
Adaptive Cut Generation for Improved Linear
Programming Decoding of Binary Linear Codes

Xiaojie Zhang and Paul H. Siegel
University of California, San Diego, La Jolla, CA 92093, USA

Email:{ericzhang, psiegel}@ucsd.edu

Abstract—Linear programming (LP) decoding approximates
optimal maximum-likelihood (ML) decoding of a linear block
code by relaxing the equivalent ML integer programming (IP)
problem into a more easily solved LP problem. The LP problem
is defined by a set of linear inequalities derived from the
constraints represented by the rows of a parity-check matrix of
the code. Adaptive linear programming (ALP) decoding signifi-
cantly reduces the complexity of LP decoding by iteratively and
adaptively adding necessary constraints in a sequence of smaller
LP problems. Adaptive introduction of constraints derived from
certain additional redundant parity check (RPC) constraints can
further improve ALP performance. In this paper, we propose
a new and effective algorithm to identify RPCs that produce
linear constraints, referred to as “cuts,” that can eliminate non-
ML solutions generated by the ALP decoder, often significantly
improving the decoder error-rate performance. The cut-finding
algorithm is based upon a specific transformation of an initial
parity-check matrix of the linear block code. Simulation results
for several low-density parity-check codes demonstrate that
the modified ALP decoding algorithm significantly narrows the
performance gap between LP decoding and ML decoding.

I. INTRODUCTION

Linear programming (LP) decoding was first introduced
by Feldman et al. [1] as an approximation to maximum-
likelihood (ML) decoding. Many observations suggest simi-
larities between the performance of LP and iterative belief
propagation (BP) decoding methods [2]. However, there are
some key differences that distinguish LP decoding from BP
decoding. One of these differences is that the LP decoder has
the ML certificate property, i.e., it is detectable if the decoding
algorithm fails to find the ML codeword. When it fails to find
a valid codeword, the LP decoder finds a non-integer solution,
commonly called a pseudocodeword. Another difference is
that while adding redundant parity checks satisfied by all the
codewords can only improve LP decoding, it may have a
negative effect on the BP decoder, especially in the waterfall
region, due to the creation of short cycles in the Tanner
graph. This property of LP decoding allows improvements by
tightening the LP relaxation, i.e., reducing the feasible space
of LP problem by adding more linear constraints.

In the original formulation of LP decoding proposed by
Feldman et al., the number of constraints in the LP problem
is linear in the block-length but exponential in the maximum
check node degree. In [3], Taghavi and Siegel introduced an
adaptive linear programming (ALP) decoder in which these
constraints are added in an adaptive and selective way. This

approach also allows the adaptive incorporation of linear
constraints generated by redundant parity checks (RPC) into
the LP problem, making it possible to reduce the feasible space
and improve the system performance. A linear inequality de-
rived from an RPC that eliminates a pseudocodeword solution
is referred to as a “cut.” An algorithm proposed in [3] uses a
random walk on a subset of the code factor graph to find these
RPC cuts. However, the random nature of this algorithm limits
its efficiency. Recently, authors in [4] proposed a separation
algorithm which searches immediately for cuts that can be
derived from an arbitrarily chosen dual codeword during each
iteration of the LP decoding problem, and these cuts improve
the error-correcting performance of the original LP decoder.

In this paper, we propose a novel adaptive cut-finding algo-
rithm that greatly improves the error-correcting performance
of LP decoding. First, we introduce an efficient approach to
check whether a parity-check can generate a cut at nonintegral
solution of the relaxed LP problem. We then propose a new,
more efficient adaptive algorithm that identifies useful RPCs
by performing specific elementary row operations on the orig-
inal parity-check matrix of the binary linear code. By adding
the corresponding linear constraints into the LP problem, we
can significantly improve the error-rate performance of the LP
decoder, even approaching the ML decoder performance in the
high SNR region for some codes.

