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Abstract—Paved by recent advances in sequencing and syn-
thesis technologies, DNA has evolved to a competitive medium
for long-term data storage. In this paper we conduct an infor-
mation theoretic study of the storage channel - the entity that
formulates the relation between stored and sequenced strands. In
particular, we derive an upper bound on the Shannon capacity
of the channel. In our channel model, we incorporate the main
attributes that characterize DNA-based data storage. That is,
information is synthesized on many short DNA strands, and each
strand is copied many times. Due to the storage and sequencing
methods, the receiver draws strands from the original sequences
in an uncontrollable manner, where it is possible that copies
of the same sequence are drawn multiple times. Additionally,
due to imperfections, the obtained strands can be perturbed
by errors. We show that for a large range of parameters, the
channel decomposes into sub-channels from each input sequence
to multiple output sequences, so-called clusters. The cluster sizes
hereby follow a Poisson distribution. Furthermore, the ordering
of sub-channels is unknown to the receiver. Our results can be
used to guide future experiments for DNA-based data storage
by giving an upper bound on the achievable rate of any error-
correcting code. We further give a detailed discussion and
intuitive interpretation of the channel that provide insights about
the nature of the channel and can inspire new ideas for error-
correcting codes and decoding methods.

I. INTRODUCTION

The design of error-correcting codes for common channels
in communications, such as the additive white Gaussian noise
(AWGN) channel or binary symmetric channel (BSC) has
been guided by the channel capacity, that has been found
by Shannon [1] in 1948. It allows researchers to choose the
information rate of error-correcting codes according to this
fundamental limit. While the capacity for the above mentioned
channels has been known for a long time, this is different for
recently relevant channels, such as the DNA storage channel.

Recently, DNA-based data storage has emerged as promis-
ing technology for long-term archival data storage. Several
experiments [2]–[6] have demonstrated the viability of digital
information storage in these macromolecules and addressed
different aspects such as random access [3], [6], portability
[5] and scalability [6]. While within these experiments it
has been possible to successfully recover the stored data, the
question of fundamental limits on the storage and reading rate
remains open. More recently, several works have addressed
information and coding theoretic aspects of DNA-based data
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storage. Among these, the capacity of the storage channel
has been found for the case when there are no errors in the
strands [7] and for the case when each DNA strand is read
exactly once [8] under presence of substitution errors. Error-
correcting codes for systems where data is stored in unordered
sets, as in DNA-based storage systems, has been discussed in
[9]–[14]. An important aspect for decoding archives stored
in DNA is to cluster output sequence based on their mutual
Hamming, respectively edit distance [6], [15]. This technique
allows to perform an accurate estimation of the original input
sequence and is an important aspect for decoding DNA-based
archives. Here we extend the work from [7] and study the
channel capacity when sequences are drawn randomly under
the presence of substitution errors. The paper is organized as
follows. We first define the channel, then state and interpret our
result about its capacity and finish by proving the statements.

II. CHANNEL MODEL AND MAIN RESULT

Random variables are written in upper case letters, while
their realizations are depicted in lower case. We denote by
P (•) the probability of an event and by E [•] and V [•] the
expected value and variance of any random variable. Where it
is clear from the context, we abbreviate the event X = x by
x. By H(•) we refer to the entropy of a random variable and
by H(p) for 0 ≤ p ≤ 1 to the binary entropy function. For
a permutation π : [n] 7→ [n] and a vector xn = (x1, . . . , xn),
we write πxn = (xπ(1), . . . , xπ(n)) as the permutation of xn.

The DNA storage channel, which is depicted in Fig. 1, has
M input sequences XL

1 , . . . , X
L
M where each input sequence

XL
i ∈ ΣL, i ∈ [M ] is a vector of length L over the alphabet Σ.

