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Abstract—Detectability of failures of linear programming (LP)
decoding and the potential for improvement by adding new con-
straints motivate the use of an adaptive approach in selecting the
constraints for the underlying LP problem. In this paper, we make
a first step in studying this method, and show that by starting from
a simple LP problem and adaptively adding the necessary con-
straints, the complexity of LP decoding can be significantly re-
duced. In particular, we observe that with adaptive LP decoding,
the sizes of the LP problems that need to be solved become prac-
tically independent of the density of the parity-check matrix. We
further show that adaptively adding extra constraints, such as con-
straints based on redundant parity checks, can provide large gains
in the performance.

Index Terms—Cutting planes, low-density parity-check (LDPC)
codes, linear programming (LP), LP decoding, message passing,
maximum-likelihood (ML) decoding, pseudocodewords.

I. INTRODUCTION

L INEAR programming (LP) decoding, as an approxi-
mation to maximum-likelihood (ML) decoding, was

proposed by Feldman, Wainwright, and Karger [1]. Many ob-
servations suggest similarities between the performance of LP
and iterative message-passing decoding methods. For example,
we know that the existence of low-weight pseudocodewords
degrades the performance of both types of decoders [1]–[3].
Moreover, the sum–product message-passing algorithm can be
interpreted as a minimization of a nonlinear function, known as
Bethe free energy, over the same feasible region as LP decoding
[4], [5]. Therefore, it is reasonable to try to exploit the simpler
geometrical structure of LP decoding to make predictions about
the performance of message-passing decoding algorithms.

On the other hand, there are differences between these
two decoding approaches. For instance, given a low-density
parity-check (LDPC) code, we know that adding redundant
parity checks that are satisfied by all the codewords cannot
degrade the performance of LP decoding, while with mes-
sage-passing algorithms, these parity checks may have a
negative effect by introducing short cycles in the corresponding
Tanner graph. This property of LP decoding allows perfor-
mance improvement by tightening the relaxation. Another
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characteristic of LP decoding—the ML certificate property—is
that its failure to find an ML codeword is always detectable.
More specifically, the decoder always gives either an ML
codeword or a nonintegral pseudocodeword as the solution.

These two properties motivate the use of an adaptive cut-
ting-plane approach in LP decoding which can be summarized
as follows: Given a set of constraints that describe a code, start
the LP decoding with a few of them, then sequentially and adap-
tively add more of the constraints to the problem until either an
ML codeword is found or no further “useful” constraint exists.
The goal of this paper is to explore the potential of this idea for
improving the performance of LP decoding.

In the original formulation of LP decoding, the number of
constraints per check node is exponential in the check node de-
grees. While for LDPC codes this number is independent of the
code length , even for small check degrees this could result
in a very large linear program. Furthermore, for high-density
codes, where the degrees grow with , the size of the LP de-
coding problem will be exponential in . In [1], Feldman et al.
provide an alternative equivalent representation of the LP relax-
ation, where the total number of constraints is for codes
of high check node degrees. However, for practical purposes,
this formulation is still not very feasible.

In this paper, we show that by incorporating adaptivity into
the LP decoding procedure, we can achieve with a small number
of constraints the same error-rate performance as that obtained
when standard LP decoding is applied to a relaxation defined by
a much larger number of constraints. In particular, we observe
that the proposed adaptive LP decoding method generally con-
verges with a (small) constant number of constraints per check
node that does not appear to be dependent upon the underlying
code’s degree distribution. This property makes it feasible to
apply adaptive LP decoding to graph codes of arbitrary degree
distribution, and reduces the decoding time by orders of magni-
tude relative to the standard implementation, even for relatively
small check node degrees. Recently, Draper, Yedidia, and Wang
[6] used this algorithm in a mixed-integer optimization setting
for ML decoding of moderate-sized LDPC codes.

In related work, Chertkov and Stepanov [7], and Yang, Wang,
and Feldman [8], independently proposed a new representation
of the LP decoding problem, where each high-degree check
node is decomposed into a number of degree- check nodes and
some auxiliary variable nodes. Using this scheme, the number
of variables and constraints of the LP grows linearly with the
check degrees, and how the overall decoding complexity scales
will depend on the underlying LP solver. A different line of work
in this direction has been to apply iterative methods based on
message-passing, instead of general LP solvers, to perform the
optimization for LP decoding. An important result in this area is
the tree-reweighted message-passing algorithm by Wainwright,
Jaakkola, and Willsky [5]. Furthermore, Vontobel and Koetter
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proposed an approximation to LP decoding by applying an it-
erative min-sum algorithm-type technique to the dual of the LP
decoding problem [9].

