uses an iterative encoding
method based on a greedy algorithm to achieve MHR and
GC-content constraints. The short codewords ensure limited
error propagation with a reduced number of decoded bit errors
per nucleotide error. The iterative coding method consists of
a randomization step, M-ary mapping, and a verification step.
Simulation results were presented for a code satisfying the
3-MHR constraint with DC-content in the range from 45% to
55% with information density 1.833 bits/nt.

Park et al. [156] proposed a coding technique for m-MHR
and GC-content constraints in which binary input data is
encoded into a collection of oligo sequences of specified
length. The scheme combines the modified Knuth balancing
method of [153] with an input-dependent bit insertion-based
constrained code (BIC) that limits homopolymer runlengths.
Lower and upper bounds on the average information density
of the BIC construction were derived and worst-case results
were described. Empirical results showed increasing average
information densities within 1.5% of capacity for m = 2, 3, 4.
To provide resilience to insertion, deletion, and substitution
errors, inter-oligo LDPC coding based on the 5G New Radio
(NR) standard was applied across the collection of oligo
sequences. Simulation results for m = 3 and GC-content in the
40% to 60% range were provided, along with comparisons to
previously proposed methods for combining constraints with
error correction.

Weindel et al. [157] compared the error-rate performance
of error-mitigating constrained codes that limit homopolymer
runlengths and balance GC content to that of schemes which
“embrace errors” by combining data randomization with error
correction coding for error control. They found that in the error
regimes most relevant to current DNA storage systems, the
latter approach is more efficient in terms of overall information
rate for a given level of performance.

D. Secondary Structure Avoiding Codes

Secondary structures arise when a DNA strand folds
back upon itself through complementary base-pair self-
hybridization. These structures can take many forms, most
notably stem-loop configurations, also referred to as hairpins.
These structures render the strand inactive for DNA computing
settings and have been shown experimentally to cause read
errors in DNA storage applications (See [158], [159] and ref-
erences therein.) In [158], Milenkovic and Kashyap identified
code design criteria that reduced the likelihood of secondary
structure formation using an analysis of Nussinov’s folding

algorithm, a dynamic programming approach to approximately
predicting secondary DNA structures. They enumerated and
constructed sequences satisfying certain shift properties, and
also consider the case of sequences with a constant GC
content. The shift properties require that the Watson-Crick
distances between a codeword and a specified number of
its shifts exceed a given threshold. They also demonstrated
a code based on a cyclic simplex code that combines shift
properties with a base runlength constraint, constant GC con-
tent, Hamming distance constraint, and reverse complement
Hamming distance constraint.

Benerjee and Banerjee [160] constructed codes that satisfy
constraints on reverse Hamming distance, reverse comple-
ment Hamming distance, and GC content. They showed that
concatenations of codewords satisfy the 3-MHR constraint
and are free of secondary structures with stem length more
than 2. They also derived a lower bound on the maximum
size of codes with these properties. Their construction uses a
modification of Reed-Muller codes defined over the ring Z6.
Another construction inspired by Reed-Muller codes over Z6

was presented in [161], yielding families of codes satisfying
reverse Hamming distance and reverse complement Hamming
distance constraints that are free of secondary structures with
stem length greater than two. In [162], using the ring Z5,
they constructed DNA codes that are free from secondary
structures with stem length more than two with the 4-MHR
constraint, while Benerjee et al. [163] constructed conflict
free codes in which any two consecutive substrings of a
codeword are not the same. These codes also satisfy Hamming,
reverse Hamming distance, reverse complement Hamming
distance, and DC-content constraints and are free of secondary
structures with stem length greater than two.

Nguyen et al. [164] gave two construction of codes that
avoid secondary structures with stem length greater than m,
for any given m ≥ 2. They referred to such codes as m-SSA
codes. The first construction concatenates blocks of length
m from a specified set, while the second imposes a symbol
composition constraint on every length-m subsequence z of a
codeword c whereby, for complementary symbol pairs x and
y = x , the subsequence z must contain at least k symbols x
and at most k − 1 symbols y, for some 0 < k ≤ m. They
provided a recursion for the size of codes of length n that
satisfy this constraint for general m and k = 1 and determined
the asymptotic rate. For m = 3, their construction yielded
an asymptotic rate of about 1.3031 bits/nt, which exceeds
the rate of 1

2 log 5 ≈ 1.1609 bits/nt achieved in [162]. For
m ≥ 3 log n + 4, they provided an efficient encoder based
on sequence replacement techniques that requires only one
redundant symbol.