From these input sequences, a total of N sequences are drawn
with replacement, each uniformly at random, and received with
errors, resulting in the output sequences Y Lj , j ∈ [N ] with

Y Lj = XL
Ij ⊕ E

L
j

where Ij ∈ [M ] are i.i.d. uniform random draws with
P (Ij = i) = 1

M for all j ∈ [N ] and i ∈ [M ] and ELj ∈ ΣL

denote independent error vectors with i.i.d. Bernoulli entries
Ej,k ∼ Ber(p) with error probability p for all j ∈ [N ] and
k ∈ [L]. Further ⊕ denotes the binary XOR operation. In other
words, each received sequence Y Lj is obtained by drawing a
random input sequence XL

Ij
and distorting it through a binary

symmetric channel (BSC) with crossover probability p. The
input and output of the channel is hence

XML = {XL
1 , . . . , X

L
M},

Y NL = {Y L1 , . . . , Y LN }.
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Fig. 1. Realization of the DNA storage channel with M = 3, N = 4 and
L = 10. The shades and arrows indicate the origins. Errors are in bold.

Here we choose to define the input and output sequences as
multi-sets for notional convenience. However, it can directly
be verified that by defining the input and output as matrices
of sizes M × L, respectively N × L, one obtains an equiva-
lent channel. Throughout the paper we will use the random
variables Di = |{j ∈ [N ] : Ij = i}|, i ∈ [M ], which
count the number of times the i-th input sequence has been
drawn and Qd = |{i ∈ [M ] : Di = d}|, d = 0, . . . , N , that
denote the number of input sequences that have been drawn a
total of d times. Note that insertion, deletion errors and non-
binary alphabets are not discussed here. The latter extension
for symmetric channels however is directly obtained using
similar methods as in this paper and is omitted for brevity.
An error-correcting code for this channel is a set C ⊆ ΣML

and we define its rate to be R = log |C|
ML . With these definitions,

the Shannon capacity can be defined as usual as the supremum
over all achievable rates. In [7] the capacity is found for p = 0,
and [8] considers the case where each sequence is drawn
exactly once. Our work is therefore a non-trivial extension of
[7]. For our derivations we use, among others, methods from
[7], [8] and [16]. The main result is stated in Theorem 1.

Theorem 1. Let N = cM , and M = 2βL for some fixed
constants 0 < c, 0 ≤ p < 1

8 and 0 < β < 1−H(4p)
2 . Then, the

Shannon capacity is bounded from above by

C ≤
∞∑
d=0

pc(d)Cd − β(1− e−c), (1)

where pc(d) = e−ccd

d! is the Poisson distribution and Cd
denotes the capacity of the binomial channel with d draws
and error probability p (see Lemma 3).

For p = 0 this implies the bound (1−β)(1−e−c) from [7].
To simplify the derivation and discussion we consider a genie-
aided receiver that receives along with each output sequence
Y Lj a label Π(Ij), where Π : [M ] 7→ [M ] is a uniform random
and unknown permutation. These labels allow to group the
output sequences into clusters Zi = {Y Lj : Π(Ij) = i} of
sequences that originate from the same input sequence, but
do not give any information about the original sequence1.
Notably, the additional information from the genie is consid-
erably small, as especially for well-separated input sequences,
a receiver without knowledge of the labels can cluster the
output sequences [15]. The expressions in Theorem 1 allow
for a vivid interpretation, which we present in the following.

Poissonization and the binomial channel: We start with
discussing the first summand of (1) on an intuitive level. It

1Note that for the derivation in [7] the same genie has been used which
allowed the receiver to identify duplicates.

is known [17] that when c = N
M is fixed, the marginals

Di → Poi(c) approach Poisson random variables as M →∞.
This effect is known as Poissonization. In Lemma 2, we will
show that, although the Di are statistically dependent, the
quantities Qd

M jointly converge to Qd
M → pc(d) as M →∞ and

thus can be viewed as asymptotically deterministic. Consider
now a receiver that, additionally to Π(Ij), knows Π and thus
the origin Π−1(i) of each cluster Zi. This allows to view the
overall channel as M parallel channels. Each such subchannel
has one input sequence XL

i and Di output sequences, which
result from transmission of XL

i over independent BSCs with
error probability p. For a fixed number of draws d, this channel
is known as the binomial channel [16] and has capacity Cd,
(see Lemma 3). Together with the fact that the variables
Qd
M → pc(d) become asymptotically deterministic, the capaci-
ties of the individual binomial channels add up and the overall
capacity of this channel becomes pc(0)C0 + pc(1)C1 + . . . .
In particular, for large c, this capacity approaches 1, as each
input sequence can be accurately estimated using a bit-wise
majority decision over the sequences in each cluster.

