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Abstract—There are various ways to use machine learning to
improve data storage techniques. In this paper, we introduce
symbolic regression, a machine-learning method for recovering
the symbolic form of a function from its samples. We present
a new symbolic regression scheme that utilizes side information
for higher accuracy and speed in function recovery. The scheme
enhances latest results on symbolic regression that were based on
recurrent neural networks and genetic programming. The scheme
is tested on a new benchmark of functions for data storage.

Index Terms—symbolic regression, data storage, side informa-
tion, deep learning, genetic programming

I. INTRODUCTION

There are various approaches of using machine learning to
improve data storage techniques [5] [9] [13] [22] [27]. In this
work, we introduce symbolic regression, a machine-learning
method for recovering the symbolic form of a function from
its samples. Specifically, let x = (x1, x2, · · · , xn) ∈ Rn be
n variables. Let y = f(x) ∈ R be a function of x. Let S =
{(Xi, yi) | i = 1, 2, · · · ,m} be m samples of the function
f , where each point Xi ∈ Rn is a sample of x, and yi =
f(Xi) is the corresponding value of y. Given such a dataset
of samples S, the goal of symbolic regression is to recover the
symbolic form of the function f (such as y = −x1 log2 x1 −
(1−x1) log2(1−x1) or y =

√
(x1 − x2)2 + (x3 − x4)2). The

recovered function should not only fit the samples in S well,
but also be as simple as possible.

Symbolic regression can have numerous applications to data
storage. One application is modeling physical storage devices,
such as non-volatile flash memories, where it can provide
functional insights into evolving cell threshold voltage distri-
butions, spatial inter-cell interference effects, and page-level
bit error counts as the memory ages over read/write cycles
or loses charge with infrequent use. Symbolic regression can
bridge experimental data with theoretical models. Another
application is aiding the analysis of storage schemes, such
as modeling the performance of error-correcting codes, wear-
leveling schemes, etc. Here it can bridge simulation data with
theoretical models and provide insights for further analysis.

Symbolic regression is a challenging problem in AI. Its
solution space is both discrete (in the symbolic form of
the functions) and continuous (in the coefficients of the
functions). The number of functions in the search space
grows exponentially as the lengths of the functions increase.

Existing symbolic-regression methods mainly use evolutionary
algorithms or deep learning [2] [3] [4] [6] [7] [10] [11] [12]
[14] [18] [19] [21] [23] [24] [25] [26]. In particular, a recent
method [16] (which we shall call DSR-GP) improves the Deep
Symbolic Regression (DSR) approach [17] and achieves state-
of-the-art performance by combining deep neural networks
with genetic programming.

In this work, we introduce a new symbolic regression
approach that further improves DSR-GP by combining it
with side information. Broadly speaking, side information
can refer to any information that correlates with the ground-
truth function f , although in this paper, we shall focus on
a narrower type: functions that resemble all or a part of f .
(Note that side information known as “prior knowledge” or
“expert knowledge” has been explored in genetic programming
for symbolic regression [14] [20].) We show that the new
scheme, which we shall call DSR-GP-SI, can notably improve
the performance of symbolic regression.

To help evaluate the potential of symbolic regression for
data storage, we also present a new benchmark of functions
that focus on storage systems. The new benchmark, along with
existing benchmarks [16] [25], can be used to compare the
performance of different symbolic regressions algorithms.

The rest of the paper is organized as follows. In Section
II, we introduce representations of symbolic functions and
their side information. In Section III, we present our symbolic-
regression scheme using side information. In Section IV, we
evaluate the scheme’s performance on benchmark functions,
including our new benchmark on data storage.

II. SIDE INFORMATION FOR SYMBOLIC REGRESSION

In this section, we first introduce representations of sym-
bolic functions, including computation trees and the pre-order
representation. We then discuss side information for symbolic
regression, including sub-functions.

A. Pre-order Representation of Symbolic Functions

To represent symbolic functions, we need a set of operators
Sop, a set of variables Svar, and a set of values for coefficients
Scoeff . For example, if Sop = {+,−,×,÷, sin, cos, log, exp},
Svar = {x1, x2} and Scoeff = R, then sin(x1 − x2) +
1.5 exp(x1) is a valid symbolic function. If we wish to
represent all coefficients using a placeholder “const”, we can
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let Scoeff = {const}. The three sets – Sop, Svar and Scoeff

– together form the token library.
A symbolic function can be expressed as a computation

tree, where every internal node is an operator and every leaf
is either a variable or a coefficient. A computation tree for
f(x1, x2) = −x1

x1+x2
log x2 − sin(2x1) cosx2 is illustrated in

Fig. 1 (a).