Chu et al. [165] defined a GC-m-dominant sequence to
be one for which, in every subsequence of length m, the
sum of the number of occurrences of nucleotides T and C
is greater than m/2. They showed that, for m odd, a code
consisting of GC-m-dominant sequences is an m-SSA code.
For m = 3 and m = 5, they used recurrence relations to
calculate lower bounds on the capacity of m-SSA codes.
They computed upper bounds on the capacity of m-SSA
codes in terms of maximal m-SSA generating sets, defined
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as sets of length-m sequences of maximal size containing
no two reverse complement sequences. Using a brute-force
search, they showed that for m = 2, the capacity is about
1.6719 bits/nt, and for m = 3 it is about 1.5515 bits/nt, which
is achieved by the GC-3-dominant code construction.

E. Related Works

Finally, we list selected works on other topics related to
data encoding for DNA storage.

• Several authors have addressed the high cost of synthesis
by proposing source coding algorithms that combine bio-
chemical constrained coding with compression methods.
The primary application pf these schemes has been the
encoding of images data into DNA. See, for example,
Yazdi et al. [5], Dimopoulou et al. [166], Pic and
Antonini [167], Pic et al. [168], and Biswas et al. [169]

• The reconstruction problem in DNA storage can be
formulated in terms of uniquely identifying a string
from the multiset of its substrings of a certain length.
Motivated by early work of Gabrys and Milenkovic [170],
Elishco et al. [171] studied constructions, bounds, and
asymptotic rates for codes containing k-repeat free
sequences in which no substring of length k is repeated,
where k < n. They showed that the capacity of k-repeat
free sequences is 1 for k = alog(n) when a > 1. For
binary sequences and k = 2�log(n)�+2, they provide an
encoder that with only two redundant bits. For 1 < a ≤
2 they give an encoding algorithm for k = alog(n). They
also calculate the capacity of k-repeat free sequences
that satisfy additional local constraints, such as runlength
constraints, showing that the k-repeat free constraint does
not reduce the capacity when a > 2 logλ(2), where
the capacity of the constraint is log(λ). They generalize
the capacity analysis to multidimensional k-repeat free
arrays.

• In support of their random-access DNA-storage imple-
mentation, Yazdi et al. [19] imposed a number of
constraints on the short address sequences, including bal-
anced GC-content, large Hamming distance, absence of
secondary structures, and mutual uncorrelatedness. The
latter property requires that, for any two not necessarily
distinct length-n sequences, a, b, no proper prefix of a
is equal to any proper suffix of b. Yazdi et al. [172],
Levy and Yaakobi [173], Chee et al. [174], and
Cao et al. [175] examined properties and constructions
of mutually uncorrelated codes that also possess other
features advantageous for reliable random-access DNA
storage.

V. CODING FOR SYNTHESIS

A. Coding for Efficient Synthesis

The synthesis of DNA strands for DNA storage is a time-
consuming and costly process. Coding can be used to optimize
the efficiency of the synthesis process, providing savings in
synthesis time and expense. In [176], Lenz et al. studied a syn-
thesis machine that creates a large number of DNA oligos in
parallel, where each oligo is grown by at most one nucleotide

Fig. 2. Synthesis of three strands x1 = (CTACG), x2 = (AGTA), and
x3 = (CTT) using the synthesis sequence S = (ACGTACGT).

in each synthesis cycle. Such a synthesis process has been
used in most DNA storage experiments [11], [177], [178] and
is also characteristic of photolithographic synthesis [179].

The machine uses a fixed supersequence of possible
nucleotides to successively append nucleotides to the strands.
At each iteration, the machine adds the next nucleotide in
the supersequence to a selected subset of the DNA strands.
This process continues until the end of the supersequence is
reached. Note that each synthesized DNA strand is a subse-
quence of the supersequence. Figure 2 represents the synthesis
of three strands of variable lengths from the supersequence
S = ACGTACGT with total synthesis time T = 8.