In the second part of this paper, we show how the cutting-
plane concept can be used to improve the error-rate performance
of LP decoding. In this scheme, once the adaptive LP decoding
fails to find an integral (i.e., the ML) codeword, we iteratively
search for and add a number of cuts, i.e., new constraints that
cut the current nonintegral solution from the feasible space, and
then we solve the new LP problem. While there is a wide range
of general-purpose techniques for finding cutting planes, in this
work we focus on cuts that are obtained based on redundant
parity checks. We present some results on the properties of these
cuts, and demonstrate how considerable gains can be obtained
by using this technique. Other approaches toward improving the
performance of LP decoding include facet guessing, proposed
by Dimakis and Wainwright [10], and the application of loop
calculus, suggested by Chertkov and Chernyak [11].

Along the way, we prove several general properties of LP re-
laxations of ML decoding that shed light upon the performance
of LP and iterative decoding algorithms.

The rest of this paper is organized as follows. In Section II,
we review Feldman et al.’s LP decoding. In Section III, we
introduce and analyze the adaptive LP decoding algorithm to
solve the original LP problem more efficiently. In Section IV,
we study how adaptively imposing additional constraints can
improve the LP decoder performance. Section V concludes the
paper.

II. LP RELAXATION OF ML DECODING

Consider a binary linear code of length . If a codeword
is transmitted through a memoryless binary-input output-

symmetric (MBIOS) channel, the ML codeword given the re-
ceived vector is the solution to the optimization problem

minimize

subject to (1)

where is the vector of log-likelihood ratios defined as

(2)

As an approximation to ML decoding, Feldman et al. proposed
a relaxed version of this problem by first considering the convex
hull of the local codewords defined by each row of the parity-
check matrix, and then intersecting them to obtain what Koetter
et al. [3] called the fundamental polytope, . This polytope has
a number of integral and nonintegral vertices, but the integral
vertices exactly correspond to the codewords of . Therefore,
the LP relaxation has the ML certificate property, i.e., whenever
LP decoding gives an integral solution, it is guaranteed to be an
ML codeword.

In Feldman et al.’s formulation of the decoding problem, con-
straints are derived from a parity-check matrix as follows. For
each row of the parity-check matrix, define the
neighborhood set of the corresponding
check node in the Tanner graph to be the variable nodes that
are directly connected to it. (For convenience, we often identify

check nodes and variable nodes with their respective index sets
and .) Then, for , the

LP formulation includes all of the following constraints:

s. t. is odd

(3)
We refer to the constraints of this form as parity inequalities.
If the variables are zeros and ones, these constraints will be
equivalent to the original binary parity-check constraints. To see
this, note that if is a subset of , with odd, and the
corresponding parity inequality fails to hold, then all variable
nodes in must have the value , while those in must
have the value . This implies that the corresponding vector
does not satisfy parity check . Conversely, if parity check fails
to hold, there must be a subset of variable nodes of
odd size such that all nodes in have the value and all those
in have the value . Clearly, the corresponding parity
inequality would be violated. Now, given this equivalence, we
relax the LP problem by replacing each binary constraint

by a box constraint .

III. ADAPTIVE LP DECODING

As any odd-sized subset of the neighborhood of a
check node introduces a unique parity inequality, there are

constraints corresponding to each check node of degree
in the original formulation of LP decoding. Therefore, the

total number of constraints, and hence the complexity of the
problem, is exponential in terms of the maximum check node
degree . This becomes more significant in a high-density
code where increases with the code length . As discussed
earlier, Feldman et al. proposed an equivalent formulation that
has a problem size of , although for low-density codes it
has a problem size larger than the original formulation.1

In this section, we show that the LP relaxation explained in
Section II has some properties that allow us to solve the op-
timization problem by using a much smaller number of con-
straints.