The remainder of the paper is organized as follows. In
Section II, we review the original formulation of LP decoding
and several adaptive LP decoding algorithms. In Section III,
we describe our proposed algorithm for finding RPC cuts.
Section IV presents our simulation results, and Section V
concludes the paper.

II. LP DECODING AND ADAPTIVE VARIANTS

A. LP Relaxation of ML Decoding

Consider a binary linear block code C of length n and a cor-
responding parity-check matrix H. A codeword y ∈ C is trans-
mitted across a memoryless binary-input output-symmetric
channel, resulting in a received vector r. Assuming that the
transmitted codewords are equiprobable, the ML decoder finds
the solution to the following optimization problem

minimize γTu
subject to u ∈ C (1)

where ui ∈ {0, 1}, and γ is the vector of log-likelihood ratios
(LLR) defined as

γi = log

(
Pr (ri|ui = 0)

Pr (ri|ui = 1)

)
. (2)

Since the ML decoding problem (1) is an integer pro-
gramming problem, it is desirable to replace its nonlinear
constraints with a set of linear constraints, transforming the IP
problem into a more readily solved LP problem. As an approx-
imation to ML decoding, Feldman et al. relaxed the codeword
polytope onto the fundamental polytope, denoted as P . This
polytope has both nonintegral and integral vertices, with the
latter corresponding precisely to the codewords in C, yielding
the ML-certificate property mentioned above. The fundamental
polytope is described by a set of linear inequalities, obtained as
follows. For each row j = 1, . . . ,m of the parity-check matrix,
corresponding to a check node in the associated Tanner graph,
the linear inequalities used to form the fundamental polytope
P are given by∑
i∈V

(1− ui) +
∑

i∈N (j)\V

ui ≥ 1,∀V ⊆ N (j) s.t. |V| is odd.

(3)
These are equivalent to∑
i∈V

ui −
∑

i∈N (j)\V

ui ≤ |V| − 1,∀V ⊆ N (j) s.t. |V| is odd

(4)
where N (j) ⊆ {1, 2, . . . , n} is the set of neighboring variable
nodes of the check node j in the Tanner graph; that is, N (j) =
{i : Hj,i = 1} where Hj,i is the element in the jth row and
ith column of the parity-check matrix, H.

B. ALP Decoding

In the original formulation of LP decoding presented in [1],
every check node j generates 2|N (j)|−1 parity inequalities that
are used as linear constraints in the LP problem described
above. The total number of constraints and the complexity of
the LP problem grows exponentially with the maximum check
node degree. In [3], an adaptive approach, called adaptive
linear programming (ALP) decoding, was proposed as an
alternative to the direct implementation of the original LP
decoding algorithm. The ALP decoder exploits the structure
of the LP decoding problem, reflected in the statement of the
following lemma.

Lemma 1 ([3]): If at any given point u ∈ [0, 1]n, one of
the parity inequalities introduced by a check node j is violated,
the rest of the parity inequalities from this check node are
satisfied with strict inequality.

Definition 1: Given a parity-check node j, a set V ⊆ N (j)
of odd cardinality, and a vector u ∈ [0, 1]n such that the
corresponding parity inequality of the form (3) or (4) does not
hold, we say that the constraint is violated or, more succinctly,
a cut at u.

In [3], an efficient algorithm for finding cuts at a vector
u ∈ [0, 1]n was presented. It relies on the observation that

violation of a parity inequality (4) at u implies that

|V| − 1 <
∑
i∈V

ui ≤ |V| (5)

and
0 ≤

∑
i∈N (j)\V

ui < uv,∀v ∈ V. (6)

The algorithm first puts the entries of u in non-increasing
order, i.e., u1 ≥ · · · ≥ un. It then successively considers sub-
sets of odd cardinality having the form V = {u1, . . . , u2k+1},
increasing the size of V by two each step, until a cut (if one
exists) is found. This algorithm can find a cut among the con-
straints corresponding to a check node j by examining at most
|N (j)|/2 inequalities, rather than exhaustively checking all
2|N (j)|−1 inequalities in the original LP decoding formulation.

