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Abstract—A constrained code is a set of finite-length code-
words that entirely avoid the occurrences of certain patterns.
In some applications, it may be preferable to merely limit the
number of occurrences of certain patterns in codewords rather
than to completely forbid them. Constrained codes that involve
such weaker constraints are called weakly constrained codes.

In this paper we construct capacity-achieving weakly con-
strained codes. The construction is based on a row-by-row coding
scheme in which messages are encoded into the rows of a 2-
dimensional array in which the frequency of occurrence of
patterns along columns is controlled.

I. INTRODUCTION

In many applications in coding and information theory

there is a need to completely avoid or limit the number of

occurrences of certain patterns as substrings of codewords.

One example of such an application is a multi-level cell flash

memory. In this example, programming the memory cells

into certain levels wear out the cells. Hence, it is preferable

to use the levels that are more likely to damage the cells

less often [9], [12]. More examples arise in every application

that involves a transmission over a channel in which some

patterns may cause errors when they appear as substrings of

codewords (e.g., [2]).

Constrained sequences are sequences that completely

avoid certain unwanted patterns as their substrings. A con-
strained code is simply a set of constrained sequences.

These codes have been studied extensively (a survey can

be found in [14]). However, in some cases the rate penalty

that is incurred by imposing such strong constraints is too

severe, and there is a need to weaken the constraints so as

to allow some of the bad patterns to appear, yet not very

often. Constrained codes that admit such weak constraints

are called weakly constrained codes.

The study of weakly constrained codes is much less

extensive, however. Moreover, in the previous literature one

finds somewhat different definitions of weak constraints that

arise from the specific restrictions imposed on the statistics

of some of the allowed patterns in codewords. For example,

in [4] the authors impose only upper bounds on these

statistics, and to avoid having zero-capacity codes, they

further weaken the upper bounds by adding a tolerance factor
that approaches zero as the code-length grows to infinity. On

the other hand, in [13], [15] the authors impose both lower

and upper bounds on the statistics of some patterns and use

a constant tolerance factor. In this paper we propose a third

definition in which both lower and upper bounds are imposed

but the tolerance factor is a vanishing function of the code-

length.

In all of these cases, there exist analytic expressions for the

capacity of the corresponding constraints. More specifically,

for classical constraints as well as weak constraints, code

sequences can be obtained by reading the labels of paths

in some labeled directed graph, and the structure of the

graph and the labeling function guarantee that every path

produces a legal constrained sequence. The capacity of the

weakly constrained sequences can then be expressed in

terms of the entropy of a suitably defined Markov chain on

the graph. An expression for a capacity-achieving Markov

chain was given in [10] for weak (d, k)-RLL (runlength-

limited) constraints. In [11], the corresponding expression

was obtained for the case when there is only one linear

constraint on the statistics of patterns, although the results

can be extended to other classes of weak constraints. In

general, having a capacity-achieving Markov chain is useful

for code constructions, as demonstrated in [4] as well as in

this paper. For completeness, we will present the expressions

for the capacity and for a capacity-achieving Markov chain

in Section II.

The main contribution of this paper is an explicit construc-

tion of capacity-achieving weakly constrained codes. The

construction is based on the row-by-row coding scheme that

was first presented in [6] and [16], and that was later adapted

in [2] to design codes to mitigate inter-cell interference

effects in flash memory. In the row-by-row coding scheme,

messages are encoded and then written sequentially into the

rows of a 2-dimensional (2D) array, such that the columns

of the array are constrained sequences. This coding scheme

admits an implementation that also allows one to control

the total number of occurrences of some patterns along

columns. In our construction, we show how to concatenate

the columns of such an array into a longer codeword that

can satisfy classical constraints that completely avoid certain

forbidden patterns, as well as weak constraints that dictate

the occurrence probabilities of specific allowed patterns.

The rest of the paper is organized as follows. In Sec-

tion II we present notations and definitions for constrained

systems, Markov chains, and weakly constrained systems. In

Section III we review the row-by-row coding scheme. This

coding scheme is then used to construct weakly constrained

codes in Section IV.