In [176], the problem of finding a synthesis code to
maximize the amount of information that can be synthesized
in a given synthesis time T was posed. Both fixed-length
codes and variable-length codes were considered. Maximum
synthesis rates, meaning asymptotic information rates mea-
sured in the number of information bits per synthesis cycle,
were defined. Namely, for a semi-infinite synthesis sequence
S = S1,S2, . . . and 0 ≤ α ≤ 1, with N �αT	(S1:T ,T )
defined as the number of sequences of length �αT  that can
be synthesized from S in time less that T, the corresponding
maximum synthesis rate is

R(S, α) = lim sup
T→∞

log
(
N �αT	(S1:T ,T )

)

T
.

For codes with variable length sequences, with corresponding
maximum codebook size N ∗(S1:T ,T ), the maximum synthe-
sis rate is

R∗(S) = lim sup
T→∞

log(N ∗(S1:T ,T ))

T
.

It was shown that these rates can be determined by applying
the theory of discrete noiseless channels [129], [180], also
known as finite-state (noiseless) channels with cost, which can
be represented by a finite directed graph with symbol and cost
labels on edges. Specifically, the synthesis process described
above is modeled using the synthesis cost graph shown in
Fig. 3, where the labels, such as C|1 on edges represent an
appended DNA base and the associated cost (i.e., synthesis
time), respectively. For a periodic synthesis sequence S =
(s, s, . . .), it was shown that R∗(S) is the capacity of the asso-
ciated synthesis cost graph and R(S, α) is the cost-constrained
capacity, both of which can be computed [180], [181], [182].
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Fig. 3. Synthesis cost graph for DNA synthesis using the alternating sequence
ACGT ACGT . . ..

Lenz et al. [176] also showed that for a q-ary alphabet

{0, 1, 2, . . . , q−1}, the alternating sequence S = Aq
def
=

(01 . . . (q−1), 01 . . . (q−1), . . .) that cyclically repeats the
symbols in the alphabet in ascending order maximizes both
of the information rates R(S, α) and R∗(S). Specifically, for
q = 2, for all 0 ≤ α ≤ 1,

R(A2, α) =

{
αh

(
α−1 − 1

)
, if α ≥ 2

3
α, otherwise

,

where h(x) is the binary entropy function. Further, for any
q ≥ 2,

R∗(Aq
)
= − log zq ,

where zq is the largest root of the polynomial
∑q

i=1 z
i − 1.

In particular, for q = 4, corresponding to the DNA alphabet,
the maximum synthesis rate is R∗(A4) ≈ 0.9468. This rate
compares favorably to that of the naive synthesis scheme in
which oligos of length n are synthesized from the superse-
quence of length 4n that repeats the substring ACGT exactly
n times, adding exactly one nucleotide from each repetition of
the substring. This scheme achieves an information synthesis
rate of 0.5 bits/cycle, since it requires 4 cycles to synthesize
each nucleotide corresponding to two information bits. It
also compares favorably to the scheme proposed in [176]
that achieves an information rate of 0.8 bits/cycle. For a
periodic synthesis supersequence S = (s, s, . . .), methods for
designing codes that approach the maximum achievable rates
R(S, α), including R∗(S), with efficient encoding and decod-
ing algorithms were considered by Liu et al. in [183], [184]

If the goal is to efficiently synthesize constrained sequences,
such as those discussed in Section IV, a natural problem
is to determine the synthesis sequence that minimizes the
average synthesis time for the set of constrained sequences.
For a given synthesis sequence, the average synthesis time can
be computed from the capacity of a graph that incorporates
the constraints into the synthesis cost graph of the synthesis
sequence using the techniques discussed above. Finding the
optimal synthesis sequence, however, presents a challenging
problem that remains unsolved.

A different, but related, problem was considered by
Elishco and Huleihel [185]. Motivated by the work of
Makarychev et al. [186], they determined asymptotically tight
high probability lower and upper bounds on the cost of
DNA synthesis for a set of DNA strands randomly drawn

from a Markovian distribution modeling a general maxi-
mum homopolymer runlength constraint with parameter m
≥ 1. They concluded that the alternating sequence A4 =
ACGT ACGT . . .. is asymptotically optimal in the sense of
achieving the smallest possible cost.