Fig. 1. Let f(x1, x2) =
−x1

x1+x2
log x2−sin(2x1) cosx2. (a) A computation

tree G = (V,E) for f(x1, x2), where the constant coefficients – -1 and 2 –
are represented by the placeholder token “const”. Here v1, v2, · · · , v18 are
the pre-order traversal of G. (b) Let r = v12 and L = {ℓ1 = v14}. We get
the graph here after removing the descendants of ℓ1. (c) Replace the token
of ℓ1 by the constant token “const”. (d) Simplify the subtree by removing
v14 and changing the token of v13 to “const” (because sin(const) is also a
constant), and we get the subtree (i.e., the sub-function) G̃r,L.

A particularly useful way to traverse a computation tree is
the pre-order traversal, which is a specific implementation of
depth-first search (DFS): we visit nodes in the tree using DFS;
and if an internal node has multiple children, those children
are visited from left to right. For the computation tree shown
in Fig. 1 (a), its pre-order traversal is v1, v2, · · · , v18, whose
corresponding sequence of tokens (from the token library) is
“−×÷× const x1 + x1 x2 log x2 × sin × const x1 cos x2”
and forms another representation of the symbolic function.
Such a sequence of tokens shall be called the pre-order
representation of the symbolic function. It is known that there
is a one-to-one mapping between a computation tree and its
pre-order representation, because the number of operands that
an operator can take (which equals its number of children
in the tree) is known in advance. (For example, the “+”
operator takes two operands, while the “sin” operator takes
one operand.)

B. Side Information and Sub-functions

Let y = f(x) be the ground-truth function we look for.
Current symbolic regression methods usually search for f in
the vast function space without prior knowledge. [16] [17]
There exist, however, various alternative ways to build math-
ematical models based on the given samples, which can
provide useful candidate solutions to (or at least hints on) the
function f . In many fields of science and engineering (e.g.,
physics, economics, information theory), people often model
data by functions based on prior knowledge or experience
(e.g., use an exponential function or a power-law function
as a component to model the decaying tails of a bell-shaped

distribution, use trigonometric functions as a component to
model oscillating data, or use rational functions to model the
solution to approximately linear equations). People can also
make conjectures on the function f by analyzing the data
samples (e.g., by analyzing their frequency spectrum). Such
candidate functions, which may be an approximation of the
ground-truth function f or just a part of f , can serve as useful
side information for symbolic regression methods and help
them search for f in a more targeted space, thus improving
both the accuracy and the speed of symbolic regression.

Broadly speaking, any information correlated with the func-
tion f can be used as side information. In this work, however,
we shall focus on functions that are a part of the ground-
truth function f , and call such functions sub-functions or
sub-function side information (SF-SI). More specifically, let
G = (V,E) be a computation tree for f . A sub-function of G
is defined as follows:

1) Let r ∈ V be an internal node (i.e., a non-leaf node) in
the tree G.

2) Let L = {ℓ1, ℓ2, · · · , ℓ|L|} ⊂ V be |L| distinct descen-
dants of r, such that ∀ 1 ≤ i < j ≤ |L|, ℓi is neither an
ancestor nor a descendant of ℓj .

3) Let Gr be the subtree of G rooted at node r. Let
G̃r,L denote the computation tree obtained from Gr

as follows: (1) remove from Gr every node that is a
descendant of any node in L; (2) replace the token (i.e.,
an operator, variable or constant) of each node in L by
the constant token “const”; (3) simplify the subtree as
follows: for any internal node v in the subtree (which
has an operator as its token), if all its children have
“const” as their tokens, we remove all the descendants of
v from the subtree, and change the token of v to “const”;
we do the above repeatedly until the subtree cannot be
simplified any further. Then, the obtained subtree G̃r,L
is a sub-function of G.