II. PRELIMINARIES

In this section we present the basic notations and defini-

tions for constrained systems, Markov chains, and weakly

constrained systems.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 151



2

For a positive integer n, denote by [n] the set of n integers

{1, 2, . . . , n}. We use the notations R≥ 0 and R+ to denote

the set of non-negative real numbers and the set of positive

real numbers, respectively.

A. Labeled Graphs

Let Σ be an alphabet of size μ and denote by Σ∗ the set

of all sequences of finite length over Σ. For a word w =

w1 w2 . . . w� ∈ Σ∗ we denote by |w|def= � the length of w.

A labeled directed graph G(V,E, L) over Σ is a directed

graph with a set of states V , an edge set E ⊆ V × V , and

an edge labeling function L : E → Σ.

Let G = G(V,E, L) be a labeled directed graph. For e ∈
E we denote by σ(e) and τ(e) the initial state and terminal
state of e, respectively, i.e., e = σ(e) τ(e). A path γ in G of

length |γ|def= � is a sequence of � edges e1e2 . . . e� ∈ E, such

that for all i ∈ [�− 1], σ(ei+1) = τ(ei). Let Γ be the set of

all paths in G of finite length. The edge labeling function L
can be extended to L : Γ → Σ∗, where for all γ ∈ Γ, L(γ)
is the word obtained by reading the labels of the edges in γ.

We call L(γ) the labeling of the path γ.

The graph G is called irreducible if for every two distinct

states u, v ∈ V there exists a path γ ∈ Γ connecting u to v.

The graph G is primitive if there exists some integer NG > 0
such that for every two states u, v ∈ V there exists a path

of length NG that connects u to v. The graph G is called

lossless if every two distinct paths in Γ with the same initial

state and terminal state have different labelings.

Example 1. Let G = G(V,E, L) be the graph shown below.

0 1

1

0

0

Then, G is lossless and primitive with NG = 2.

B. Markov Chains

A Markov chain P on the labeled graph G = G(V,E, L)
is a probability mass function over the edge set of G. That

is, P : E → R≥ 0 such that
∑

e∈E P(e) = 1. For all u ∈ V ,

the state probability mass function for the Markov chain P ,

π : V → R≥ 0, is defined by

π(u)
def
=

∑
e∈E:

σ(e)=u

P(e).

A Markov chain P is called stationary if for all u ∈ V

π(u) =
∑
e∈E:

τ(e)=u

P(e).

Let Δ be the set of all stationary Markov chains on G. For

γ = e1e2 . . . e� ∈ Γ, define the empirical Markov chain of

the path γ to be the Markov chain on G, Pγ : E → R≥ 0,

such that for all e ∈ E,

Pγ(e)
def
=

1

�
|{i ∈ [�] : ei = e}|.

The entropy of a Markov chain P is defined by

H(P)
def
=

∑
e∈E

P log2
P(e)

π(σ(e))
.

For a positive integer n, we say that P is n-integral if for

every e ∈ E, P(e)n is an integer.

C. Constrained Systems

A constrained system S(G) over the labeled graph G =
G(V,E,L) is the set of all words in Σ∗ that are obtained by

reading the labels of paths in Γ, i.e.,

S(G)
def
= {w ∈ Σ∗ : ∃γ ∈ Γ, w = L(γ)}.

We say that S(G) is represented by G. Every constrained

system can be represented by a lossless graph and therefore

we will assume throughout this paper that G is lossless. A

constrained code is simply a subset of S(G). For every B ⊂
Σ∗, the base-2 capacity of B is defined by

cap(B)
def
= lim sup

�→∞

log |B ∩ Σ�|
�

.

There exists a lossless and primitive labeled graph F such

that S(F ) ⊆ S(G) and cap(S(F )) = cap(S(G)). Since

we are interested in this paper only in capacity achieving-

constrained codes, we can assume w.l.o.g. that G is also

primitive.

Let A = (Au,v) be the adjacency matrix of G, i.e., A is a

|V | × |V | matrix and Au,v is the number of edges that start

at u and terminates at v. Let λ1, λ2, . . . , λ|V | ∈ C be all the

|V | eigenvalues of A (perhaps with repetitions). The spectral
radius of A is defined by λ

def
= max{|λi| : i ∈ [|V |]}. By the

Perron-Frobenius Theorem [5, Ch. 8], the spectral radius λ is

an eigenvalue of A and it admits a positive right eigenvector

as well as a positive left eigenvector (by a positive vector

we mean a vector whose entries take positive real values).