Chrisnata et al. [36] investigated efficient DNA synthesis
codes that can correct a single insertion or deletion error.
For any synthesis time n < T ≤ 4n, they considered codes
based on Varshamov-Tenengolts codewords of length n with
synthesis time at most T. They gave a lower bound on the
size of such codes, showing that, in particular, for 2.5n ≤ T ≤
4n, there exists a synthesis-constrained single indel-correcting
code with has redundancy at most 3 + log2(n) bits. They
provided several explicit encoders that map binary strings into
these codewords with rates close to those promised by the
bounds.

B. Coding for Emerging Synthesis Methods

The main challenge of making DNA storage systems com-
petitive relative to existing storage technologies is the synthesis
cost. The simplest and straightforward approach to reduce
the cost is to increase the volume of data coded into a
given length of oligos, while the information capacity can
be measured by bits/symbol or bits/synthesis-cycle. The naive
approach, working over A, C, G, T has a theoretical limit of
log2 4 = 2 bits/symbol, while using error-correction codes can
significantly decrease this limit. For example, the information
rate in [16] and [187] is at most log2 3 ≈ 1.58 since they
imposed every two consecutive symbols to be distinct. On the
other hand, if additional encoding characters are introduced, it
is possible to achieve a logarithmic growth in the information
capacity, further reducing the DNA storage cost.

Composite DNA symbols were first introduced in [4], [20] to
leverage the significant information redundancies built into the
synthesis and sequencing technologies. A composite symbol is
a representation of a position in a sequence that does not store
just a single nucleotide, but a mixture of the four nucleotides.
That is, a composite symbol can be abstracted as a quartet
of probabilities (pA, pC, pG, pT), such that pb describes the
fraction of the nucleotide b ∈ {A,C,G,T} present in the
mixture, where 0 ≤ pb ≤ 1 and pA + pC + pG + pT = 1.
For example, W = (0.5, 0, 0.5, 0) represents a composite
symbol in which there is a probability of 0.5, 0, 0.5, and 0 of
seeing A, C, G, and T, respectively. In the composite DNA
oligo AWT, two types of DNA sequences will exist in the
storage container, namely AAT and AGT. When synthesizing a
composite oligo, a cluster of multiple copies of the synthesized
oligo are being generated simultaneously, such that roughly
pb of them contain the nucleotide b. Thus, in sequencing, one
needs to sequence a fraction of the copies from the cluster and
then to estimate (pA, pC, pG, pT) in each position to identify
the composite symbols.

The idea of introducing a larger alphabet by composite
symbols was later further extended by Preuss et al. [21]. In
their paper, the authors introduce the combinatorial composite
synthesis method, in which the composite symbols are called
combinatorial symbols and their building blocks are shortmers.
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A shortmer (also known as a motif ) is a fixed-length sequence
that consists of DNA bases. Therefore, the symbols in the
alphabet are mixtures of shortmers, where each symbol is
represented by a set of w > 0 distinct shortmers. Thus, a set
of shortmers is synthesized using a standard DNA synthesis
technology. Then, data is encoded into combinatorial symbols
over the shortmers, and DNA strands are generated by a
biochemical process called ligation [21], which connects the
pre-synthesized shortmers. To improve the data reliability and
to allow easier detection of the shortmers, they are selected as
a subset of all shortmers of a specific length. Other extensions
of this method can be found in [188], [189].

DNA composite introduces several coding and algorithmic
challenges. The first work that studied error-correcting codes
for composite DNA was done by Zhang et al. [190]. In their
work, they assumed that the probability of every composite
symbol is a multiple of 1/k, t is the number of erroneous
composite symbols, and 	 is a parameter that limits the change
in the probabilities of the erroneous symbols. They ignored
insertions and deletions and then used a BCH-based scheme
to correct the erroneous composite symbols. Another model of
the composite synthesis was studied by Walter et al. in [191],
where the authors suggested several error-correcting codes for
substitution errors, strand loss and deletions.

For the combinatorial composite synthesis, Sabary et al.
studied in [192] the case where one or more shortmers are not
represented in the sequencing reads. They modeled these cases
as asymmetric errors and suggested several error-correcting
codes, along with an explicit encoder and decoder.

From a more information-theoretic point of view,
Kobovich et al. [193] studied how to choose the probabilities
of the composite symbols in order to maximize the DNA
composite channel capacity. The authors modelled this channel
with composite inputs as a multinomial channel, and proposed
an optimization algorithm for its capacity achieving input
distribution, for an arbitrary number of output reads. The
algorithm is termed multidimensional dynamic assignment
Blahut-Arimoto (M-DAB), and is a generalized version of the
DAB algorithm, proposed by Wesel et al. [194] developed for
the binomial channel. Yet another work [193] studied how to
choose these probabilities in order to maximize the decoding
success probability of the maximum likelihood decoder.