The ALP decoding algorithm starts by solving the optimiza-
tion problem with the following constraints{

0 ≤ xi if γi ≥ 0

xi ≤ 1 if γi < 0.
(7)

The solution of this initial problem can be obtained simply
by making a hard decision on the components of a received
vector. The ALP decoding algorithm starts with this point,
searches every check node for cuts, adds all the cuts found
during the search into the LP problem, and solves it again.
This procedure is repeated until an optimal integer solution is
generated or no more cuts can be found. (See [3] for more
details). The adaptive LP decoding algorithm has exactly the
same error-correcting performance as the original LP decoder.

III. ADAPTIVE CUT-GENERATING ALGORITHM

In this section, we provide an efficient method to search
for violated parity inequalities (or cuts) corresponding to
an existing parity-check. This result serves as the basis for
a new adaptive approach to generating RPCs that provide
cuts. Computer simulation results, presented in Section IV,
indicate that the new cut-generating algorithm can significantly
improve the error-rate performance of LP decoding.

A. Finding Cuts from Parity-check Nodes

Consider the original parity inequalities in (3) given by
Feldman et al. in [1]. If a parity inequality derived from check
node j induces a cut at u, the cut can be written as∑

i∈V
(1− ui) +

∑
i∈N (j)\V

ui < 1,

for some V ⊆ N (j) and |V| is odd
(8)

From (8) and Lemma 1, we can derive the following
necessary condition for a parity-check constraint to induce a
cut.

Theorem 1: Given a vector u, let S = {i ∈ N (j)|0 <
ui < 1} be the set of nonintegral neighbors of parity-check
node j, and let T = {i ∈ S|ui > 1

2}. A necessary condition
for parity-check constraint j to induce a cut at u is∑

i∈T
(1− ui) +

∑
i∈S\T

ui < 1. (9)

Algorithm 1 Cut Search Algorithm
Input: parity-check node j and vector u
Output: variable node set V

1: V ← {i ∈ N (j)|ui > 1
2}

2: if |V| is even then
3: i∗ ← arg min

i∈N (j)
| 12 − ui|

4: if i∗ ∈ V then
5: V ← V \ {i∗}
6: else
7: V ← V ∪ {i∗}
8: end if
9: end if

10: if
∑
i∈V

(1− ui) +
∑

i∈N (j)\V
ui < 1 then

11: Find a violated parity inequality on check node j
12: else
13: There is no violated parity inequality on check node j
14: V ← ∅
15: end if
16: return V

This is equivalent to∑
i∈S
|1
2
− ui| >

1

2
· |S| − 1 (10)

where, for x ∈ R, |x| denotes the absolute value, and for a set
X , |X | denotes its cardinality.

Proof: Omitted due to space limitations.
Remark 1: Given a nonintegral vector u, to see whether a

parity check node could provide a cut at u, we only need to
check its fractional neighbors.

We can further extend Lemma 1 to get a sufficient condition
for a parity-check node to give a cut at u.

Theorem 2: Given a vector u, let S = {i ∈ N (j)|0 < ui <
1} and T = {i ∈ S|ui > 1

2}. If the inequality∑
i∈T

(1− ui) +
∑

i∈S\T

ui + 2 · min
i∈N (j)

|1
2
− ui| < 1 (11)

holds, there must be a violated parity inequality derived from
parity-check j. This sufficient condition can be written as∑

i∈S
|1
2
− ui| − 2 · min

i∈N (j)
|1
2
− ui| >

1

2
· |S| − 1. (12)

Proof: Omitted due to space limitations.
Theorem 1 and Theorem 2 provide a necessary condition

and a sufficient condition, respectively, for a parity-check node
to produce a cut at any given vector u. Together, they form
the basis for a highly efficient technique for finding cuts, the
Cut Search Algorithm described in Algorithm 1. If there is
a violated parity inequality, the Cut Search Algorithm returns
the set V corresponding to the cut; otherwise, it returns an
empty set.