Let y = (y1, y2, . . . , y|V |) and x = (x1, x2, . . . , x|V |)T be

positive left and right eigenvectors of A, respectively, for the

eigenvalue λ, normalized such that yx = 1.

It is well known (see, for example, [14]) that the capacity

of S(G) is equal to log2 λ. Moreover,

cap(S(G)) = max
P∈Δ

H(P),

and a capacity-achieving stationary Markov chain is given

by

P̂(e)
def
=

Aσ(e),τ(e)yσ(e)xτ(e)

λ
.

Example 2. The set S ⊂ Σ∗ of all words that do not
contain two consecutive 1’s is a constrained system and it
is represented by the primitive and lossless graph G from
Example 1. We call S the “no 1 1” constrained system. The
adjacency matrix of G is the matrix

A =

(
1 1
1 0

)

with spectral radius λ = 1+
√
5

2 . Hence, cap(S) = log2 λ ≈
0.694.

D. Weakly-constrained Systems

For a function ϕ : E → R
t and for a Markov chain P

on G, denote the expected value of ϕ with respect to P by

EP [ϕ], i.e.,

EP [ϕ]
def
=

∑
e∈E

P(e)ϕ(e).
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For ϕ : E → R
t, r ∈ R

t, and ε : N → R≥ 0, a (ϕ, r, ε)-
weakly constrained system is the set

Sϕ,r,ε(G)
def
=

⎧⎨
⎩w ∈ S(G) :

∃γ ∈ Γ, L(γ) = w,
and ∀s ∈ [t],

|(EPγ
[ϕ])s − rs| ≤ ε(|γ|)

⎫⎬
⎭ .

That is, Sϕ,r,ε(G) consists of the words in S(G) that can be

formed by paths in G with empirical Markov chains under

which the expected value of ϕ is “close” to r. The notion

of closeness is formalized using the tolerance function ε
that limits the difference between the expected value of ϕ
and r. Therefore, we are interested in functions ε, such that

ε(n) = o(1). A subset of Sϕ,r,ε(G) is called a (ϕ, r, ε)-
weakly constrained code.

For z ∈ R
t
+, let A(z) be the |V | × |V | matrix defined by

A(z)u,v
def
=

∑
e:

σ(e)=u,τ(e)=v

t∏
s=1

zϕ(e)s
s .

As for the adjacency matrix A, the Perron-Frobenius The-

orem states that the spectral radius of A(z), λ(z), is an

eigenvalue of A(z) with positive left and right eigenvectors

y(z) and x(z), normalized such that y(z)x(z) = 1.

The following theorem is an immediate consequence of

Lemmas 2 and 5 from [13].

Theorem 1. If ε(n) = o(1), then

cap(Sϕ,r,ε(G)) ≤ sup
P∈Δϕ,r

H(P)

= inf
z∈R

t
+

{−
t∑

s=1

rs log zs + log λ(z)},
(1)

where Δϕ,r is the set of all stationary Markov chains on G,
P , for which EP [ϕ] = r.

As for constrained systems, one can define a Markov chain

P̂ ∈ Δϕ,r for which

sup
P∈Δϕ,r

H(P) = H(P̂).

This Markov chain is defined by

P̂e
def
=

t∏
s=1

z
ϕ(e)s
s y(z)σ(e)x(z)τ(e)

λ(z)
, (2)

where z ∈ R
t
+ is a solution to

E
̂P(ϕ) = r. (3)

Example 3. Let S = S(G) be the “no 11” constrained
system, where G is the graph from Example 1 and let Ŝ be
the set of words w ∈ S such that w has exactly 0.25|w|
ones. Then

Ŝ = Sϕ,0.25(G),

where ϕ : E → R is defined by ϕ(0 1) = 1 and ϕ(0 0) =
ϕ(1 0) = 0, r = r = 0.25, and ε is just the zero function
and thus omitted from the notation.