The required number of sequencing reads to retrieve data,
which is encoded with the combinatorial symbols, was studied
in [195]. In [195], the authors used a Markov-chain model
and other probabilistic methods to compute the probability of
successful retrieval and presented an algorithm that calculates
the number of reads that guarantee successful decoding with
high probability. In [196], the authors studied the expected
number of reads in order to decode a composite strand or a
group of composite strands.

Additional low-cost synthesis method is the enzymatic
synthesis method, which was suggested by Lee et al. [187].
This method employs a combination of two enzymes, apyrase
and polymerase, to construct a desired DNA sequence. The
error characteristic of this method can be described as repeat
error, where any base in the designed strand is synthesized
one or more times consecutively or not synthesized at all. That

is, this method can be described as a communication channel
with deletions and sticky insertions errors. Jain et al. [197]
studied the capacity of the enzymatic synthesis to optimize
the synthesis time. To do so, they created a graph representing
the possible sequences that can be synthesized with this
method, considering possible errors. Next, by capturing struc-
tural observations on the graph, they were able to minimize
the required number of synthesis cycles. They also describe
how error-correcting codes can be used to overcome repeat
errors. Shafir et al. [198] suggested reconstruction algorithms
and designed constrained codes for the enzymatic synthesis
method.

Recently, Antkowiak et al. [179] introduced a new synthesis
method that improves the costs and the latency of DNA
synthesis. The method, termed photolithographic synthesis
or light-directed synthesis, uses UV light and small mirrors
(micromirrors), to monitor a stream of DNA bases. In this
way, bases can be added to synthesized strands faster and with
lower costs. However, this method shows significantly higher
error rates compared to the previous synthesis methods [199].
Therefore, it requires a sophisticated coding solution, as
suggested in [179].

VI. CODING FOR SEQUENCING

One of the main components in any DNA storage system
is a DNA sequencer, which reads back the encoded strands
that store the user’s information. The sequencing output is
digital representations of the strands, which are used in the
decoding process. Nowadays, DNA sequencing is primarily
performed using two main methods, Illumina and nanopore
(Oxford Nanopore Technology - ONT), which are named, for
simplicity, after the companies that developed them. Illumina
sequencing technology employs a method called sequencing
by synthesis, in which millions of short DNA fragments
(strands of lengths which are up to 150 bases) are simulta-
neously sequenced as they are synthesized on a solid surface.
To do so, the bases (nucleotides) of the strands are altered in
a way that they are identifiable by a unique fluorescent dye
that is attached to each base. Thus, in each cycle, nucleotides
are identified by their color, and the complementary strand
is synthesized accordingly. This technology has a significant
advantage in precision, and it is known that its output suf-
fers from low error-rate [6]. On the other hand, nanopore
sequencing is an emerging technology that is based on single-
strand sequencing. In this technology, a single DNA strand is
passing through a small pore (called nanopore). As each DNA
nucleotide passes through the nanopore, it induces a unique
change in electrical current and thus can be identified. Fig. 4
describes the nanopore sequencing process. The advantages of
nanopore sequencing include the increased portability of its
platforms and the ability to read longer fragments of DNA. As
a result of these benefits, nanopore sequencers have been used
extensively in existing DNA storage systems. Unfortunately,
one of the potential drawbacks is that these sequencers have
exhibited high error rates.

At a conceptual level, there are several aspects of nanopore
sequencing that may lead to errors during the readout
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Fig. 4. Description of the nanopore sequencing process.

Fig. 5. Description of the nanopore channel as a concatenation of three
communication channels.

phase. (i) Inter-symbol Interference (ISI): This occurs because
multiple nucleotides may influence the observed current at the
same time. (ii) Shift errors: This phenomenon may occur when
the strand of nucleotides skips forward or possibly backward
in the nanopore. (iii) Noise: Each measurement collected of the
modulation signal is subject to random noise. Based on these
three aspects, the reading process of a nanopore sequencer can
be modeled as the concatenation of three communication chan-
nels as illustrated in Fig. 5. The ISI channel is characterized by
the parameters (k , δ). Conceptually, it slides a window of size
k over an input sequence of length n, generating a sequence
of n − k overlapping strings of k consecutive nucleotides, or
k-mers.