Given a computation tree G, let L(G) denote the number
of nodes in G. One way to measure the similarity between G
and its sub-function G̃r,L is

γ(G, G̃r,L) ≜
L(G̃r,L)

L(G)
,

which is in the range [0, 1].
An example of sub-functions is shown in Fig. 1, where

f(x1, x2) =
−x1

x1+x2
log x2 − sin(2x1) cosx2. The sub-function

for r = v12 and L = {v14} (obtained via the steps illustrated
in Fig. 1 (b) through (d)) is “× const cos x2” in its pre-
order representation and “const cosx2” in the common form.
Its similarity with f can be measured as γ(G, G̃r,L) =

4
18 = 2

9 .
Note that a function f can sometimes have several

computation-tree representations (e.g., due to commuta-
tive/associative properties of certain operations). And func-
tions of different symbolic forms may be equivalent (e.g.,
sin(2x) = 2 sinx cosx). The equivalence of functions can be
detected using existing tools (e.g., SymPy [15]). Also note
that in practice, since f is initially unknown, when we use
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alternative knowledge (as discussed earlier) to generate side-
information functions, there is no guarantee that they are
sub-functions of f . However, as a theoretical approach, it
is valid/worthwhile to study how sub-functions can impact
the performance of symbolic regression as they have direct
correlations with f and are practically common to obtain.
Furthermore, it is straightforward to extend the study here
to general side-information functions that are not necessar-
ily sub-functions of f , by considering the distance between
those general functions and f ’s sub-functions (e.g., their edit
distance in their pre-order representations) as an additional
factor that affects the performance of symbolic regression.

III. SYMBOLIC REGRESSION USING SIDE INFORMATION

In this section, we present the new symbolic regression (SR)
scheme DSR-GP-SI, which extends the existing SR schemes
– the DSR scheme based on recurrent neural network (RNN)
and risk-seeking reinforcement learning [17], and the DSR-
GP scheme combining RNN with genetic programming [16]
– by incorporating side information. The overall DSR-GP-SI
scheme is illustrated in Fig. 2. We first present its components’
details, then present the overall scheme.

Fig. 2. The Symbolic Regression Scheme DSR-GP-SI using side information.

A. The Genetic Programming (GP) Component

Genetic programming (GP) is an important component of
the symbolic regression scheme presented here. It has been
explored extensively in various previous works [16] [19]. Let
y = f(x) be the ground-truth function we look for. Let S =
{(Xi, yi) | i = 1, 2, · · · ,m} be our |S| = m samples of the
function f . GP takes a set of candidate functions for f (called
a “population”) as input, and helps them evolve into a new
set of candidate functions for f (called “a new population”)
that are hopefully better, i.e., with improved “fitness”, whose
precise meaning will be presented below. (Note that in the
GP component here, as well as in the RNN component to be
presented next, the functions all use “const” as the placeholder
token for constant coefficients. When we measure the fitness
of a generated function, we need to convert its “const” tokens
to real numbers. As in [17], we optimize the values of those
coefficients – using a non-linear optimization algorithm such
as BFGS – such that they maximize the fitness of the function.)
Each such iteration that changes one old population into a new
population is called a “generation”. Given a population T 0

GP ,

we use α generations to turn it into α populations T 1
GP , T 2

GP ,
· · · , T α

GP , whose fitness is expected to improve progressively.
Then nGP “fittest” functions are selected from T α

GP as the
output of the GP component.

In our symbolic regression scheme, among the initial pop-
ulation T 0

GP , one function fSI is a side-information function
obtained via alternative knowledge (as discussed earlier), while
the remaining |T 0

GP |−1 functions are generated by a recurrent
neural network (RNN) to be introduced later. (The scheme
can be easily generalized to having more side-information
functions in T 0

GP . And we can replicate fSI in T 0
GP if we

want to strengthen the survival of its “genes”.) To measure the
“fitness” of a function f̂ , let us first define several metrics:

1) NRMSE (normalized root-mean-square error): let µy =
1
|S|

∑|S|
i=1 yi be the mean of y, and let σy =√

1
|S|

∑|S|
i=1(yi − µy)2 be the standard deviation of y.

Then, NRMSE(f̂) ≜ 1
σy

√
1
|S|

∑|S|
i=1(f̂(Xi)− yi)2.

2) PORD (pre-order representation distance): let
dLevenshtein(f̂ , fSI) denote the Levenshtein distance
between the pre-order representations of f̂ and fSI

(i.e., the minimum number of insertions, deletions and
substitutions needed to turn one pre-order representation
into the other). Let L(f̂) and L(fSI) denote the numbers
of tokens in the pre-order representations of f̂ and fSI ,
respectively. Then PORD(f̂ , fSI) ≜

dLevenshtein(f̂ ,fSI)

L(f̂)+L(fSI)
.

3) NDSIF (normalized distance to side-information func-
tion fSI ): let δ > 0 be a constant parameter. Then
NDSIF(f̂ , fSI) ≜ 1

|S|
∑|S|

i=1
|f̂(Xi)−fSI(Xi)|
max{|fSI(Xi)|,δ} .