A. Properties of the Relaxation Constraints

Definition 1: Given a constraint of the form

(4)

and a vector , we call (4) an active constraint at if

(5)

and a violated constraint or, equivalently, a cut at if

(6)

A constraint that generates a cut at point corre-
sponds to a subset of odd cardinality such that

(7)

1More recently, an alternative polytope was proposed in [7] and [8] with a
number of variables and constraints that grows linearly with the code length
and the maximum check node degree.
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This condition implies that

(8)

and

(9)

The following theorem reveals the special property of the re-
laxed parity inequalities (3) that at most one of the constraints
introduced by each check node can be a cut.

Theorem 1: If at any given point , one of the parity
inequalities introduced by a check node is a cut, the rest of the
parity inequalities from this check node are satisfied with strict
inequality.

Proof: For a check node , we first rewrite (3) as

s. t. is odd

(10)
Let denote the vector composed of the elements of with
indices in , and by the indicator vector of the subset
of , i.e., a vector of length with the th element being

if , and otherwise. Then, since , (10) will
be equivalent to

s. t. is odd (11)

where is the -distance between
and .

Consider a check node with neighborhood
and two distinct subsets and

of odd sizes and , respectively, such that
introduces a cut at point . This means that the -distance

between and is less than . In addition, since
and are indicator vectors of two distinct odd subsets, their

-distance should be at least . Hence, using the triangle
inequality, we will have

(12)

Therefore, , which means that the parity
inequality introduced by is satisfied with strict inequality.

Given an linear code with parity checks,
a natural question is how we can find all the cuts defined by the
LP relaxation at any given point . Referring to (9),
we see that for any check node and any odd-sized subset of
its neighborhood that introduces a cut, the variable nodes
in have the largest values among all of the nodes in .
Therefore, sorting the elements of can simplify the process of
searching for a cut. This observation is reflected in Algorithm 1
below.

Consider a check node with neighborhood . Without
loss of generality, assume that variable nodes in have in-
dices , and that their values are sorted, such that

. The following algorithm provides

an efficient way to find the unique cut generated by this check
node at , if a cut exists.

Algorithm 1:
Step 1: Set and

.
Step 2: Check the constraint (3). If it is violated, we have

found the cut. Exit.
Step 3: Set . If , move and (the

two largest members of ) from to .
Step 4: If and (8) is satisfied, go to Step 2; other-

wise, the check node does not provide a cut at .

Regarding Step 4, note that equals the cardinality of the
set , and hence it should remain less than or equal
to . In addition, the failure of condition (8), a necessary
condition for having a cut, provides a definitive termination cri-
terion for Algorithm 1. For, if at some iteration the condition
fails to hold for the set , i.e., , it would
necessarily fail for the set considered at any subsequent iter-
ation.

If redundant calculations are avoided in calculating the sums
in (3), this algorithm can find the cut generated by the check
node, if it exists, in time, where is the
degree of the check node. Repeating the procedure for each
check node, and incurring complexity for sorting

, the time required to find all the cuts at point becomes
.2

B. The Adaptive Procedure

The fundamental polytope for a parity-check code is defined
by a large number of constraints (hyperplanes), and a linear
programming solver finds the vertex (pseudocodeword) of this
polytope that minimizes the objective function. For example,
the Simplex algorithm starts from an initial vertex and visits
different vertices of the polytope by traveling along the edges,
which is called pivoting, until it finds the optimum vertex.
The time required to find the solution equals the product of
the number of vertices that have been visited and the average
processing time at each pivot step, and these, in turn, are deter-
mined by the number and properties of constraints and variables
in the problem. If we can reduce the size of the problem without
changing the optimum vertex, the amount of processing at
each pivot, which usually involves matrix computations, will
decrease significantly. Furthermore, reducing the number of
vertices that are visited in the intermediate iterations can reduce
the complexity of the algorithm. In the adaptive LP decoding
scheme, we implement this idea using a cutting-plane approach.
We run the LP solver with a minimal number of constraints
to ensure boundedness of the solution, and depending on the
LP solution, we add only the “useful constraints” that cut
the current solution from the feasible region. This procedure
is repeated until no further cut exists, which means that the
solution is a vertex of the fundamental polytope.