For an input sequence composed of four nucleotides, there
are 4k possible k-mers. The parameter δ controls how quickly
the sequence is read by using δ-decimation of the sequence of
k-mer reads. The IDS channel introduces insertion, deletion,
and substitution errors into the sampled sequence of k-mer
symbols. The V channel then deterministically generates for
each k-mer a discrete voltage level according to a function
f : {A,T,C,G}k → {0, 1, . . . , b − 1}.

For example, if one considers a noiseless IDS channel, i.e.,
the IDS channel is the identity channel, then for a given input
x1, x2, . . . , xn , and assuming δ|(n − k), the output of the
nanopore channel is then:

f (x1, . . . , xk ), f (xδ+1, . . . , xδ+k ), . . . .f (xn−k+1, . . . , xn ).

The V channel uses the composition function f that counts
how many of each type of nucleotide the k-mer contains. For
example, if (k , δ) = (4, 2) and the input to the nanopore
channel is (A, A, T, G, A, T), then the output would convey
the information that the first k-mer read contains two A
nucleotides, a single G, and a single T, and that the third k-mer
read contains a single A, a single G, and two Ts. Note that
the ordering of these symbols is not known.

In [200], a deterministic abstracted model of the nanopore
channel was discussed. In their model, k-mers are obtained

from the nanopore channel, and substitution errors may occur
in each k-mer before measuring its voltage with a function
similar to f. The authors studied balanced functions f, in which
the number of k-mers that are mapped to each discrete voltage
level is the same. They bounded the information capacity (in
bits-per-base) obtained in this nanopore channel as a function
of b (the number of voltage levels) and k. They showed that the
highest information capacity is given by min (log(b), 2), where
the lowest capacity is at least log(b)

k and at most 1 (if b ≤ 2k ).
They also suggested several coding schemes to correct errors
in this model. The special case where the function f is defined
as the Hamming weight was studied in [201], where the
authors studied the capacity of three variations of the ISI
channel, based on the values of k and δ. These channels
include the cases in which k ≤ δ, the cases where k is multiple
of δ and the special cases where δ = 2 and k ∈ {3, 5, 7}.
Furthermore, capacity results for δ < k < 2δ, as well as an
upper bound for k < δ can be found in [202].

In [203], the authors used a similar model to the one
described in Fig. 5. However, they only considered substitution
errors. In their model, the substitution errors are interpreted
as measurement errors, i.e., after performing the function f
(the V channel). They showed that when δ = 1, in order
to correct one substitution error, it is required to encode at
least log log (n) symbols of redundancy. Furthermore, they also
studied the case in which the nanopore channel produces two
distinct noisy copies of the sequenced strands. In this case,
they showed that the minimum redundancy required to correct
one substitution error is log log(n) −log

(q
2

)−o(1), where q is
the alphabet size. Finally, they suggested a single substitution-
correcting code, which is optimal up to a constant in the case
where k ≥ 3.

Another more realistic method to model nanopore sequenc-
ing process was suggested in [204] and studied in [145],
where the authors used a finite-state semi-Markov chain. In
their model, the state space, denoted by Ω is defined as all
the possible 4k k-mers. Thus, the bases that pass through
the pores induce a finite set of m states (k-mers), which are
denoted by {S�}, 1 ≤ 	 ≤ m , where the 	-th state corresponds
to the k-mer that was detected in the pore after the 	-th
base from the strand that was transmitted through the pore.
Thus, the edges of the Markov chain describe the four bases
{A, C, G, T}, and they connect the states as follows. For a
given state, the next state is defined by an input base, which
represents the base detected in the pore. In this model, the
noise of the nanopore channel is given by two stages: the
first is sample duplications, and the second describes the ISI,
the measurement of the k-mer, and a possible noise that is
added. The sample duplications correspond to the number of
samples that are taken per k-mer. They are represented by
a duplication channel that receives the 	-th state S� ∈ Ω,
1 ≤ 	 ≤ m , and returns K� duplications of S� given as
a sequence of output states. Thus, in total the duplication
channel creates Tm =