The matrix A(z) is given by

A(z)
def
=

(
1 z
1 0

)
,

the spectral radius is

λ(z) =
1 +

√
1 + 4z

2
,

and

y(z) = (1, λ(z)− 1) and x(z) =
1

2λ(z)− 1

(
λ(z)
1

)
are positive left and right eigenvectors of A(z) corresponding
to λ(z) and normalized such that y(z)x(z) = 1. A capacity-
achieving Markov chain is defined by

P̂(e) =
zϕ(e)y(z)σ(e)x(z)τ(e)

λ(z)
,

where z = 0.75 is a positive solution to E
̂P [ϕ] = P̂(0 1) =

0.25. Hence λ(z) = 1.5, P̂(0 1) = P̂(1 0) = 0.25, P̂(0 0) =
0.5, and cap(Ŝ) ≤ log 1.5− 0.25 log 0.75 ≈ 0.688.

Remark 1. Clearly, if ε(n) = o(1) and the rate of conver-
gence of ε(n) to zero is high enough then cap(Sϕ,r,ε) might
be zero. In particular, if ε(n) = o(1/n) then for large enough
n most choices of ϕ and r will result in zero capacity. Using
a slightly different definition of weakly constrained codes the
authors of [4] showed that when ε(n) = Ω(1/n) the bound
on capacity in (1) is tight. The result should hold for our
definition of weakly constrained codes as well. The main
result of our paper is a construction of a (ϕ, r, ε)-weakly
constrained code of length n, where ε(n) = O(1/n1−β)
(β can be arbitrarily close to 0) for which the capacity
satisfies (1) with equality.

III. ROW-BY-ROW CONSTRAINED CODING

In this section we review the row-by-row constrained

coding technique presented in [6], [16] that will be useful

for our code construction presented in Section IV.

For μ ≥ 2 and k ≥ 1, the k-dimensional De Bruijn graph

of μ symbols, Dk,μ, is the labeled directed graph over an

alphabet Σ of size μ, whose vertex set Vk,μ is the set Σk and

whose edge set, Ek,μ, is the set {uv ∈ Vk,μ×Vk,μ : ui+1 =
vi, for all i ∈ [k−1]}. We represent an edge e = uv ∈ Ek,μ

by the vector e = e1 e2 . . . ek+1 ∈ Σk+1, where ei = ui,

for all i ∈ [k], and ek+1 = vk. The edge labeling function

Lk,μ : Ek,μ → Σ of Dk,μ is defined by Lk,μ(e)
def
= ek+1.

Throughout this section we assume that G = G(V,E, L)
is an irreducible subgraph of Dk,μ, for some k and μ. Notice

that this assumption holds without the loss of generality

since G is a subgraph of D1,|V |. Let n be a positive integer

and let P : E → R≥ 0 be an n-integral stationary Markov

chain on G with state probability mass function π. Let

v1,v2, . . . ,v|V | be the lexicographic order of the states.

Since P is n-integral, it follows that for all � ∈ [|V |],
n�

def
=π(v�)n is an integer. Let Uπ be the k × n matrix over

Σ such that for all � ∈ [|V |], all the columns of Uπ with

column index
∑�−1

s=0 ns + 1 ≤ j ≤ ∑�
s=1 ns, where n0

def
=0,

are equal to the vector v�.

A row-by-row weakly constrained coding scheme over

G, with a Markov chain P , encodes a sequence of m
messages M1,M2, . . . ,Mm ∈ [M ] into the rows of some

(m + k) × n array W = (Wi,j), with row index −k +
1 ≤ i ≤ m, column index j ∈ [n], and with rows
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W−k+1, . . . ,W−1,W0,W1,W2, . . . ,Wm, such that the fol-

lowing conditions are satisfied.

1) For every i ∈ [m] the message Mi is encoded to a

(unique) length-n vector over Σ which is stored in Wi.

2) For every i1, i2 ∈ [m], if i1 < i2 then Wi1 is

programmed before Wi2 .

3) For every e ∈ E and for every i ∈ [m], e appears as

a column of the rows Wi−k,Wi−k+1, . . . ,Wi exactly

P(e)n times.

To implement a row-by-row weakly constrained cod-

ing scheme one can set the first k rows of W ,

W−k+1,W−k+2, . . . ,W0 to be the rows of Uπ and encode

the input messages using a constant-weight code of the form

Crbrdef=C1 × C2 × · · · × C|V |,

where

C�
def
=

{
w ∈ Σn� :

for all α ∈ Σ, α appears

in w P(v� α)n times

}
.

