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Abstract—For DNA data storage to become a feasible technol-
ogy, all aspects of the encoding and decoding pipeline must be
optimized. Writing the data into DNA, which is known as DNA
synthesis, is currently the most costly part of existing storage
systems. As a step toward more efficient synthesis, we study the
design of codes that minimize the time and number of required
materials needed to produce the DNA strands. We consider a
popular synthesis process that builds many strands in parallel
in a step-by-step fashion using a fixed supersequence S. The
machine iterates through S one nucleotide at a time, and in
each cycle, it adds the next nucleotide to a subset of the strands.
The synthesis time is determined by the length of S. We show
that by introducing redundancy to the synthesized strands, we
can significantly decrease the number of synthesis cycles. We
derive the maximum amount of information per synthesis cycle
assuming S is an arbitrary periodic sequence. To prove our
results, we exhibit new connections to cost-constrained codes.

I. INTRODUCTION

In the past decade, DNA has emerged as a potentially
viable storage technology [1], [2]. Compared to traditional
storage media, DNA offers the possibility of significantly
improved information density and durability [3]–[5]. While
much recent work has optimized many aspects of the DNA
data storage pipeline [6]–[9], we identify and address the goal
of optimizing the synthesis process. Typically information is
stored by first preprocessing the digital data and then encoding
it in physical DNA molecules using a synthesis machine.
Most experiments on DNA data storage use the same type
of synthesis process [10]–[12]. The machine creates a large
number of DNA strands in parallel, where each strand is grown
by one nucleotide at a time. To append nucleotides to the
strands, the synthesis machine follows a fixed supersequence
of possible nucleotides. As the machine iterates through this
supersequence, the next nucleotide is added to a select subset
of the DNA strands. This process continues until the machine
reaches the end of the supersequence. In particular, each
synthesized DNA strand must be a subsequence of the ma-
chine’s supersequence. Figure 1 depicts the synthesis process
of multiple strands from a fixed supersequence. To increase
the throughput of the DNA synthesis process, we consider
the problem of encoding the DNA strands with the goal of
minimizing the total number of cycles used by the synthesis
machine. Not only will this decrease the synthesis time, but
it will also decrease the monetary cost because each cycle
expends chemicals and reagents [10]–[13].

A theoretical model of the process involves several vari-
ables. For simplicity, assume that the number of strands k is
fixed, based on the size of the synthesis machine (in typical
systems, k ≈ 106). Then, the length n of each strand may be
fixed or variable (usually n is between 100 and 1000). When n
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Fig. 1: Synthesis of three strands x1 = (CTACG),x2 = (AGTA),
and x3 = (CTT) using the synthesis sequence S = (ACGTACGT).
The strand x1 is synthesized by attaching the nucleotides in cycles
2, 4, 5, 6, 7, x2 is synthesized in cycles 1, 3, 4, 5, and similarly x3

is synthesized in cycles 2, 4, 8. Henceforth, the synthesis time of
x1,x2,x3 is given by tS(x1,x2,x3) = 8.

is fixed, a naive solution in which information is encoded into
DNA strands using the rule (00)→ A, (01)→ C, (10)→ G,
(11)→ T uses a supersequence of length 4n that repeats the
substring ACGT exactly n times. This scheme achieves an
information rate of 0.5 bits/cycle, since it requires 4 cycles
to synthesize one nucleotide and one nucleotide contains two
bits of information. We show that by introducing redundancy
to the synthesized strands in the form of a synthesis code,
the synthesis time can be significantly decreased, respectively
the information rate can be increased, compared to uncoded
systems. As one of our results, we present a simple encoding
scheme with a single redundancy symbol that achieves an
information rate of 0.8 bits/cycle. Then, we show that this
can be further optimized to an optimum of 0.95 bits/cycle,
while increasing the number of redundancy symbols, using
a more sophisticated scheme based on constrained codes. In
other words, we encode the strands to achieve nearly twice the
throughput and half the cost compared to the uncoded solution.

More precisely, we aim to determine the maximum number
of bits that can be encoded into a set of k strands, each of
length n, while given an overall budget T on the number
of synthesis cycles (i.e., the supersequence has length T ).
In particular we derive the maximum possible amount of
information per synthesis time, given the usage of an arbi-
trary periodic synthesis sequence. To prove our results, we
exhibit connections between the number of subsequences of a
sequence and cost-constrained systems.