Loss of ordering information: Without the additional
information about Π, the receiver cannot directly allocate the
clusters with their input sequences anymore. As there are
M−Q0 non-empty clusters, the receiver has to decide between
roughly MM−Q0 possible allocations of clusters and input
sequences. Therefore, the actual overall capacity of the channel
is smaller by factor of 1

ML log(MM−Q0)→ β(1− e−c).
Parameter range: Theorem 1 only holds for the low-noise

scenario, as in this case, different clusters have a smaller
overlap, which simplifies the maximization of the mutual
information. For more details, see the end of Section III.

III. PROOF OF THEOREM 1

We now prove Theorem 1. Let C ⊆ ΣML be a code with
rate R = log |C|

ML . From Fano’s inequality, we have

MLR ≤ 1 + PeMLR+ I(XML;Y NL),

where Pe is the decoding error probability. Since Y NL can be
obtained from ZM = (Z1, . . . , ZM ) by ignoring the labels,
the mutual information I(XML;Y NL) can be bounded from
above by the data processing inequality and we obtain

I(XML;Y NL) ≤ I(XML;ZM ).

The main difficulty in maximizing the mutual informa-
tion is the non-regularity of the channel, i.e., the entropy
H(ZM |XML) depends on the channel input XML. This is
because if XML contains input sequences that are close in
Hamming distance, this will result in a small channel entropy
as different channel realizations may result in the same output.
On the contrary, if XML has large mutual Hamming distances,
the channel entropy is maximized, as each channel realization
results in a distinct channel outcome with high probability.
Similarly, the output entropy H(ZM ) is maximized when
the distribution of XML favors a large Hamming distance
between its sequences. As it turns out, the mutual information
maximizing input distribution will be the one that maximizes
H(ZM ). For some deterministic constant α > 0, denote by
T (α) ⊆ D , {i ∈ [M ] : Di > 0} the largest subset of
drawn input sequences such that d(Xi, Xj) ≥ αL for all
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i, j ∈ T (α), which provides a measure of the scattering of
the input sequences2. For brevity, we simply write T , T (α)
in the following. By this definition T is a random variable
that solely depends on α and the distribution of XML and
DM = (D1, . . . , DM ). An upper bound on I(XML;ZM )
based on the expected value of |T | is given in Lemma 1.

Lemma 1. Let T , E [|T |] be the expected size of T . Then

I(XML;ZM )≤ML
N∑
d=1

pc(d)Cd−2T log T + TL(1−H(γ))

+M(1−e−c) log T−ML(1− e−c)(1−H(γ)) + o(ML).

for any γ, δ, α with 1
2 > γ, γ = α+ 2δ, α > 2δ, and δ > p.

Proof. We start by bounding the output entropy H(ZM )
from above. We can assume w.l.o.g. that the input dis-
tribution is constant over all permutations π : [M ] 7→ [M ],
i.e., P(XL

i = xLπ(i) ∀ i ∈ [M ]) = P(XL
i = xLi ∀ i ∈ [M ]).

This is because P(ZM = zM ) only depends on the sums∑
π P(XL

i = xLπ(i) ∀ i ∈ [M ]) and not the individual input
probabilities P(XL

i = xLi ∀ i ∈ [M ]). Denote by Z̄i = {Y Lj :
Ij = i} the output clusters, ordered by their original se-
quence. Under the previous assumption, it can be verified that
P
(
ZM = zM

)
= P

(
Z̄M = zM

)
for all zM and thus

H(ZM ) = H(Z̄M ).

Since marginalization reduces entropy we obtain

H(Z̄M ) ≤ H(Z̄M |T , DM ) + 2M +N

=
∑
dM

∑
τ⊆D

H(Z̄M |τ, dM )P
(
τ, dM

)
+2M+N, (2)

where we additionally used that the number of possible values
for DM and T is given by

(
N+M−1
M−1

)
, respectively 2M and thus

H(T , DM ) ≤ log
(
N+M−1
M−1

)
+ M ≤ 2M + N . Denote now

by τ = {i1, . . . , i|τ |} ⊆ D with i1 < · · · < i|τ | the realization
of T . We decompose the entropy H(Z̄M |T = τ,DM = dM )
into free output clusters Z̄Mτ = (Z̄i1 , . . . , Z̄i|τ|), and output
clusters Z̄Mτ c , with τ c = D \ τ and obtain