B. Generating Cut-Inducing RPCs

Although the addition of a redundant row to a parity-check
matrix does not affect the null-space and, therefore, the linear
code it defines, different parity-check matrix representations
of a linear code may give different fundamental polytopes
underlying the corresponding LP relaxation of the ML de-
coding problem. This fact inspires the use of cutting-plane
techniques to improve the error-correcting performance of LP
and ALP decoders. Specifically, when the LP decoder gives a
nonintegral solution (i.e., a pseudocodeword), we try to find
the RPCs that introduce cuts at that point. The cuts obtained
in this manner are called RPC cuts. The effectiveness of this
method depends on how closely the new relaxation approxi-
mates the ML decoding problem, as well as on the efficiency
of the technique used to search for the cut-generating RPCs.

An RPC can be obtained by modulo-2 addition of some
of the rows of the original parity-check matrix, and this new
check introduces a number of linear constraints that may give
a cut. In [3], a random walk on a cycle within the subgraph
defined by the fractional-valued entries in a pseudocodeword
served as the basis for a search for RPC cuts. However,
there is no guarantee that this method will find a cut (if
one exists) within a finite number of iterations. In fact, the
average number of random trials needed to find an RPC cut
grows exponentially with the code length. The separation
algorithm in [4] provides another way to search for RPC
cuts, but in many cases the RPC cuts found by this algorithm
do not lead to an integral solution, and therefore it provides
only limited performance improvement. Motivated by the Cut
Search Algorithm introduced in Section III-A, we next propose
a new, efficient RPC cut-generating algorithm that has been
found empirically to provide useful RPC cuts.

Given a nonintegral solution of the LP problem, we can
see from Theorem 1 and Theorem 2 that an RPC with a
small number of nonintegral neighboring variable nodes may
be more likely to satisfy the necessary condition for generat-
ing a cut at the pseudocodeword. Moreover, the nonintegral
neighbors should have values either close to 0 or close to 1;
in other words, they should be as far from 1

2 as possible.
Let p = (p1, p2, . . . , pn) ∈ [0, 1]n be a pseudocodeword

solution to LP decoding, with a nonintegral positions, b zeros,
and n− a− b ones. We first group entries of p according to
whether their values are nonintegral, zero, or one. Then, we
sort the nonintegral positions in ascending order according to
the value of | 12 − pi| and define the permutated vector p′ =
Π(p) satisfying | 12 − p′1| ≤ · · · ≤ | 12 − p′a|, p′a+1 = · · · =
p′a+b = 0, and p′a+b+1 = · · · = p′n = 1. By applying the
same permutation Π to the columns of the original parity-
check matrix H, we get

H′ , Π(H) =
(
H(f)|H(0)|H(1)

)
(13)

where H(f), H(0), and H(1) consist of columns of H corre-
sponding to positions of p′ with nonintegral values, zeroes,
and ones, respectively.

The following familiar definition from matrix theory will be
useful [5, p. 10].

Definition 2: A matrix is in reduced row echelon form if its
nonzero rows (i.e., rows with at least one nonzero element) are
above any rows of all zeroes, and the leading entry (i.e., the
first nonzero number from the left) of a nonzero row is the
only nonzero entry in its column and is always strictly to the
right of the leading coefficient of the row above it.

By applying a suitable sequence of elementary row opera-
tions Φ (over F2) to H′, we get

H̄ , Φ(H′) =
(
H̄(f)|H̄(0)|H̄(1)

)
, (14)

where H̄(f) is in reduced row echelon form. Applying the
inverse permutation Π−1 to the columns of H̄, we get an
equivalent parity-check matrix H̃ = Π−1(H̄), whose rows
are likely to be cut-generating RPCs.