II. PRELIMINARIES

Throughout the paper, we use the (shifted) modulo operator
(a mod p) ∈ {1, . . . , p}. Let x ∈ Σn be a strand, which is
a string of length n over the alphabet Σ of size |Σ| = q.
The length of a string x ∈ Σn is denoted by |x| = n and



the length-m prefix of x is denoted by x1:m. The radius-t
deletion ball obtained after exactly t deletions in x is denoted
by D(x, t) and its size is VD(x, t). The global deletion ball
of x is defined by D∗(x) =

⋃|x|
t=1 D(x, t) and its size is

V ∗D (x) = |D∗(x)|. A strand S ∈ Σ∗ is called a supersequence
of x ∈ Σ∗, if x can be obtained by deleting sbolymbols from
S, i.e., x ∈ D∗(S). In reverse, s ∈ Σ∗ is called a subsequence
of x ∈ Σ∗, if it can be obtained from x via deletions, i.e.,
s ∈ D∗(x). Further, for any k strands x1, . . . ,xk ∈ Σ∗

we define S , SCS(x1, . . . ,xk) to be any shortest common
supersequence (SCS) of x1, . . . ,xk. Note that while the SCS
strands are not unique their length is and in the following, the
particular choice of the SCS will not be of importance.

A. Problem Formulation

Consider a system, where digital data shall be encoded
and synthesized into k DNA strands x1, . . . ,xk ∈ Σ∗ in
parallel. These strands can be of equal or different lengths.
The synthesis is performed by choosing a synthesis sequence
of nucleotides S = (S1, S2, . . .) ∈ Σ∗ and in each cycle
i = 1, . . . , |S|, for each DNA strand xj , it is possible to either
attach the symbol Si to the strand xj or to perform no action.
The sequence S must be chosen such that it is possible to
synthesize each strand with this procedure. If a strand x can be
synthesized by the synthesis sequence S, then this implies that
x is a subsequence of S and the other direction holds as well,
since by definition every subsequence of S can be synthesized
by S. Hence, the following lemma follows directly.

Lemma 1. The sequences x1, . . . ,xk can be synthesized using
the synthesis sequence S if and only if S is a common
supersequence of x1, . . . ,xk.

The key figure of merit of our analysis is the synthesis time
of a set of sequences x1, . . . ,xk, which is defined as follows.

Definition 1. The synthesis time tS(x1, . . . ,xk) of a set of
strands x1, . . . ,xk with the synthesis sequence S is defined
to be the smallest number of synthesis cycles that are required
to synthesize the strands x1, . . . ,xk with S, i.e.,
tS(x1, . . . ,xk) = min

t∈N
t s.t. {x1, . . . ,xk} ⊆ D∗(S1:t).

The aim of this analysis is to design codes Cnk ⊆ (Σn)k ,
{(x1, . . . ,xk) : xi ∈ Σn} over DNA strands, such that the
tuples of strands inside this code have a small synthesis time.
That is, we allow only to synthesize tuples of sequences
x1, . . . ,xk that are contained in Cnk . Designing Cnk thus
allows to control the synthesis time. Hereby, it is possible
to distinguish between two different setups. First, there is the
case, where S is fixed and does not depend on the strands
x1, . . . ,xk and second, the case, where the synthesis sequence
is variable and may be a function of the strands x1, . . . ,xk.
In the latter case, it is natural to use S(x1, . . . ,xk) =
SCS(x1, . . . ,xk) as this sequence minimizes the synthesis
time for these strands. In this paper we focus however on the
former case, where the synthesis sequence is fixed. Note that
in this case, the number of sequences k is irrelevant for the
code design and we therefore restrict k = 1 in the following.
With the above definition of the synthesis time, we can directly
identify the main trade-off in the code design. On the one hand,
it is desirable to have a small synthesis time, i.e., strongly
restrict the sequences x to be a subsequence of a possibly
short prefix of S. On the other hand, we are striving for a

large information content log |Cnk |. These contradictory goals
naturally motivate the statement of the following optimization.

Nn(S, T ) , max
Cn⊆Σn

|Cn| s.t. tS(x) ≤ T ∀ x ∈ Cn.