In our scheme, a function f is considered to have good
“fitness” if it not only fits the samples in S well, but also is
close to the provided side-information functions fSI (both in
terms of sample values and in terms of their symbolic forms).
So we define the “fitness” of f̂ as Rfit(f̂ , fSI) ≜

w1

1 + NRMSE(f̂)
+

w2

1 + PORD(f̂ , fSI)
+

w3

1 + NDSIF(f̂ , fSI)

where w1, w2 and w3 are constant parameters. The greater
Rfit(f̂ , fSI) is, the better f̂ is considered to be.

In each of the α “generations”, we turn the old population
T i
GP into a new population T i+1

GP (for i = 0, 1, · · · , α− 1) via
three types of “evolutionary operations”: mutation, crossover
and selection. As in [16] [19], a mutation operation changes
a function f1 into a new function f2 by randomly replacing
a subtree in the computation tree of f1 by another randomly
generated subtree; a crossover operation changes two functions
f1 and f2 into two new functions f ′

1 and f ′
2 by swapping

subtrees in their computation trees; and a selection operation
decides which functions in the current population are kept
(instead of removed) for the next population, using methods
such as tournament selection. (In tournament selection, in each
round, a small group of functions are randomly selected from
the current population, and the function with the best fitness –
in our case, the maximum value of Rfit(f̂ , fSI) for a function
f̂ – is selected.) Sufficiently many new functions are generated
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using mutation and crossover, and selection is used to keep the
fittest of them. The new population T i+1

GP is made to have the
same number of functions as T i

GP does.
Note that certain functions do not seem to appear in practice,

such as nested trigonometric functions (e.g., cos(2 + sin(x)))
or adjacent inverse operators (e.g., ln ex). We follow the
constraints proposed in [17] to remove such functions. Fur-
thermore, since symbolic regression looks for short functions,
we require all functions to contain at most T tokens in their
pre-order representations, for a constant parameter T .

B. The Recurrent Neural Network (RNN) Component
Recurrent neural networks (RNNs) are also an important

component in our symbolic regression scheme. We use two
RNNs here: an encoder RNNenc, and a decoder RNNdec. The
use of RNNenc is to transform the side-information function
fSI to a latent vector cSI , which is used to initialize the
memory of RNNdec. The use of RNNdec is to generate new
functions useful for symbolic regression.

Specifically, for RNNenc (whose memory is initialized with
an all-zero vector), it takes the sequence of tokens t1SI , t2SI ,
· · · , tβSI in a pre-order representation of fSI as its input (where
each token is an operator, variable or “const” from the token
library and is one-hot encoded), and outputs a sequence of
β vectors. The last output vector (which encodes the whole
function fSI ) becomes our latent vector cSI .

For RNNdec, we initialize its memory as cSI . We can use
RNNdec to generate many functions (one at a time) as follows
(in the same way as in [16] [17]). For simplicity, let us
assume each operator in the token library has either one or two
operands. (That is by far the most common case in practice,
and it can be readily extended to the more general case where
an operator may have three or more operands.) To generate a
function f̂ , RNNdec will generate the sequence of tokens t̂1,
t̂2, · · · , t̂γ in its pre-order representation (one token at a time)
in an auto-regressive way:

1) For i = 2, 3, · · · , γ, let tip be the parent node (actually,
its token) of t̂i in the computation tree of f̂ . If tip is a
binary operand and t̂i is its right child, let tisib be the
token of the left child of tip; otherwise, let tisib take the
NULL value. (By default, let t1p and t1sib both take NULL
values.) Note that both tip and tisib are before t̂i in the
pre-order traversal. So by the time RNNdec generates t̂i,
the values of tip and tisib are already known.

2) For i = 1, 2, · · · , γ, RNNdec takes (tip, t
i
sib) as input

(both one-hot encoded), and outputs a probability distri-
bution Pi = (pi1, p

i
2, · · · , piτ ) (via a softmax activation

function), where τ is the number of tokens in the token
library and pij is probability for its j-th token. We
sample a token from the token library following the
distribution Pi, which becomes our next token t̂i in f̂ .
(The memory of RNNdec is also updated. Note that the
memory encodes not only fSI but also all the tokens t̂1,
t̂2, · · · , t̂i−1 generated so far. The tokens (tip, t

i
sib) are

used as input because they are topologically near t̂i in
the computation tree [17].)