H(Z̄M |T = τ,DM = dM ) = H(Z̄Mτ |T = τ,DM = dM )

+H(Z̄Mτ c |T = τ,DM = dM , Z̄Mτ ). (3)

Conditioned on DM = dM , the marginal distributions of Z̄i
with i ∈ [M ] follow the output distribution of the binomial
channel from Lemma 3 with d , di draws. Note that the Z̄i
can be correlated through the distribution of XML. Denote
by Hd the maximum output entropy of this channel. As
the channel entropy of the binomial channel is given by
H(Bin(d, p)), it follows that Hd = Cd+H(Bin(d, p)). Hence
the entropy of the clusters i ∈ τ is at most H(Z̄i|T =
τ,DM = dM ) ≤ LHdi . For the remaining i ∈ τ c, we know
that there always exists Ji ∈ τ such that d(XL

i , X
L
Ji

) < αL,
since otherwise XL

i has distance at least αL to all other input
sequences in τ and thus i would be contained in τ . Denote by

maj(Z̄i) = arg min
xL∈ΣL

∑
Y L∈Z̄i

d(xL, Y L)

2A similar quantity has been used in [11] to bound the redundancy of codes
for a combinatorial channel and in [8], where T was defined over the output.

the bit-wise majority function over the di sequences in Z̄i,
which represents the estimated center of the cluster Z̄i. Denote
further for any sequence Y L ∈ Z̄i by Ei the event that
d(Xi, Y

L) ≤ δL, by Fj the event that d(Xj ,maj(Z̄j)) ≤ δL
with indicators 1Ei ,1FJi and abbreviateM , (T = τ,DM =

dM , Z̄Mτ ). The entropy of Y L is then bounded by

H(Y L|M) ≤ H(Y L|M, Ji,1Ei ,1FJi ) +H(Ji,1Ei ,1FJi )

≤ H(Y L|M, Ji, Ei,FJi) + LP ((Ei,FJi)c|Ji) + log |τ |+ 2,

where (Ei,FJi)c is the complementary event of (Ei,FJi).
Since d(Y L,maj(Z̄Ji)) ≤ d(Y L, Xi) + d(Xi, XJi) +
d(XJi ,maj(Z̄Ji)) ≤ (2δ+α)L = γL, the conditional entropy
of Y L is bounded by H(Y L|M, Ji, Ei,FJi) ≤ LH(γ).
Using [18, Lemma 4.7.2], we obtain P ((Ei,FJi)c|Ji) ≤
2−LD(δ||p)+1, where D(δ||p) is the binary Kullback-Leibler
divergence. Using the second part of Lemma 3, we therefore
obtain for the entropy of all clusters i ∈ τ c

H(Z̄i|M) ≤ H(Z̄i|M, Y L) +H(Y L|M)

≤ L(Hdi − 1 +H(γ)) + log |τ |+ log di + o(L)

Next, we bound the entropy in (3) by the sum of all marginal
entropies of Z̄i, i ∈ [M ], combine all clusters with the same
number of draws di = d and plug this result into the upper
bound for H(Z̄M ) in (2) such that

H(Z̄M )
(a)

≤
∑
dM

P
(
dM
) (
L

N∑
d=1

QdHd − (M −Q0 − TdM )

· (L− log TdM − LH(γ))
)

+ o(ML)

(b)
= ML

N∑
d=1

pc(d)Hd−(M−Me−c−T )(L−log T−LH(γ))

+ o(ML),

where TdM = E
[
|T | |DM = dM

]
. Note that here both Qd

and TdM depend on dM . In (a) we used
∑
d log(d)Qd ≤∑

d dQd = N and Jensen inequality on the expected value
over T . In (b) we split the expectation over dM into the events
Q and Qc (for the definition of Q see proof of Lemma 2)
and used the asymptotic Poissonization of Qd from Lemma
2. We now bound the channel entropy H(ZM |XML) from
below. In particular we will show that for a well-separated
input, i.e., for a large |T | the channel entropy is also high.
This is in direct correspondence with the findings in [11],
where a similar property has been shown for a combinatorial
channel. Let U = {i ∈ D : d(XL