In other words, given a maximum synthesis time T , we would
like to characterize the maximum amount of information that
we can synthesize in this time. Similarly, for codes that
contain strands of any length, we replace n by ∗ in the above
definition. Given the above maximization problem, we are
now in the position to present the figure of merit discussed
in this paper, i.e., the (asymptotic) maximum information rate
measured by number of bits per synthesis cycle. Given a semi-
infinite sequence1 S and 0 ≤ α ≤ 1, we define

R(S, α) = lim sup
T→∞

log(NbαTc(S1:T , T ))

T
,

and similarly

R∗(S) = lim sup
T→∞

log(N∗(S1:T , T ))

T
.

Interestingly, the value of Nn(S, T ) and N∗(S, T ) (and thus
also of R(S, α) and R∗(S)) can directly be related to the
number of subsequences, i.e. the deletion ball, of the synthesis
sequence S as stated in the next lemma.

Lemma 2. For all S and T such that |S| = T it holds that

Nn(S, T ) = |D(S, T − n)|, N∗(S, T ) = |D∗(S)|.

Proof. If x can be synthesized using the synthesis sequence S,
then x is a subsequence of S and thus x ∈ D(S, T −n) since
the length of x is n. On the other hand, every x ∈ D(S, T−n)
can be synthesized using S since it is its subsequence and thus
Nn(S, T ) = |D(S, T − n)|. The proof for N∗(S, T ) follows
by repeating the last argument for all lengths.

III. INFORMATION-RATE OPTIMAL SYNTHESIS SEQUENCE

Before we present how to find the information rates
R(S, α) and R∗(S) for a general synthesis sequence S,
we find the sequence that maximizes the information rates
R(S, α) and R∗(S), and compute the resulting information
rates using combinatorial tools. That is, we are seeking to
solve the problems maxS∈Σ∗ R(S, α), and maxS∈Σ∗ R∗(S).
Clearly, the maximizers of maxS∈ΣT {Nn(S, T−bαnc)}, and
maxS∈Σ∗{N∗(S, T )} provide solutions to the earlier opti-
mization problems. Together with Lemma 2, the maximizer
of both problems is the sequence that maximizes the number
of subsequences and thus we obtain

arg max
S∈Σ∗

R(S, α) = arg max
S∈Σ∗

R(S) = Aq,

where Aq is the alternating sequence [14] that cyclically
repeats all symbols in Σ in ascending order. For example, for
Σ = {0, 1}, the alternating sequence is A2 = (0101 . . . ). The
number of subsequences of the length-n alternating sequence
An
q

def
= [Aq]1:n is given by the recursive formula [15]

Dq(n, t) , |D(An
q , t)| =

t∑
i=0

(
n− t
i

)
Dq−1(t, t− i).

1A semi-infinite sequence is a sequence S = (Si : i ∈ N) that starts at
symbol S1, but does not have an end. This semi-infiniteness is necessary to
formally define the limit value in the definitions of R(S, α) and R∗(S).



In particular, D2(n, t) =
∑t
i=0

(
n−t
i

)
and D3(n, t) =∑t

i=0

(
n−t
i

)∑t−i
j=0

(
i
j

)
. Explicit values for the resulting infor-

mation rates are given in the next theorem.

Theorem 3. For all 0 ≤ α ≤ 1, and q = 2, it holds that

max
S∈Σ∗

R(S, α) = R(A2, α) =

{
αh(α−1 − 1), if α ≥ 2

3
α, otherwise ,

where h(x) is the binary entropy function. Further, for any q,

max
S∈Σ∗

R∗(S) = R∗(Aq) = − log zq,

where zq is the largest root of the polynomial
∑q
i=1 z

i − 1.

Proof. The first part of the theorem directly follows from an
asymptotic analysis of the quantity D2(T, T − bαT c). The
second part is proven as follows. For a fixed number t of
deletions, the number of subsequences of AT

q is given by [15]

|D(AT
q , t)| = [zT ]

 q∑
j=1

zj

T−t
1

1− z
,

where [zT ] denotes the operation of extracting the coefficient
of zT . Therefore, we obtain

|D∗(AT
q )| =

T∑
t=0

|D(AT
q , t)| = [zT ]

1

1− z

T∑
t=0

 q∑
j=1

zj

t

= [zT ]
1

1− z

∞∑
t=0

 q∑
j=1

zj

t

= [zT ]
1

(1− z)

1−
q∑
j=1

zj

−1

.