Theorem 3: If there exists a weight-one row in submatrix
H̄(f), the corresponding row of the equivalent parity-check
matrix H̃ is a cut-generating RPC.

Proof: Given a pseudocodeword p, suppose the jth row
of submatrix H̄(f) has weight one and the corresponding
nonintegral position in p is pi. Since it is the only nonintegral
neighbor of RPC j, the left-hand side of (12) is equal to
−| 12 − pi|. Since 0 < pi < 1, this is larger than − 1

2 , the right-
hand side. Hence, according to Theorem 2, RPC j satisfies the
sufficient condition for providing a cut. In other words, there
must be a violated parity inequality induced by RPC j.

For other rows of H̃, we can apply the Cut Search Algorithm
to find any further potential cuts. Algorithm 2 describes an
improved LP decoding algorithm which includes the adaptive
cut generation techniques just described.

Algorithm 2 LP Decoding with Adaptive Cut Generation
Input: cost vector L, parity-check matrix H
Output: Optimal solution of current LP problem

1: Initialize LP problem with the constraints in (7).
2: Solve the current LP problem; get optimal solution x∗.
3: Apply Algorithm 1 on each row of H.
4: if No cut is found and x∗ is nonintegral then
5: Construct H̃ according to x∗

6: Apply Algorithm 1 on each row of H̃.
7: end if
8: if No cut is found then
9: Terminate.

10: else
11: Add found cuts into the LP problem; go to line 2.
12: end if

IV. NUMERICAL RESULTS

To demonstrate the improvement offered by the proposed
RPC search algorithm, we compare its error-correcting per-
formance to that of LP/ALP decoding , BP decoding (sum-
product algorithm with a maximum of 1000 iterations), the
Separation Algorithm (SA) [4], and ML decoding for two

1 1.5 2 2.5 3 3.5 4 4.5
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

LP/ALP

BP (1000 iter)

SA

Proposed

ML lower bound

Fig. 1. FER versus Eb/N0 for MacKay’s random (3,6)-regular LDPC code
of length 96.

2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

LP/ALP

BP (1000 iter)

SA

Proposed

ML (IP [9])

Fig. 2. FER versus Eb/N0 for the (3,5)-regular (155,64) Tanner LDPC code
on the AWGN channel.

TABLE I
FRAME ERRORS USING ALGORITHM 2

Eb/N0 Transmitted Error Pseudo- Incorrect
(dB) Frames Frames codewords Codewords
3.0 386,445 1,000 255 745
3.5 1,493,801 1,000 126 874
4.0 5,589,843 1,000 23 977
4.5 19,128,086 1,000 4 996
5.0 61,198,400 1,000 0 1,000
5.5 225,764,513 1,000 0 1,000

LDPC codes on the additive white Gaussian noise (AWGN)
channel. We use the Simplex algorithm from the open-source
GNU Linear Programming Kit (GLPK [6]) as the LP solver.
The LDPC codes we evaluated are a length-96, (3,6)-regular
LDPC code [7] and the (155,64) Tanner LDPC code [8].

In Fig. 1, we show the results for MacKay’s length-96,
(3,6)-regular LDPC code (the 96.33.964 code from [7]). As
a benchmark, we also plot a lower bound on ML decoding
performance. In order to obtain this ML lower bound, we
counted the number of times that our proposed algorithm
converged to an incorrect codeword and then divided that
by the total number of transmitted codewords, as shown in
Table I. The ML certificate property of LP decoding implies
that ML decoding would also fail in these cases, and it would
also probably fail on some other cases where LP decoding
outputs pseudocodewords. Therefore, this estimate gives us a

1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

E
b
/N

0
 (dB)

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

ALP

SA

Proposed

Fig. 3. Average number of iterations for decoding one codeword of (155,64)
Tanner LDPC code.

lower bound on the frame error rate (FER) of ML decoding.
We can see that the proposed search algorithm approaches the
ML lower bound in the high SNR region. Actually, from the
simulation results, reflected in Table I, we observed that, when
Eb/N0 is greater than 4.5 dB, all decoding errors correspond to
incorrect codewords, which means that the proposed algorithm
basically achieved ML decoding performance. In Fig. 2, which
shows results for the (3,5)-regular (155,64) Tanner code, we
plot the ML performance curve from [4]. It can be seen that
the proposed algorithm closes the 1.25 dB gap between LP
decoding and ML decoding to approximately 0.25 dB.