2For LDPC codes, it is better to sort the neighbors of each check node sepa-
rately, so the total complexity becomes

���� ��� ��� � � � ���� ��� � ��
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To start the procedure, we need at least constraints to de-
termine a vertex that can become the solution of the first it-
eration. Recalling the box constraints , we add
for each exactly one of the inequalities implied by these con-
straints. The choice depends upon whether increasing leads
to an increase or decrease in the objective function, to ensure
that the solution to the initial LP is bounded. Specifically, for
each , we introduce the initial constraint

if
if

(13)

Note that the optimum (and only) vertex satisfying this initial
problem corresponds to the result of an (uncoded) bit-wise, hard
decision based on the received vector.

The following algorithm describes the adaptive LP decoding
procedure.

Algorithm 2:
Step 1: Form the initial problem with the constraints from

(13); set .
Step 2: Run the LP solver to obtain the current solution .
Step 3: If any of the box constraints are violated at , add

them to the problem and go to Step 2.
Step 4: If one or more of the parity inequalities are violated

at , add them to the problem, set , and
go to Step 2; else, we have found the solution.

Although in Step 3 of the algorithm we search the box con-
straints for cuts, in practice we have never observed a case where
a box constraint is violated throughout the algorithm. We con-
jecture that by initially including only one inequality from the
box constraints of each variable according to (13), there is no
need to check for any violated box constraints in Step 3 of Al-
gorithm 2.3 Hence, through the rest of this section, an “iteration”
of Algorithm 2 will refer to an execution of Step 4.

Lemma 1: If no cut is found after any iteration of Algo-
rithm 2, the current solution represents the solution of the stan-
dard LP decoding problem incorporating all of the relaxation
constraints given in Section II.

Proof: At any intermediate step of the algorithm, the space
of feasible points with respect to the current constraints contains
the fundamental polytope , as these constraints are all among
the original constraints used to define . If at any iteration, no
cut is found, we conclude that all the original constraints given
by (3) are satisfied by the current solution , which means that
this point is in . Hence, since has the lowest cost in a space
that contains , it is also the optimum point in .

To further speed up the algorithm, we can use a “warm start”
after adding a number of constraints at each iteration. In other
words, since the intermediate solutions of the adaptive algorithm
converge to the solution of the original LP problem, we can use
the solution of each iteration as a starting point for the next itera-
tion. While there are warm start strategies for both the Simplex
and interior-point algorithms, using warm starts has been ob-
served to be more effective for the Simplex algorithm [12].

3Note added in proof: Indeed, in a recent work to be published, we have been
able to establish a proof of this conjecture.

In the Simplex algorithm, since the next solution will usually
be close to the current solution, the number of iterations (pivots),
and therefore, the overall running time, is expected to decrease.
However, each of these warm starts is a basic infeasible point
for the subsequent problem, since it will not satisfy the newly
added constraints. As a result, a primal–dual implementation of
the Simplex method will first take a few steps to move back
into the feasible region. In Subsection III-D, we will discuss in
more detail the effect of using warm starts on the speed of the
algorithm.

C. A Bound on the Complexity

Theorem 2: The adaptive algorithm (Algorithm 2) converges
after at most iterations.

Proof: The solution produced by the algorithm is a vertex
of the feasible space determined by the initial constraints

along with those added by the successive iterations of the cut-
finding procedure. Therefore, we can find such constraints

that are linearly independent and whose corresponding hyper-
planes uniquely determine this vertex. This means that if we set
up an LP problem with only those constraints, the optimum
point will be . Now, consider the th intermediate solution,

, that is cut from the feasible space at the end of the th itera-
tion of Algorithm 2. At least one of the constraints, ,
should be violated by ; otherwise, since has a lower cost
than would be the solution of the LP with these con-
straints. But we know that the cuts added at the th iteration are
all the possible constraints that are violated at . Consequently,
at least one of the cuts added at each iteration should be among

; hence, the number of iterations is at
most .

Remark 1: The adaptive procedure and convergence result
can be generalized to any LP problem defined by a fixed set of
constraints. In general, however, there may not be an analog of
Theorem 1 to facilitate the search for cut constraints.

Remark 2: If, for a given code of length , the adaptive al-
gorithm converges with at most final parity inequalities,
then each pseudocodeword of this LP relaxation should have at
least integer elements. To see this, note that each pseu-
docodeword corresponds to the intersection of at least active
constraints. If the problem has at most parity inequalities, then
at least constraints of the form or should be
active at each pseudocodeword, which means that at least
positions of the pseudocodeword are integer-valued.