Denote now by zq the smallest singularity of the generating
function, i.e., the smallest solution to z + · · · + zq = 1
for z. Given this singularity of the generating function, we
can deduce by standard combinatorial arguments that the
asymptotic behavior of |D∗(AT

q )| is R∗(Aq) = − log zq .

Figure 4 displays R(A2, α) versus α. Theorem 3 provides
a solution to the problem maxS∈Σ∗ R(S, α) for binary se-
quences and to the problem maxS∈Σ∗ R∗(S) for any q. We
will show in Sections IV-A a connection between R∗(S)
and the capacity of a cost-constrained channel, along with a
technique for computing it for an arbitrary periodic sequence.
We will also present evidence of a conjectured relationship
between R(S, α) and a capacity associated with a cost-
constrained channel with fixed average symbol cost.

IV. SYNTHESIS CODES VIA CONSTRAINED CODES

A. Code Construction for the Alternating Sequence

In this section we present a construction of a family of
synthesis codes. Without loss of generality we let the alphabet
be Σ = {0, 1, 2, . . . , q−1} while the results apply for arbitrary
alphabets of size q. Assume also that the synthesis sequence
is the alternating sequence Aq .

For a given string x of length n, we start by determining
its synthesis time using the alternating sequence Aq , i.e., the
value of tAq

(x). A useful tool will hereby be the derivative
of the strand x = (x1, x2, . . . , xn), which is defined by x′ =
(x′1, x

′
2, . . . , x

′
n) ∈ {1, 2, . . . , q}n, where for 1 ≤ i ≤ n, x′i =

(xi−xi−1) (mod q) ∈ {1, 2, . . . , q}, while x0 = 0. Note that
this mapping is invertible, i.e., given the derivative x′, it is

possible to revert back the string x. The L1 weight of a string
y is the sum of its entries, that is, L1(y) =

∑|y|
i=1 yi.

Lemma 4. It holds that tAq (x) = L1(x′).

Proof. Assume that x = (x1, x2, . . . , xn). For 1 ≤ i ≤ n,
it holds that if the symbol xi is synthesized on the ti-th
cycle, then the symbol xi+1 will be synthesized on the (ti +
(xi+1−xi) (mod q))-th cycle. Thus, the number of cycles is∑n
i=1(xi+1 − xi) (mod q), which is equal to L1(x′).

Following Lemma 4, a general code construction of a
synthesis code with strands of length n and synthesis time
T , with the alternating sequence, is simply given by

CnT = {x ∈ Σn | L1(x′) ≤ T}.

However, this does not provide an explicit code construction
with efficient encoding and decoding maps. For the special
case of T = b q+1

2 nc, we have the following encoder which
encodes any strand u = (u1, u2, . . . , un−1) of length n − 1
into a strand c of length n such that its synthesis time is at
most T . Define x′ = (u′1, . . . , u

′
n−1, 1) and the complement

of some y by yc, where yci = q + 1− yi. We encode

c′ =

{
x′, if L1(x′) ≤ T
(x′)c, otherwise .

Since L1(x′)+L1((x′)c) = (q+1)n, it follows that tAq
(c) ≤

T . In order to decode the strand x from c, one simply verifies
the value of c′n which can be 1 or q. In the former u =
(c1, . . . , cn−1), while in the latter u is decoded from (c′)c.

B. From Subsequences to Cost-constrained Systems
As we have illustrated in Section IV-A for the alternating

sequence, the synthesis time constraint can be translated to a
cost constraint for the L1 weight of a string. We now turn
to establishing this connection between the synthesis problem
R∗(S) and cost-constrained systems for arbitrary sequences.
Let S = (S1S2 . . . ), Si ∈ Σ be a semi-infinite sequence.
We define the subsequence graph G(S) of S by the directed
graph which has vertices V = {v0, v1, v2, . . . }, where a vertex
vi, i ≥ 1 corresponds to the i-th symbol in S and v0 is an
auxiliary starting vertex. Vertex vi and vj , are connected by
an edge e of weight τ(e) = j − i, if j > i and Sk 6= Sj for
all i < k < j. Thus, each vertex vi has |Σ| outgoing edges,
denoted by Ei, to the next appearance of each symbol in Σ,
succeeding vi. Fig. 2 shows G(S) for S = (ACGTACGT...).
A path r of length ` through G(S) is a sequence r =
(vi, vi1 , . . . , vi`) of consecutive vertices, starting from some
vertex vi. Its generated sequence is g(r) = (Si1Si2 . . . Si`)
and has length `. We define Mi(n, n