i , Z̄i) ≤ δL} where
d(XL

i , Z̄i) , maxY L∈Z̄i d(XL
i , Y

L) . Further let S = U ∩T
with realization S = σ. Then for all i, j ∈ σ with i 6= j on
the one hand we have d(XL

i , X
L
j ) ≥ αL, and on the other

hand d(XL
i , Z̄i) < αL/2. Therefore, d(XL

i , Z̄j) > αL/2. It
follows that P

(
Z̄M = πz̄M |XML,S = σ

)
is non-zero for at

most one permutation π on the clusters in σ. This allows to
employ Lemma 4, which gives a lower bound on the entropy
H(ZM |XML) of the permuted clusters based on E [|S|]. It
remains to compute E [|S|]. Since |U ∪ T | ≤ M − Q0, we
have that |S| ≥ |T |+ |U| − (M −Q0) and we obtain

E [|S|] ≥ E [|T |]− (M −E [|U|+Q0]).

As there are in total Qd clusters with d drawn sequences,
|U| = U1 + · · · + UN is the sum of binomial variables Ud.

2019 IEEE Information Theory Workshop (ITW)



Each Ud has Qd trials and success probability pd, where pd =
P
(
d(Xi, Z̄i) ≤ δL

)
, which only depends on di = d. Using

[18, Lemma 4.7.2], it holds that pd ≥ (1 − e−LD(δ||p)L)d ≥
1− de−LD(δ||p) and hence the expected value of U is at least

E [|U|+Q0]≥
N∑
d=0

Qd(1−de−2(δ−p)2L)=M(1−ce−2(δ−p)2L).

Therefore, the expected value of |S| is bounded from below
by E [|S|] ≥ E [|T |]− cMe−L(δ||p). Using this bound on the
expected value for Lemma 4 yields

H(ZM |XML) ≥ H(Z̄M |XML) + T log T +O(M).

Here we used that |S| ≤ |T | ≤ M to obtain the asymptotic
estimation for the logarithmic expression. Finally, we have

H(Z̄M |XML)≥
∑
dM

P
(
DM =dM

)
H(Z̄M |XML, DM =dM )

=ML
N∑
d=0

pc(d)H(Bin(d, p)) + o(ML),

where we used the conditional independence of Z̄i given XML

and DM and Lemma 2 for the Poissonization of the Qd.

In order to find the maximizing T note that 0 ≤ T ≤M −
E [Q0] ≤ M(1 − e−c) + 1. Denoting by g(T ) all terms of
the upper bound, which contain T , we find that its derivative
satisfies g′(T ) ≥ −2 log(T/e)+L(1−H(γ)). It can be verified
that given 2β < 1−H(γ) and for large enough M , we have
g′(T ) > 0 for all 0 ≤ T ≤M(1− e−c) + 1 and thus g(T ) is
monotonically increasing in T . It follows that T ∗ = M(1 −
e−c)+1 maximizes g(T ) under these conditions. Plugging T ∗

into the upper bound from Lemma 1 and using Pe → 0 when
M →∞ yields Theorem 1.

IV. AUXILIARY LEMMAS

Lemma 2. For any fixed c > 0, there exist non-negative
functions fd(M), d = 0, . . . , N with fd(M) ≥ 0 and
f0(M)+f1(M)+· · ·+fN (M) = o(M) such that for M →∞

P (|Qd −Mpc(d)| ≤ fd(M) ∀ d = 0, . . . , N)→ 1.

Proof. Let Q = {(Q0, . . . , QN ) : |Qd − Mpc(d)| ≤
fd(M) ∀ d = 0, . . . , N} be the sought-after event. Using
|Qd−Mpc(d)| ≤ |Qd−E [Qd] |+|E [Qd]−Mpc(d)| together
with the union bound and Chebyschev’s inequality, we obtain

P (Q) ≥ 1−
N∑
d=0

V [Qd]

(−|E [Qd]−Mpc(d)|+ fd(M))
2 .