Corollary 1: The final application of the LP solver in the
adaptive decoding algorithm uses at most constraints.

Proof: There are box constraints, and, according to
Theorem 1, at each iteration no more than new parity in-
equalities are added. Since there are at most iterations, the
final number of constraints is at most .

For very low-density codes, where , the above
bound does not imply a complexity improvement over the
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Fig. 1. The average and maximum number of parity inequalities used versus check node degree � , for fixed length � � ��� and rate � � .

original formulation of LP decoding. However, for high-den-
sity codes of fixed rate, as the code length and the number of
parity checks increase proportionately, this bound guarantees
convergence with constraints, whereas the standard LP
relaxation requires a number of constraints that is exponential
in , and the high-density code polytope representation given
in [1, Appendix II] involves variables and constraints.4

Moreover, Theorem 2 does not make use of the properties of
the decoding problem, in particular, its sparsity. Therefore,
especially in the case of low-density codes, we do not expect
this bound to be tight.

D. Numerical Results

To empirically investigate the complexity reduction due to
the adaptive approach for LP decoding, we performed simula-
tions over random regular LDPC codes of various lengths, de-
grees, and rates on the additive white Gaussian noise (AWGN)
channel. In all the simulations in this paper, the signal-to-noise
ratio (SNR) is defined as the ratio of the variance of the trans-
mitted discrete-time signal to the variance of the noise sample.

We first demonstrate the simulation results for adaptive LP
decoding at the low-SNR value of 1.0 dB, since in the high-
SNR regime the received vector is likely to be close to a code-
word, in which case the algorithm may converge more rapidly,
rather than demonstrating its worst case behavior. Afterwards,
we study how the behavior of this decoder changes as the SNR
grows.

1) Low-SNR Regime: For each point in the following figures,
400 codeword transmissions were simulated, using a randomly

4This��� � bound is comparable to the recent results in [7] and [8], where a
formulation was proposed for LP decoding requiring only��� � variables and
constraints for high-density codes.

generated, but fixed, regular LDPC code, with its -cycles re-
moved.

In the first scenario, we studied the effect of changing the
check node degree from to while keeping the code
length at and the rate at . The average (resp.,
maximum) number of iterations required to converge started
from around 14.5 (resp., 30) for the code, and decreased
monotonically down to 5.9 (resp., 9) for the code. The
average and maximum number of parity inequalities used in
the final iteration of the algorithm are plotted in Fig. 1. We
see that both the average and the maximum values are almost
constant, and remain below for all the values of . The
only exception to this was the first point, corresponding to the

code, which, on average, has a number of parity inequal-
ities significantly smaller, and a number of iterations signifi-
cantly larger than those of the other codes. For comparison,
the total number of parity inequalities required in the standard
representation of the LP decoding problem in the high-density
code polytope representation of Feldman et al. [1], as well as
in the polytope representation of Chertkov–Stepanov (CS) [7]
and Yang–Wang–Feldman (YWF) [8], are also included in the
figure. The decrease in the number of required constraints trans-
lates to a significant advantage for the adaptive algorithm in
terms of the running time.

In the second case, we studied random -regular codes
of lengths to . For all values of , the av-
erage (resp., maximum) number of required iterations remained
between 5 and 11 (resp., 10 and 16). The average and max-
imum number of parity inequalities used in the final iteration
are plotted versus in Fig. 2. We observe that the number of
parity inequalities is generally between and .

In the third experiment, we investigated the effect of the rate
of the code on the performance of the algorithm. Fig. 3 shows
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Fig. 2. The average and maximum number of parity inequalities used versus block length �, for fixed rate � � and check node degree � � �.

Fig. 3. The average and maximum number of parity inequalities used versus the number of parity checks �, for � � ��� and � � �.

the average and maximum number of parity inequalities used in
the final iteration where the block length is and the
number of parity checks , increases from to . The vari-
able node degree is fixed at . We see that the average and
maximum number of parity inequalities used are, respectively,
in the ranges to and to for most values
of . There is a relatively large drop in the average number
for with respect to the linear curve. This can be ex-
plained by the fact that at this value of , which corresponds
to a -regular code, the rate of failure of LP decoding was
less than at 1.0 dB, whereas for all the other values of ,
this rate was close to . As we will see later in this subsection,

this different behavior at a lower error rate is consistent with the
observation that a successful decoding typically requires fewer
iterations, and as a result, fewer constraints, than a decoding re-
sulting in a fractional output.