′), c ∈ {0, 1, . . . , n}
to be the number of paths of length exactly n′ that have a
total edge weight of at most n and start from vertex vi in
G(S). G(S) compactly characterizes all subsequences of S
as paths through G(S). The following lemma establishes the
exact relationship between the number of subsequences of a
sequence S and the graph G(S).

Lemma 5. For any semi-infinite sequence S, the number of
subsequences of S1:n of length n− t is given by

|D(S1:n, t)| = M0(n, n− t).

Proof. Denote by Q the set of all paths of length n−t through
G(S) that start from v0 and have weight at most n. We will



Start A C G T A C G T . . .

Fig. 2: Subsequence graph G(S) for the semi-infinite sequence S = (ACGTACGT...). Edge decorations highlight the edge weights (Dotted
, 1, dashed , 2, solid , 3, thick , 4).

Table I: Values of Mi(n − i, n′) for S = A4 = (ACGTACGT...)
and n = 10. Column i holds the values of |D(Si+1:n, t)|, where
t = n − i − n′. In particular, the first column contains the number
of subsequences of A10

4 of length n′.

n′
i 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 4 4 4 4 4 4 4 3 2 1
2 16 16 16 15 13 10 6 3 1
3 60 54 44 32 20 10 4 1
4 150 106 66 35 15 5 1
5 222 121 56 21 6 1
6 204 84 28 7 1
7 120 36 8 1
8 45 9 1
9 10 1
10 1

show that |Q| = |D(S1:n, t)|. First, notice that for each r ∈
Q, we have g(r) ∈ D(S1:n, t) by construction of the graph
G(S). On the other hand, let x ∈ D(S1:n, t) and let 1 ≤
i1 < i2 < · · · < in−t ≤ n with x = (Si1Si2 . . . Si`) be the
left-most alignment of x in S. Then, r = (v0, vi1 , . . . , vin−t

)
is a path through G(S) with g(r) = x. Finally, using that
two non-identical paths r1, r2 ∈ Q, r1 6= r2, generate two
different sequences g(r1) 6= g(r2), we obtain |Q| = |{x :
x = g(r), r ∈ Q}| = |D(S1:n, t)|.

Having available this correspondence, we present an effi-
cient way to compute the number of subsequences.

Lemma 6. Let S be any semi-infinite sequence and c, i, n′ ∈
N0. Then,

Mi(c, n
′)=

{ ∑
e∈Ei:τ(e)≤c

Mi+τ(e)(c−τ(e), n′−1), if n′>0,

1, if n′=0.

Proof. The proof is immediate, since each outgoing edge e ∈
Ei from vi to vi+τ(e), leads to a distinct path. Further, each
edge with τ(e) > c leads to a path which has a larger cost
than c, and thus we exclude these edges.

Note that by Lemma 6 for the computation of M0(n, n−t),
we only require values Mi(c, n

′), where i + c = n. Ta-
ble I shows the values of Mi(n − i, n′) for the sequence
S = (ACGTACGT). The table can be computed efficiently
by iteratively filling the first row with one’s and then compute
the subsequent rows according to the edges in G(S).

We now turn to compute |D(S1:n), t| for a periodic se-
quence S = (ss . . . ), where s ∈ ΣL is the period of S and
L ∈ N is the period length of the sequence S. Clearly, also
for such a sequence S, the graph G(S) allows to explore the
subsequence spectrum. However, it is possible to simplify the
graph by taking into account the periodicity. In particular, we
observe that Mi(c, n

′) = Mi+zL(c, n′) for any i ∈ {1, . . . , L}
and any integer z ≥ 0. This motivates to introduce the

A C

GT

1

23

4

1

3 4

1

3

4

1

34

Fig. 3: Simplified graph Ĝ(s) for s = (ACGT). Hereby, the last
symbol of the period, T, can take the role of the starting vertex.