It is known [17, ch. 2] that the first and second moment of
Qd can be computed explicitly to be

E [Qd] = M

(
N

d

)
1

Md

(
1− 1

M

)N−d
,

E
[
Q2
d

]
= E [Qd] +M(M − 1)

N [2d]

(d!)2M2d

(
1− 2

M

)N−2d

,

where N [2d] = N(N − 1) · · · (N − 2d + 1) is the falling
factorial. Using the inequalities 1 − x ≤ e−x for any x ∈ R
and

(
N
d

)
≤ Nd

d! for any N, d ∈ N0 with N ≥ d we directly

find that E [Qd] ≤ Mpc(d)e−d/M . This allows to bound the
variance of Qd from above by

V [Qd] ≤Mpc(d)ed/M+M2p2
d(c)e

4d/M

(
1−

(
1− 2

M

)d)
(a)

≤ Mpc(d)ec+M2p2
d(c)e

4c 2d

M

(b)

≤ 2Mpc(d)e4c(1 + c),

where in (a) we used that for any 0 < x < 1 and d ∈ N0 it
holds that (1−x)d ≥ 1−dx. In inequality (b) it has been used
that dpc(d) ≤ c. Let us now define fd = |E [Qd]−Mpc(d)|+
(d+1)M

1
2 +ε
√
pc(d) as the bounding function. It follows that

the probability of Q is at least

P (Q) ≥ 1−M−2ε
N∑
d=0

2e4c(1 + c)

(d+ 1)2
= 1− o(1),

and consequently P (Q)→ 1, when M →∞, for any ε > 0.
It remains to prove the asymptotic behavior of fd(M). We start
with the first summand of fd(M) and obtain on the one hand

E [Qd]−Mpc(d) ≤Mpc(d)(e
d
M − 1) , φ+

d (M).

On the other hand, we bound the difference from above by

Mpc(d)−E [Qd]
(a)

≤ M

(
pc(d)− (c− d/M)d

d!
e−

c
1−1/M

)
≤Mpc(d)

(
d2

N
+

c

M

)
, φ−d (M),

where for inequality (a) we used that
(
N
d

)
≥ (N−d)d

d! for any
N, d ∈ N0 with N ≥ d and ln(1−x) ≥ − x

1−x for any x < 1.
The sum over the bounds φ+

d (M) is at most
N∑
d=0

φ+
d (M)

(a)
= M

N∑
d=0

∞∑
k=1

cde−cdk

d!Mkk!

(b)

≤ M

∞∑
k=1

1

Mkk!
E[Dk]

(c)
= M

∞∑
k=1

1

Mk
[tk]ec(e

t−1) = M

[
ec(e

t
M −1) − 1

]
t=1

= M

(
ec(e

1
M −1) − 1

)
= o(M),

where we used the series expansion of the exponential in (a).
The expected value after inequality (b) is taken with respect to
the Poisson distributed variable D with mean c. In equality (c),
we used that the moment generating function of the Poisson
distribution is equal to M(t) = ec(e

t−1). Similarly, the sum
over the bounds φ−d (M) satisfies

N∑
d=0

φ−d (M) ≤ 1

c
E
[
D2
]

+ c = 2c+ 1,

where we used that the second moment of a Poisson dis-
tribution is E

[
D2
]

= c2 + c. Now, we can use that both
φ+
d (M) ≥ 0 and φ−d (M) ≥ 0, and thus |E [Qd]−Mpc(d)| ≤

max{φ+
d (M), φ−d (M)} ≤ φ+

d (M) + φ−d (M) to obtain
N∑
d=0

|E [Qd]−Mpc(d)| ≤
N∑
d=0

φ+
d (M) + φ−d (M) = o(M).

The second summand of fd(M) can be bounded by
N∑
d=0

(d+ 1)M
1
2 +ε
√
pc(d)

(a)

≤ M
1
2 +ε

N∑
d=0

(d+ 1)
c
d
2 e−

c
2

bd2c!
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(b)

≤ M
1
2 +εe

c
2

dN/2e∑
d=0

(d+ 1)
(
pc(d) +

√
cpc(d)

)
(c)

≤ M
1
2 +εe

c
2 (1 + c)(1 +

√
c) = o(M)

for ε < 1
2 . Here we used in (a) that

√
d! ≥ bd2c! for any

d ∈ N0 and for inequality (b) we split the sum into terms with
even and odd d. Inequality (c) follows by identifying the sums
over pc(d) and dpc(d) as the cumulative distribution function,
respectively mean of a Poisson distribution. Hence, using the
proposed fd(M) with any 0 < ε < 1

2 yields the lemma.