If Mi is encoded to c1 c2 . . . c|V |, where c� ∈ C�, for all

� ∈ [|V |], then the codeword c� is stored in the row Wi in the

n� positions j for which Wi−k,jWi−k+1,j , . . . ,Wi−1,j = v�.

Remark 2. From the stationarity of P , the definition of
the codes C�, and the way the codewords are stored it
is guaranteed that the number of positions j for which
Wi−k,jWi−k+1,j , . . . ,Wi−1,j = v� is indeed n�(= π(v�)n).
For more details on the implementation of a row-by-row
coding scheme, see [16].

It can be readily verified that this implementation indeed

satisfies the properties of a row-by-row weakly constrained

coding scheme. By definition, the asymptotic coding rate of

any row-by-row weakly constrained coding scheme over G,

with the Markov chain P , cannot exceed H(P). Since

lim
n→∞

1

n
log2 |C| = H(P),

it follows that the above row-by-row weakly constrained

coding scheme is also capacity-achieving.

Example 4. Let G be the graph from Example 1 that
represents the “no 11” constrained system. Then G is a
primitive subgraph of D1,2. Let P be the Markov chain
on G from Example 3, i.e., P(0 1) = P(1 0) = 0.25 and
P(0 0) = 0.5, and let n = 8. The state probability mass
function, π, associated with P is given by π(0) = 0.75,
π(1) = 0.25, and therefore n1 = 6 and n2 = 2. The
matrix Uπ is a 1 × 8 matrix and its single row is equal
to 0 0 0 0 0 0 1 1. The code Crbr that is used to encode the m
messages is defined by Crbr = C1 × C2, where

C1 =

{
x ∈ {0, 1}6 :

1 appears in x
2 times

}
and C2 = {0 0}.

The 2D array W that is obtained by programming the
codewords c, ĉ ∈ Crbr, where c = 10 0 0 0 1 0 0 and
ĉ = 00 0 0 1 1 0 0 is the following.

0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1

The first row of W is just the single row of Uπ . The first 6
entries of c are stored in W1 below the zeros of W0 and the

last 2 (zero) entries of c are stored in W1 below the ones of
W0. Similarly, the first 6 entries of ĉ are stored in W2 below
the zeros of W1 and the last 2 (zero) entries of ĉ are stored in
W2 below the ones of W1. Notice that every column satisfies
the “no 11” constraint and that for every e ∈ E ⊂ {0, 1}2,
e appears as a column of any two consecutive rows exactly
P(e)n times.

IV. CAPACITY-ACHIEVING CODES

The goal of this section is to present an explicit con-

struction of capacity achieving weakly constrained codes. To

this end we assume that G is some primitive subgraph of

Dk,μ and that P : E → R≥ 0 is an n-integral stationary

Markov chain over G, for some positive integer n, and

use the row-by-row weakly constrained coding to produce

length-N ≈ n2 codewords in S(G), in which every pattern

e ∈ E appears exactly P(e)(N − k) times. We show

that as n approaches infinity, the coding rate approaches

H(P). We then show how to apply this method to obtain a

capacity-achieving (ϕ, r, ε)-weakly constrained code, where

ε(N) = O(1/N1−β), where β can be arbitrarily small.

Let W = (Wi,j), −k + 1 ≤ i ≤ m and j ∈ [n],
be the (m + k) × n 2D array that is obtained by en-

coding some m messages from [|Crbr|] using the row-by-

row weakly constrained coding scheme over G, with the

Markov chain P . Recall that we denote the rows of W
by W−k+1,W−k+2, . . . ,W0,W1, . . . ,Wm. We denote the

columns of W by B1, B2, . . . , Bn. Since all the columns of

W belongs to S(G) and since every e ∈ E appears vertically

in W exactly P(e)mn times, it is tempting to connect the

columns into one long codeword. This is the key idea behind

our code construction, but it requires some additional steps in

order to guarantee that the codeword belongs to S(G) and

that its empirical distribution over E matches the Markov

chain P .