variables M̂i(c, n
′)

def
= Mi(c, n

′), i ∈ {1, . . . , L}, which obey
the recursive relationship derived in Lemma 6. Note that for
the special case of alternating and balanced sequences, alterna-
tive recursive expressions for the number of subsequences have
been observed in [15] and [16]. It is hence natural to define a
simplified graph Ĝ(s) for periodic sequences S = (ss...) in
the following manner. Construct a graph with L vertices V̂ , one
for each symbol in s ∈ ΣL. Construct the edges Ê according
to the rule for G(S), with the only difference that a vertex vi
is cyclically connected to q vertices vi+τ(e)(mod L), for each
e ∈ Ei. The simplified periodic graph Ĝ(s) of S = (ss...)
with s = (ACGT) is depicted in Fig. 3. We are now in the
position to state the final result of this section.
Theorem 7. Let S = (ss...) be any semi-infinite periodic
sequence with period s ∈ ΣL. Then,

R∗(S) = C(Ĝ(s)),

where C(Ĝ(s)) is the combinatorial capacity [17] of the cost-
constrained channel defined by the graph Ĝ(s).

Proof. Lemmas 2, 5, and 6 imply that Nn(S1:T , T ) =

M̂0(T, n). So N∗(S1:T , T ) =
∑T
n=1 M̂0(T, n). Let

M̃0(T, n) = M̂0(T, n) − M̂0(T − 1, n) denote the number
of length-n paths that start from v0 and have weight exactly
T , and define M̃∗0 (T ) =

∑T
n=1 M̃0(T, n), the number of

paths that start from v0 and have weight exactly T . Then
M̃∗0 (T ) = N∗(S1:T , T ) − N∗(S1:T−1, T − 1). The graph
Ĝ(s) is strongly connected, and the edges emanating from
any vertex correspond to distinct symbols in s. The theorem
follows from the definition of combinatorial capacity [17] and
arguing as in [18, Theorem 3.4] and [17].

C. Information Rates for DNA Synthesis
Theorem 7 shows that the optimum information rate for

DNA synthesis from an aribrary periodic sequence S can be
determined using tools from the theory of cost-constrained
channels [17]. In this section, we review the approach and
provide several illustrative examples.
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Fig. 4: Number of bits per unit synthesis time R(A2, α)

Given the graph Ĝ(s), we define the L× L edge cost par-
tition matrix P (s). For a pair (i, j), the entry P (z)i,j is

P (z)i,j =

{
0, if there is no edge e : i→ j

2−zτ(e), if edge e : i→ j has cost τ(e)
.

Let ρ(z) be the largest eigenvalue of P (z). The (combinatorial)
capacity of the cost-constrained channel is given by C = z0,
where z0 is the unique solution of ρ(z) = 1, or, equivalently,
the largest real solution of the determinental equation

det(I − P (z)) = 0.

This represents the maximum information rate of a synthesis
code using the synthesis sequence S = (ss . . .), measured in
units of bits per synthesis cycle. Its inverse T ∗bit = C−1 is the
minimum possible number of synthesis cycles per bit.

The capacity can also be described as the maximum
normalized entropy of a stationary Markov chain on the
costly channel graph Ĝ(s), as follows. Let πi, i ∈
{1, . . . , L} be the stationary state probabilities, and let pe
denote the transition probability associated with the edge
e ∈ Ê . The entropy of the Markov chain P is de-
fined by H(P) =

∑p
i=1 πi

∑
e∈Êi pe log pe. The aver-

age cost (per symbol) associated with the graph Ĝ(s) is
Ts(P) =

∑p
i=1 πi

∑
e∈Êi peτ(e). The (probabilistic) capacity

of the cost-constrained channel is then given by

C = max
P

H(P)

Ts(P)
.

The equivalence between combinatorial capacity and proba-
bilistic capacity is proved in [17]. If P∗ is the unique capacity-
achieving Markov chain, then the quantity R∗

def
= H(P∗) =

CTs(P∗) can be interpreted as the coding rate of an optimal
synthesis code in units of bits per symbol.