Finally, in Fig. 4, we compare the average decoding time of
different algorithms at the low SNR of 1.0 dB. It is impor-
tant to note that the running times of the LP-based techniques
strongly depend on the underlying LP solver. In this work, we
have used the Simplex algorithm implementation of the open-
source GNU Linear Programming Kit (GLPK [13]) for solving
the LPs. The numerical results demonstrate that the adaptive al-
gorithm significantly reduces the gap between the speed of stan-
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Fig. 4. The average decoding time versus the length of the code for ��� ��-regular LDPC codes (dashed lines) and ��� ��-regular LDPC codes (solid lines) at
SNR � �1.0 dB.

dard LP decoding and that of the sum–product message-passing
algorithm. Comparing the results for the -regular codes
(dot-dashed lines) and the -regular codes (solid lines) fur-
ther shows that while the decoding time for the standard LP in-
creases very rapidly with the check node degree of the code, the
adaptive technique is not significantly affected by the change in
the check node degree.

Other simulations we performed indicate that the decoding
time of the adaptive algorithm does not change significantly
even if the code has a high-density parity-check matrix. This
result can be explained by two factors. First, Fig. 1 shows that
the number of parity inequalities used in the algorithm does not
change substantially with the check node degree of the code.
Second, while having a smaller check degree makes the ma-
trix of constraints sparser, the LP solver that we are using does
not benefit from this sparsity. A similar behavior was also ob-
served when we tried both the Simplex and interior-point imple-
mentations of a commercial LP solver, MOSEK [14], instead
of GLPK. Therefore, an interesting question for future inves-
tigation is whether, by designing a special LP solver that can
effectively take advantage of the sparsity of this problem, the
time complexities of the LP-based techniques can become even
closer to those of the message-passing techniques.

Fig. 4 also shows the average decoding time when warm starts
are used in the iterations of the adaptive decoding algorithm.
We can see that warm starts slightly decrease the slope of the
decoding-time curve when plotted against the logarithm of the
block length. This translates into approximately a factor of
improvement in the decoding time at a block length of .

In all our simulations, we have observed that the adaptive LP
decoding algorithm performs much faster than is guaranteed by
Theorem 2. In particular, the average number of iterations of
Algorithm 2, as well as the average number of parity inequalities

per check node used in this algorithm, do not appear to change
significantly with the parameters of the code, such as length
and density. It would be interesting to investigate whether this
observation can be confirmed by an analytic proof.

2) Behavior as a Function of SNR: Here we present simu-
lations for adaptive LP decoding at different SNR levels. These
experiments were performed for a randomly generated -
regular LDPC code of length , with its -cycles removed. At
each SNR value, we simulated 2400 codeword transmissions.

In Figs. 5 and 6, the number of adaptive LP decoding it-
erations and the number of parity inequalities in the final it-
eration are plotted, respectively. The maximum and minimum
values observed among the 2400 trials at each SNR are also in-
cluded in the figures (solid lines marked with triangles). In addi-
tion, we have plotted 95% confidence intervals in these figures
(dot-dashed lines). The boundaries for each of these confidence
intervals are defined such that the right and left tails of the
data histogram outside the interval each contain 2.5% of the
population.

As we observe in Figs. 5 and 6, in the region where the SNR
values are larger than the threshold of belief propagation (BP)
decoding for the ensemble of -regular LDPC codes, which
is equal to 1.11 dB, the average numbers of iterations and con-
straints both decrease monotonically with SNR. This means
that, similar to the BP decoder, the complexity of adaptive LP
decoding decreases, on average, as the SNR increases beyond
the threshold.