For two vectors w1,w2 ∈ Σ∗ of lengths m1,m2 ≥ k, we

say that w1 is extendable by w2 if the last k entries of w1

are equal to the first k entries of w2. In this case, the result

of extending w1 with w2 is the length m1 +m2 − k vector

over Σ,
w1‖w2

def
=w1 w2,k+1 w2,k+2 . . . wm2

.

The following lemma can be readily verified.

Lemma 1. If w1,w2 ∈ S(G) and w1 is extendable by w2

then w1‖w2 ∈ S(G). Moreover, if for some e ∈ E, the
number of times the pattern e appears in w1 and w2 is t1
and t2, respectively, then the number of times e appears in
w1‖w2 is t1 + t2.

From Lemma 1 it follows that if there exists some permu-

tation ρ : [n] → [n] such that for all j ∈ [n − 1], Bρ(j) is

extendable by Bρ(j+1), then

c = Bρ(1)‖Bρ(2)‖ · · · ‖Bρ(n)

is a codeword of length N = mn+k in S(G) such that for all

e ∈ E, e appears in c exactly P(e)mn = P(e)(N−k) times.

In that case, W is called good. Hence, the first step towards

our code construction is to show that by appending some

extra rows to W using the row-by-row coding technique, we

can obtain a good (m′ + k)× n 2D array W ′.
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Lemma 2. Suppose that for all � ∈ [|V |] and for all e ∈ E
with σ(e) = v� we have P(e)n ≥ |V |. Then, using the row-
by-row weakly constrained coding scheme, one can append
some NG rows to W to obtain a good (m + NG + k) × n
2D array W ′.

Due to space limitations, we omit the proof. The key idea

is that finding the permutation ρ is equivalent to finding an

Eulerian path in a graph with |V | vertices and n edges, where

the edges are determined by the first and last k entries of

each column in the array W ′. This graph already has the

property that the in-degree of each vertex matches its out-

degree. Therefore, one only needs to ensure the graph is

irreducible,which is easily achieved for n large enough.

Although Lemmas 1 and 2 imply that we can encode a

sequence of m messages in Z|Crbr| to a codeword c ∈ S(G)
of length N = m′n + k for which every pattern e ∈ E
appears exactly P(e)(N − k) times, we still need to make

sure that c is decodable, i.e., that we can retrieve the m
messages from c. If we knew how to recreate the (m′+k)×n
2D array W ′ from which c was obtained, we could use

the row-by-row decoding algorithm to retrieve the original

messages. However, without knowing the permutation ρ
according to which the columns of W ′ were linked to one

another to create c, it is not clear how we can obtain W ′.
To overcome this problem we again suggest to append rows

to W ′. Recall that the first k rows of W ′ are equal to the

rows of the matrix Uπ , defined in Section III. We would like

to append rows to the bottom of the matrix Uπ , using the

row-by-row weakly constrained coding technique, to create

an m̂× n matrix Ûπ in which all columns are distinct. The

2D array that we will use will then consist of m̂ rows that

are equal to the rows of Ûπ , followed by m rows that are the

result of encoding m messages using the row-by-row weakly

constrained coding, and finally NG rows that guarantee that

the final 2D array is good.

Lemma 3. An m̂× n matrix Ûπ with distinct columns can
be constructed with m̂ = O(log n) rows.

Due to space limitations, the proof is omitted. We sum-

marize with the following corollary.

Corollary 1. If for all e ∈ E, P(e)n ≥ |V |, then there
exists a constant c that depends only on G and the Markov
chain P such that one can encode m messages from Crbr to
a length-N = (c log n+m+NG)n+k codeword c ∈ S(G)
in which every pattern e ∈ E appears exactly P(e)(N − k)
times.

Example 5. Let n = 8, let G be the graph from Example 1,
and let P be the Markov chain with P(01) = P(10) = 0.25
and P(00) = 0.5. We will show how to create a 9 × 8 2D
array, constructed using the row-by-row weakly constrained
coding and Lemmas 2 and 3, which we will then assemble
into a length-65 codeword. The first five rows of the 2D array
are the rows of the matrix Ûπ . The next m = 2 rows are
information rows. Assume we wish to write the codewords
c, ĉ ∈ Crbr, where c = 10 0 1 0 0 0 0 and ĉ = 00 0 0 1 1 0 0.
Then after writing these two codewords and adding NG = 2
rows we get the following good 2D array W :

0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1

Then the codeword

c = B1‖B2‖B3‖B4‖B8‖B7‖B5‖B6

is of length 65 and it has the property that each of the patterns 0 1
and 1 0 appears in it exactly 16 = P(0 1)64 times, and the pattern
0 0 appears in it exactly 32 = P(0 0)64 times.