For the graph Ĝ(s) in Figure 3 corresponding to the se-
quence s = (ACGT), we find that ρ(z) = 2−z+2−2z+2−3z+
2−4z , implying capacity C = s0 ≈ 0.9468 bits/synthesis
cycle, with T ∗bit = 1.0562 cycles per bit2. The corresponding
Markov chain P∗ is defined by q∗e = 2−Cτ(e) and π∗i = 1/4
for all i. The average synthesis time per code symbol is
Ts(P∗) ≈ 1.7657 cycles per symbol and the coding rate is
R∗ ≈ 1.6717 bits per code symbol. The inverse rate f∗ =
(R∗)−1 ≈ 0.5981 can be thought of as an expansion factor. It
is interesting to compare this optimal coding scheme with the
construction from Section IV-A. If we synthesize codewords
from that construction using the alternating synthesis sequence
with period s = (ACGT), the resulting scheme will have

2A similar analysis for a general q-ary alternating synthesis sequence shows
that ρ(z) =

∑q
i=1 2

−iz , thus recovering the result of Theorem 3.
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1

2 1 2

Fig. 5: Graph Ĝ(s) for s = (01).

a higher coding rate R = 2 bits/code symbol and lower
expansion factor f = R−1 = 0.5. However, the synthesis
times per symbol and bit are Ts = 2.5 and Tbit = 1.25,
respectively. We see that the increased expansion factor of the
optimal code leads to substantial reductions in synthesis time
per code symbol and per bit.

More generally, if we fix the average synthesis time per sym-
bol Ts, we can find the corresponding maximum coding rate

R(Ts) = max
P

H(P) s.t. Ts(P) = Ts,

the corresponding synthesis time per bit Tbit = Ts/R(Ts), and
the number of bits per unit synthesis cycle C(Ts) = T−1

bit . For
the q-ary alternating sequence, the range of possible values
of Ts is [Tmin, Tmax] = [mine τ(e),maxe τ(e)] = [1, q].
The parametric expressions for [R(Ts), Ts] in terms of the
parameter z are given by

Ts(z) =
ρ′(z)

(ln 2)ρ(z)
, R(z) = log2 ρ(z)− z ρ′(z)

(ln 2)ρ(z)
,

where z ∈ (−∞,∞). Note that there is a critical value Tcrit ∈
[Tmin, Tmax] such that for Ts > Tcrit an entropy larger than
R(Ts) is achieved by maximizing over Markov chains with
average symbol cost less than Ts. Returning to the example
where q = 4, we find that ρ(z) =

∑4
i=1 2−iz , from which we

can readily derive Ts(z) and R(z).
The analysis of the [R(Ts), Ts] trade-off for the binary

alternating sequence A2 with period s = (01) leads to an
interesting connection with the quantity R(S, α) defined in
Section II-A. The graph Ĝ(s) is shown in Figure 5. The
maximum-entropy Markov chain with Ts ∈ [1, 2] has edge
transition probabilities p and 1 − p, corresponding to edge
costs 1 and 2, respectively, with average cost (1− p) + 2p =
1+p = Ts. The entropy R = h(p), and C(Ts) = h(p)/(1+p).
Set α = T−1

s = (1 + p)−1. For Ts ≤ Tcrit = 3/2, or α ≥
αcrit = 2/3, we have C(Ts) = αh( 1−α

α ) = R(A2, α), where
the second equality follows from Theorem 3. We conjecture
that this is a special case of a more general result relating
R(S, α) to a combinatorial capacity for fixed average symbol
cost, analogous to Theorem 7, and an equivalence between
this combinatorial capacity and a corresponding probabilistic
capacity. Figure 4 shows a plot of R(A2, α) versus α.

To illustrate the application of this analysis to non-
alternating periodic sequences, we compare the capacities
of the binary synthesis sequences with periods s0 = (01),
s1 = (001), and s2 = (0011). For s0 = (01), we know
C0 = log2

1+
√

5
2 ≈ 0.6942. For s1 = (001), we have C1 =

log λ1 where λ1 is the largest positive root of λ6 − 4λ3 + 1.
The largest real root λ1 ≈ 1.5511, so log λ1 ≈ 0.6333.
Finally, for s2 = (0011), C2 = log λ2 where λ2 is the largest
positive root of λ8 − 6λ4 + 1. The root is λ2 ≈ 1.5538 and
C2 = log λ2 ≈ 0.6358. As expected, the capacity of the
alternating sequence with period s0 is largest.

The design of efficient DNA synthesis codes will be dis-
cussed in a subsequent work. There is a substantial literature
on constructing codes for cost-constrained channels. For point-
ers to the literature, see [19].
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