3) When generating t̂i as above, if a token in the token
library would make the function f̂ violate any specified
constraint (as we have discussed for “genetic program-
ming” in the previous subsection [17]), we reduce its
sampling probability to 0 and re-normalize the probabil-
ity distribution Pi. This ensures all generated functions
are always valid. The pre-order representation of f̂ is
generated token by token. The generation process ends
once the computation tree becomes complete, and we
learn the concrete value of γ (i.e., the length of f̂ ) then.

In the above description, we assume RNNenc and RNNdec

have been trained. To train them together, we need a set
of sample functions that (hopefully) have good fitness. We
use supervised learning for training, and use cross-entropy
(between the output probability distribution Pi and the one-hot
encoding for the corresponding token in the sample function)
as the loss function. (To increase the diversity of generated
functions, an additional loss term can be added that equals the
entropy of Pi times a negative constant. [8] [17]) Compared
to the function-generation process presented above, at each
step of training, the input tokens are from the given sample
function instead of the generated function. And as we will see
next, the two RNNs alternate between training and function
generation, in a way similar to reinforcement learning.

C. The Overall Symbolic Regression Scheme

We now present our overall symbolic-regression scheme. It
is illustrated in Fig. 2. The scheme searches for good functions
in iterations, and it ends either when a function is found that
matches the m samples in S sufficiently well, or when it
exceeds a given time budget. In each iteration, the scheme
works as follows:

1) Let fSI be the given side-information function. We
use RNNenc to transform it to a latent vector cSI ,
and use cSI to initialize the memory of RNNdec. We
then use RNNdec to generate NRNN functions, and
select from them nRNN functions of the highest fitness
Rfit(f̂ , fSI). Let FRNN denote those nRNN functions.

2) Let T 0
GP = FRNN ∪ {fSI} be the initial population

for the genetic programming (GP) component. Use α
generations to generate a new population T α

GP , and
select from it nGP functions of the highest fitness
Rfit(f̂ , fSI). Let FGP denote those nGP functions.

3) Feed the functions in FRNN ∪ FGP to a persistent
maximum reward priority queue (MRPQ) [1], which
saves the nPQ functions of the highest fitness it has seen
so far. Then, the nPQ functions in the priority queue
(denoted by FPQ) are used as sample functions to train
the two RNNs RNNenc and RNNdec together.

The above iterative function-generation/RNN-training pro-
cess is similar to reinforcement learning. The RNNs and GP
first generate new functions (which is “exploration”), then the
fittest functions among them are used to train the RNNs (which
is “learning from past experience”). Over time, the RNNs and
GP generate functions of higher and higher fitness.
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IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the DSR-
GP-SI scheme on several benchmarks of functions, including
a new benchmark that focuses on data storage. We compare it
to state-of-the-art symbolic regression schemes DSR [17] and
DSR-GP [16], which the DSR-GP-SI scheme evolved from.

The DSR-GP-SI scheme is configured as follows. The
weights in the “fitness” function Rfit(f̂ , fSI) are w1 = 0.7,
w2 = 0.1, w3 = 0.2, and δ = 0.01 in its NDSIF compo-
nent. In each iteration of the scheme, the RNN component
generates 500 new functions, all of which are used as the
initial population of the GP component. (In the results reported
here, this configuration works well. If the RNNs do not
generate functions well, nRNN can be decreased.) GP runs
α = 10 generations in each iteration, and its output has
nGP = 30 functions. The priority queue stores nPQ = 10
fittest functions. The scheme ends either when a sufficiently
good function (whose NRMSE is less than 10−12) is found,
or when the RNNs have generated 60000 function in total
(as a time limit). All functions are required to have at most
T = 30 tokens. Sub-functions are generated randomly as side
information for each benchmark function. The two schemes
DSR and DSR-GP are configured similarly.

We compare the performance of the three schemes on two
existing symbolic regression benchmarks: Nguyen [25] and
Livermore [16]. To better evaluate the potential of symbolic
regression for data storage, we also present a new benchmark
of 20 functions (which we shall call the DS benchmark), shown
in Table I. Each function gets m = 20n random samples for its
sample set S (where n is the number of input variables of the
function f(x1, x2, · · · , xn)) by letting each input variable xi

sample 20 values uniformly randomly in a small range (such
as range (−1, 1), (0, 1) or (0, 5)).