An interesting observation that we can make about both of
these two figures is that the confidence intervals of the observed
values are widest at an SNR in the range of 1 to 2 dB. To investi-
gate this phenomenon, in Fig. 7, we have plotted the histogram
of the number of parity inequalities in the last iteration of adap-
tive LP decoding at the SNR values of 0, 1.5, and 3 dB, which
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Fig. 5. The number of adaptive LP decoding iterations versus SNR for a ��� ��-regular LDPC codes of length ���, with 2400 trials at each SNR. The solid line is
the average number of iterations, the marked lines are the maximum and minimum values observed, and the dot-dashed lines indicate the 95% confidence interval.

Fig. 6. The number of parity inequalities at the last iteration of adaptive LP decoding versus SNR for a �����-regular LDPC code of length ���, with 2400 trials
at each SNR. The solid line is the average number of iterations, the marked lines are the maximum and minimum values observed, and the dot-dashed lines indicate
the 95% confidence interval.

correspond to word error rate (WER) values of
and , respectively. At SNR 0 dB, where the decoder
almost always outputs a fractional pseudocodeword, the values
are concentrated around . However, at SNR 1.5 dB, where
the decoding succeeds about half the time, there are two dis-
tinct segments of roughly the same total mass in the histogram,
which results in a wide confidence interval. Finally, at SNR 3
dB, where the decoder is successful most of the time, the peak
around seen in the two previous histograms almost van-

ishes. These observations lead us to the natural conclusion that
the complexity of adaptive LP decoding is much lower when it
succeeds to find an integral (i.e., the ML) codeword.

IV. GENERATING CUTS TO IMPROVE THE PERFORMANCE

The complexity reduction obtained by adaptive LP decoding
inspires further use of cutting-plane techniques to improve the
error-rate performance of the algorithm. Specifically, when LP
with all the original constraints gives a nonintegral solution, we
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Fig. 7. The histogram of the number of parity inequalities at the last iteration of LP decoding at the SNR values of 0, 1.5, and 3.0 dB, each over a total population
of 2400 samples.

try to cut the current solution, while keeping all the possible
integral solutions (codewords) feasible.

The new cuts can be chosen from a pool of constraints
describing a relaxation of the ML decoding problem which is
tighter than the original relaxation defining the fundamental
polytope. In this sense, this technique is similar in concept to the
adaptive LP decoding presented in the previous section, with
the difference that here there are more constraints to choose
from. The effectiveness of this method depends on how closely
the new relaxation approximates the ML decoding problem,
and how efficiently we can search for those constraints that
introduce cuts. Feldman et al. [1] have mentioned some ways to
tighten the relaxation of the ML decoding problem, including
the addition of parity inequalities associated to redundant parity
checks (RPC) and the use of lift-and-project methods. (For more
on lift-and-project techniques, see [15] and references therein.)
Gomory’s algorithm [16] is another well-known technique
for solving general integer optimization problems, although it
suffers from slow convergence. Each of these methods can be
applied adaptively in the context of cutting-plane techniques. In
this work, we focus on cutting-plane algorithms that use RPC
cuts.

An RPC is obtained by modulo- addition of some of the
rows of the parity-check matrix, and this new check introduces
a number of constraints that may include a cut, which we call an

RPC cut. Since each row of the parity-check matrix is a code-
word from the dual code, adding an RPC is equivalent to in-
cluding another dual codeword in the parity-check matrix. The
simple structure of RPCs makes them an interesting choice for
generating cuts. There are examples, such as the dual code of
the Hamming code, where even the relaxation obtained
by adding all the possible RPC constraints (i.e., all dual code-
words) does not guarantee convergence to a codeword. In other
words, it is possible to obtain a nonintegral solution for which
there is no RPC cut.

Kashyap [17] used the theory of matroids to show that for a
certain class of codes, called geometrically perfect codes, the
LP relaxation of ML decoding is exact if all the dual code-
words are included in the parity-check matrix. Furthermore,
although solving this relaxation by LP has exponential com-
plexity, Kashyap showed that geometrically perfect codes can
indeed be ML-decoded in polynomial time using a combina-
torial algorithm. He also showed that, unfortunately, geomet-
rically perfect codes are not asymptotically good. Hence, an
important question that requires further study is how close we
can get to the ML decoding of asymptotically good codes by
adding all possible RPCs to the LP decoder. Also, finding ef-
ficient methods to search for RPC cuts for a given nonintegral
solution remains an open problem. On the other hand, as ob-
served in simulation results, RPC cuts are generally strong, and
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finding a reasonable number of them often makes the resulting
LP relaxation tight enough to converge to an integer-valued so-
lution. In the following subsection, we propose and study some
ideas for finding RPC cuts.