Finally, using a technique suggested in [16], given the

capacity-achieving Markov chain P̂ for a (ϕ, r, ε)-weakly

constrained system, one can obtain an n-integral Markov

chain P such that |P̂(e)−P(e)| = O(1/n). As a result the

entropy of P goes to the entropy of P̂ , as n goes to infinity.

Applying our construction with the n-integral Markov chain

P setting m = Θ(nδ) (δ > 0 should be much larger than

log2 log2 n/ log2 n), one can construct a capacity-achieving

(ϕ, r, ε)-weakly constrained code of length N ≈ n1+δ with

ε(N) = O(1/n) = O(1/N (1+δ)−1

).

V. ACKNOWLEDGMENTS

This work was supported by the ISEF Foundation and by

NSF Grant CCF-1619053.

REFERENCES

[1] R. L. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding
block codes,” IEEE Trans. on Inform. Theory, vol. 29, no. 1, pp. 5–22,
Jan. 1983.

[2] S. Buzaglo and P. H. Siegel, “Row-by-row coding schemes for inter-
cell interference in Flash memory,” to appear in IEEE Trans. Commun..

[3] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie v. Wetenschappen, vol. 49, pp. 758-764, 1946.

[4] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained sys-
tems,” IEEE Trans. on Inform. Theory, vol. 62, no. 4, pp. 1688–1702,
Apr. 2016.

[5] F. R. Gantmacher Matrix Theory, Volume II, Chelsea Publishing Com-
pany, New York, 1960.

[6] S. Halevy and R. M. Roth, “Parallel constrained coding with applica-
tion to two-dimensional constraints,” IEEE Trans. on Inform. Theory,
vol. 48, no. 5, pp. 1009–1020, Aug. 2002.

[7] K. A. S. Immink, “Weakly constrained codes,” Electron. Lett., vol. 33,
pp. 1943-1944, Nov. 1997.

[8] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inform. Theory, vol. 43,
no. 5, pp. 1389-1399, Sep. 1997.

[9] A. Jagmohan, M. Franceschini, L. A. Lastras-Montao and J. Karidis,
“Adaptive endurance coding for NAND Flash,” IEEE Globecom Work-
shops, pp. 1841–1845, Miami, FL, 2010.

[10] A. J. E. M. Janssen and K. A. S. Immink, “An entropy theorem for com-
puting the capacity of weakly (d, k)-constrained sequences,” IEEE
Trans. Inform. Theory, vol. 46, no. 3, pp. 1034-1038, May 2000.

[11] J. Justesen and T. Høholdt, “Maxentropic Markov chains,” IEEE
Trans. Inform. Theory, vol. 30, no. 4, pp. 665-667, July 1984.

[12] Y. Liu and P H. Siegel, “Shaping codes for structured data,” IEEE
GLOBECOM, Washington, DC, December 2016.

[13] B. H. Marcus and R. M. Roth, “Improved Gilbert-Varshamov bound for
constrained systems,” IEEE Trans. Inform. Theory, vol. 38, pp. 1213-
1221, July 1992.

[14] B. H. Marcus, R. M. Roth, and P. H. Siegel, Constrained systems and
coding for recording channels, in Handbook of Coding Theory,
V. Pless and W. Huffman, Eds. Amsterdam: Elsevier, pp. 1635–1764,
1998.

[15] B. Moison, unpublished notes, 2000.
[16] I. Tal, T. Etzion, and R. M. Roth, “On row-by-row coding for 2-D

constraints,” IEEE Trans. on Inform. Theory, vol. 55, pp. 3565–3576,
2009.

2017 IEEE Information Theory Workshop - ITW 2017 Kaohsiung

978-1-5090-3097-2/17/$31.00 ©2017 IEEE 155



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