Since the improvement in error-rate performance comes
from the additional RPC cuts found in each iteration, our
algorithm generally requires more iterations and the solution
of larger LP problems in comparison to ALP decoding. In
the remaining part of this section, we investigate the relative
complexity of our proposed algorithm in comparison to ALP
decoding and the Separation Algorithm [4]. The simulation
statistics are averaged over the number of transmitted code-
words required for the decoder to fail on 200 codewords. In
Fig. 3, we compare the average number of iterations needed to
decode one codeword, i.e., the average number of LP problems
solved to decode one codeword of the Tanner (155,64) code
on the AWGN channel. Fig. 4 shows the average number of
constraints in the LP problem of the final iteration that either
outputs a valid codeword or, when no more cuts can be found,
a pseudocodeword. The decoding time depends on both the
number of decoding iterations and the size of the LP problem
in each iteration.

The results show that the improvement in performance
achieved by the proposed algorithm does come at the cost
of increased decoding time. As the SNR increases, however,
the average numbers of iterations and constraints required to
decode one codeword using the proposed algorithm approach
those of the ALP decoder. This is because, at higher SNR
values, the ALP decoder can often successfully decode the
received frames without requiring any RPC cuts. In contrast,
the Separation Algorithm becomes less efficient as the SNR
increases because it can not find cuts efficiently and therefore
requires more iterations to complete the decoding.

1.5 2 2.5 3 3.5 4
10

1

10
2

10
3

E
b
/N

0
 (dB)

N
u
m

b
e
r

o
f
C

o
n
s
tr

a
in

ts

ALP

SA

Proposed

Fig. 4. Average number of constraints in final iteration for decoding one
codeword of (155,64) Tanner LDPC code.

V. CONCLUSION

In this paper, we derived a new sufficient condition and
a new necessary condition for a parity-check constraint in
an LDPC code definition to give a cut at a pseudocodeword
produced by LP decoding. Using these results, we developed
an efficient algorithm to search for cuts and proposed an effec-
tive RPC cut generating algorithm. The key innovation in the
cut generating algorithm is a particular transformation of the
parity-check matrix used to define the LP decoding problem.
By properly re-ordering the columns of the original parity-
check matrix and transforming it to a partial reduced row
echelon form, we could efficiently identify RPC cuts that were
found empirically to significantly improve the LP decoder
performance. Error-rate simulation results for two moderate-
length codes show that the proposed algorithm outperforms
previously proposed decoding algorithms based upon linear
programming, closing the performance gap to ML decoding
to less than 0.3 dB when the FER is less than 10−2.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant CCF-0829865.

REFERENCES

[1] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming
to decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51, no.
3, pp. 954–972, Mar. 2005.

[2] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” IEEE
Trans. Inform. Theory, accepted for publication.

[3] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5396–
5410, Dec. 2008.

[4] A. Tanatmis, S. Ruzika, H. W. Hamacher, M. Punekar, F. Kienle, and
N. Wehn, “A separation algorithm for improved LP-decoding of linear
block codes,” IEEE Trans. Inform. Theory, vol. 56, no. 7, pp. 3277–3289,
Jul. 2010.

[5] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge, UK: Cam-
bridge University Press, 1990.

[6] GNU Linear Programming Kit, http://www.gnu.org/software/glpk
[7] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes. [Online].

Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
[8] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured

LDPC codes,” in Proc. Int. Symp. Communication Theory and Applica-
tions (ISCTA), Ambleside, U.K., Jul. 2001.