∑m
�=1K� states which are denoted by

Zt , 1 ≤ t ≤ Tm . Based on the number of duplicated samples,
the output states can be partitioned into m segmentation point
or jump times. Therefore, the Markov property is preserved
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only per jump-time, and thus, the duplication channel is a
semi-Markov chain [205] and can be analyzed accordingly,
see, e.g., [206]. Following the sample duplications, the ISI
and the measurement of the k-mers are modeled similarly to
the function f, where an additional layer of noise is added as
Additive Gaussian White Noise (AWGN). That is, given a k-
mer (state) Zt , which is the output of the duplication channel,
we have that the corresponding voltage is given by Yt �
f (Zt ) + Nt , where Nt ∼ N(0, σ2) is a Gaussian distributed
noise. In [145], the authors suggested a coding scheme that
employs constrained coding to reduce the errors of the channel
and presented an efficient decoding for their scheme, where
another scheme was suggested in [207].

One additional model of the nanopore channel was sug-
gested in [208], where the authors focused on base insertion
and base deletion errors caused by shift errors, and on the
natural decay of the pores that affects the quality of the
measured signals. In their model, the bases are mapped into
states as was done in [204], then the mapped states S�, 1 ≤ 	 ≤
m (which represent k-mers), pass through a deletion channel
with probability pd . The channel deletes each of the states
with probability pd . The set of indices of the deleted states
is denoted by D. Since some of the states are deleted, the
Markov chain is called a censored Markov chain [209]. Lastly,
the function f is used to quantize the remaining states into
discrete voltage levels, but with the addition of a fading noise,
modeling both the errors in the mapping function itself and
the natural wear of the pores. Thus, f can be shown to be a
discrete memoryless channel (DMC), and for any k-mer state
S�, f (S�) ∈ [f (S�)−Δ, f (S�)+Δ], where Δ is the worst case
deviation from the mean.

It should be further mentioned that current sequencing
technologies suffer from relatively slow throughput as well as
high costs. Hence, designing applicable DNA storage solutions
requires a significant reduction in the quantity of DNA oligos
that should be sampled and read to retrieve the information.
This quantity is also referred to by the coverage depth, defined
by the ratio between the number of sequenced reads and the
number of synthesized oligos [6]. Optimizing the coverage
depth can improve the latency of any existing DNA storage
system and reduce its costs. Recently, in [210], the DNA
coverage depth problem was proposed, where the goal is
to minimize the coverage depth while maintaining system
reliability. To do so, the authors studied the expected required
coverage depth as a function of the DNA storage channel,
the error-correcting code, and the reconstruction algorithm
in order to retrieve the information successfully with high
probability. They modeled the problem as follows. They
assumed the information is given by k information strands
and can be encoded into n encoded strands. The noise and
the reconstruction algorithm were modeled together by a
parameter t > 0 that defines the required number of reads
of a specific strand to retrieve it. Lastly, the probability to
obtain each of the n strands from sequencing was defined as
a vector of probabilities p � (p1, . . . , pn ),

∑n
i=1 pi = 1,

where pi describes the probability to obtain the i-th encoded
strand. In this way, they could define νpt (n, k) as a random
variable of the number of samples to retrieve the encoded

information using an (n , k) code. In fact, in the more
simple cases where k = n and where t the problem can be
reduced to the coupon collector’s problem and double dixie
cup problem [211], [212], [213]. Hence, the authors showed
that when aiming to reduce the expected coverage depth (i.e.,
the expectation of νpt (n, k)), MDS codes are optimal and
showed closed-form upper and lower bounds on E [ν

p
t (n, k)].

They also studied this problem in the random access setup,
where the goal is to retrieve only a subset of the k information
strands. More cases of these two problems were also studied
in [214], [215].

Finally, we also mention coding schemes for other DNA
sequencing platforms. For example, high-throughput shotgun
sequencing platforms is another platform used for reading
DNA sequences. To correct errors arising for such platforms, a
coding design framework was introduced by Kiah et al. [216]
and the associated fundamental limits were later studied in
Ravi et al. [217]. For an in-depth tutorial of this coding
framework and a survey of related results, we recommend the
work of Milenkovic and Pan [25] to the interested reader. In
the same survey [25], Milenkovic and Pan also reviewed other
sequencing methods and generally classified them as a class of
fundamental problems termed as unique string reconstruction.
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