The performance of the three schemes for the DS bench-
mark is shown in Fig. 3. It can be seen that having side
information can help improve the recovery rate (the fraction
of times of recovering functions correctly) substantially; and
generally speaking, the more side information (measured by
similarity between the ground-truth function and the sub-
function), the better. Furthermore, even when “similarity” is
small, there often still exist (short) sub-functions that can
improve the recovery rate significantly. That can be seen from
those gray circles near the top of the figure (whose recovery
rates are close or equal to 1).

Similar performance improvement by side information can
be observed for the Nguyen and Livermore benchmarks.
(These two benchmarks have comparatively simpler functions,
so most functions can be recovered fully by all three schemes.
However, for those functions that DSR or DSR-GP fails to
recover, DSR-GP-SI obtains a similar performance gain as
above.) DSR-GP-SI also achieves substantial reduction in its
running time for all three benchmarks. It is because for those
functions that DSR or DSR-GP fails to recover, the scheme
has to keep searching for functions until the preset time limit
is reached. (Due to page limitation, we skip the details here.)

TABLE I
BENCHMARK FUNCTIONS ON DATA STORAGE.

Benchmark Expression
1. (Normal distribution) f(x) = 1√

2πσ
exp[−(x− µ)2/(2σ2)]

2. (Folded normal distribution)
for x ≥ 0

f(x) = 1√
2πσ2

e
− (x−µ)2

2σ2 + 1√
2πσ2

e
− (x+µ)2

2σ2

3. (Logistic distribution) f(x) = e−x

(1+e−x)2

4. (Root Mean Squared Errors)
f(x1, x2, x3) =√

(x1 − c1)2 + (x2 − c2)2 + (x3 − c3)2

5. (Entropy) for 0 < x < 1 f(x) = −x log2 x− (1− x) log2(1− x)
6. (AWGN channel capacity)
for x1, x2 > 0

f(x1, x2) =
1
2
log

(
1 + x1

x2

)
7. (AWGN channel capacity)
for x1, x2 > 0

f(x1, x2) =
1
2
log2(1 + x1

x2
2
)

8. (AWGN channel capacity)
for x1, x2, x3 > 0

f(x1, x2, x3) = x1 log
(
1 + x2

x1x3

)
9. (AWGN channel capacity)
for x1, x2, x3, x4 > 0

f(x1, x2, x3, x4) = x1 log2(1 + x2x3
x1x4

)

10. (On LDPC code) f(x1, x2, x3) = [1 + exp(−2x1x2/x2
3)]

−1

11. (On LDPC code) f(x1, x2) = log
(

1+ex1+x2

ex1+ex2

)
12. (Transition response) f(x) = 1

1+(2x/τ)2

13. (SNR) for x1, x2 > 0 f(x1, x2) = 10 log10
x2
1

x2
2

14. (On Z-transform) f(x) = x
x−a

15. (On Z-transform) f(x) = Tx−1

(1−x−1)2

16. (On Z-transform) f(x) =
(sinαnT )x−1

1−2 cos(αT )x−1+x−2

17. (On Z-transform) f(x) =
(cosαnT )x−1

1−2 cos(αT )x−1+x−2

18. (differential entropy)
for x1, x2 > 0

f(x1, x2) =
1
2
log((2πe)x1x2)

19. (Rate distortion)
for x1, x2 > 0

f(x1, x2) =
1
2
log

x2
1

x2

20. (entropy maximization)
for x1, x2 > 0

f(x1, x2) =
1
x2

e
− x1

x2

Fig. 3. Performance of DSR-GP-SI (solid curve and gray circles), DSR-GP
(dashed line) and DSR (dash-dotted line) for the DS benchmark. Here the
x-axis is the “similarity” γ(G, G̃r,L) between the ground-truth function and
the sub-function side information, and the y-axis is the “recovery rate”, i.e.,
the fraction of times a ground-truth function is correctly recovered. (Note
that “similarity” is relevant to DSR-GP-SI, but not to DSR or DSR-GP.) Each
gray circle corresponds to a particular benchmark function and a particular
sub-function, where numerous experiments for DSR-GP-SI were performed
and their recovery rate was shown. (Note that different sets of experiments
may produce gray circles that overlap each other. The more overlapping,
the darker the gray color becomes.) The solid curve shows the trend of
the gray circles: for the average recovery rates corresponding to different
“similarity” values (averaged over all functions in the DS benchmark and
their experimented sub-functions for each given “similarity”), the solid curve
is their polynomial regression (a generalization of linear regression) with
polynomial degree 3. The average recovery rates of DSR and DSR-GP (which
use no side information) are 0.007 and 0.027, respectively, which are shown
as two horizontal lines for easy comparison.
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