Lemma 3 (c.f. [16]). Let XL = (X1, . . . , XL) ∈ ΣL with
i.i.d. entries Xi ∼ Ber(pX). Further, let d ∈ N0 and denote by
Y Li = XL⊕ELi , i ∈ [d] with ELi = (Ei,1, . . . , Ei,L) and i.i.d.
Ei,k ∼ Ber(p) outcomes from d-fold repeated transmission
of XL over independent binary symmetric channels with
crossover probability p and Z = {Y L1 , . . . , Y Ld }. The capacity
Cd = max

pX
I(XL;Z) of the channel is given by

Cd = 1 +
d∑
k=0

Bd,p(k) log
Bd,p(k)

Bd,p(k) +Bd,p(d− k)
,

where Bd,p(k) =
(
d
k

)
pk(1−p)d−k is the binomial distribution.

Further, H(Z|Y Li ) ≤ L(Cd − 1 + H(Bin(d, p))) + log d for
any i ∈ [d], where Bin(d, p) is a binomial random variable
with d trials and success probability p.

Proof. The proof of the capacity result follows standard meth-
ods and is omitted for brevity. We prove only the second part
of the lemma. The entropy H(Z|Y Li ) satisfies

H(Z|Y Li ) = H({XL ⊕ EL1 , . . . , XL ⊕ ELd }|XL ⊕ ELi )

(a)
= H({EL1 ⊕ ELi , . . . , ELd ⊕ ELi }|XL ⊕ ELi ),

where (a) is due to [19, Problem 2.14]. Denote by EdL =
{EL1 ⊕ ELi , . . . , ELd ⊕ ELi }. We will show that EdL is inde-
pendent of XL ⊕ ELi for pX = 1

2 . Consider the distribution

P
(
EdL=edL|XL⊕ELi =aL

)
=
P
(
EdL=edL, XL⊕ELi =aL

)
P
(
XL ⊕ ELi =aL

)
(a)
= 2L

∑
eLi ∈ΣL

P
(
EdL = edL, XL = eLi ⊕ aL, ELi = eLi

)
(b)
=

∑
eLi ∈ΣL

P
(
EdL = edL, ELi = eLi

)
,

where in (a), we used that P
(
XL ⊕ ELi = aL

)
= 2−L for all

aL ∈ ΣL. In equality (b) we used the independence of XL and
ELj for all j ∈ [d] together with P

(
XL = xL

)
= 2−L for any

xL ∈ ΣL under the condition pX = 1
2 . Hence, EdL is indepen-

dent of XL⊕ELi for pX = 1
2 and consequently the conditional

entropy H(Z|Y Li ) is maximized for pX = 1
2 . Since H(Z) is

also maximized by pX = 1
2 and H(Y Li ) = L in this case, we

have H(Z|Yi) ≤ H(Z)−H(Y Li )+log d ≤ LCd+H(Z|XL)−
L+ log d = L(Cd +H(Bin(d, k))− 1) + log d.

Lemma 4. Let FM = (F1, . . . , FM ) be M random variables
over the same space and denote for any σ ⊆ [M ] by P(σ) =
{π : [M ] 7→ [M ] : π(i) = i ∀ i ∈ [M ] \ σ} the set of
all permutations that only permute positions in σ. Further let

S ⊆ [M ] be a random variable such that for any σ ⊆ [M ] and
fM the conditional probability P

(
FM = πfM |S = σ

)
> 0

for at most one permutation π ∈ P(σ). Then, the entropy of
FM after a uniform random permutation Π : [M ] 7→ [M ] is
bounded from below by

H(ΠFM ) ≥ H(FM |S) +E [log(|S|!)] .

The proof of this Lemma is omitted for brevity here and
will be provided in the full version of this paper.

V. CONCLUSION AND OUTLOOK

In this paper we have derived an upper bound on the
channel capacity of DNA-based storage systems. Due to the
fact that for moderate error probabilities and appropriate input
distributions an accurate clustering operation is indeed possible
for the receiver, we believe that the upper bound on the
channel capacity is tight. However, this problem remains open.
It would also be interesting to examine, as in [8], the capacity
for very large noise, as well as the case when the logarithm of
the number of sequences, logM , is very large compared to L.
Another important aspect for future research is to discuss the
presence of insertions and deletions, as these types of errors
are common in DNA synthesis and sequencing.
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