A. Finding Redundant Parity-Check Cuts

As mentioned before, there is an exponential number of RPCs
that can be added, and in general, most of them do not introduce
cuts. Hence, we need to find the cut-inducing RPCs efficiently
by exploiting the special structure of the decoding problem. In
particular, we will now demonstrate that cycles in the Tanner
graph of the parity-check matrix have an important role in de-
termining whether an RPC generates a cut. We start with some
useful definitions.

Definition 2: Given a current nonintegral solution of the
relaxed LP problem, the subset of check
nodes is called a cut-generating collection if the RPC defined
by modulo- addition of the parity checks corresponding to
introduces a cut. If no proper subset of other than itself has
this property, we call it a minimal cut-generating collection.

Definition 3: Given a pseudocodeword , consider the set of
variable nodes in the Tanner graph of the parity-check matrix
whose corresponding elements in have fractional values. Let

be the subgraph made up of these variable nodes, the check
nodes directly connected to them, and all the edges that connect
them. We call the fractional subgraph and any cycle in a
fractional cycle at .

1) Role of Fractional Cycles: Theorem 3 below makes clear
the relevance of the concept of fractional cycles to the search
for cut-generating RPCs. Its proof makes use of the following
lemma.

Lemma 2: Suppose that and are two parity checks
whose corresponding parity inequalities are satisfied by the cur-
rent solution . Then, , the modulo- combination
of these checks, can generate a cut only if the neighborhoods
of and have at least two fractional-valued variable nodes
in common.

Proof: See Appendix A.

Theorem 3: Let be a point satisfying all the parity inequal-
ities induced by the check nodes in the Tanner graph, and let

be a collection of check nodes. If is a cut-generating col-
lection at , then there exists a fractional cycle such that all the
check nodes on it belong to .

Proof: We first consider the case where is a minimal
cut-generating collection. Note that any cut-generating collec-
tion must contain at least two check nodes, since no single check
node generates a cut. Pick an arbitrary check node in . We
make an RPC by linearly combining the parity checks in

. According to Lemma 2 and the minimality of , there
must be at least two fractional-valued variable nodes that are
involved in both and . Since the set of variable nodes in-
volved in is a subset of the union of the neighborhoods of
the check nodes in , if follows that shares at least two
fractional-valued neighbors with these check nodes. Let be
the subgraph of the Tanner graph consisting of the check nodes

in , their neighboring variable nodes, and the edges that con-
nect them. Applying the above reasoning to every check node

in , we conclude that each check node in the collection
is connected to at least two fractional-valued variable nodes of
degree at least within the subgraph . Therefore, if we fur-
ther remove all the integer-valued variable nodes, as well as all
the fractional-valued variable nodes of degree less than from

, we will be left with a number of check nodes and (frac-
tional-valued) variable nodes that each have degree at least .
A simple counting of edges will show that such a graph, which
is a subset of and the original Tanner graph, must contain a
fractional cycle.

If is not a minimal cut-generating collection, then it must
contain a minimal cut-generating collection . To see this, ob-
serve that there must be a check node in whose removal
leaves a cut-generating collection of check nodes. Iteration of
this check node-removal process must terminate in a nonempty
minimal cut-generating collection containing at least two
check nodes. The subgraph corresponding to is contained
in the subgraph corresponding to , so a discussion similar to
that above proves that , and therefore, , contain fractional
cycle.

Remark 3: In a related result, Vontobel and Koetter showed
in [3] that adding a redundant parity check to the code repre-
sentation by combining a set of rows in the parity-check matrix

can possibly modify the fundamental polytope only if the
Tanner graph corresponding to this set of rows contains a cycle.
Here, Theorem 3 makes a stronger claim, in the sense that it re-
quires the existence of a cycle over fractional-valued nodes, and
not just any cycle. In another work, Chertkov and Chernyak in
[11] studied the role that the cycles in the Tanner graph play in
the performance of both BP and LP decoding, and proposed a
heuristic method for improving LP decoding by characterizing
the “most relevant” cycles. Their approach was based on modi-
fying the likelihood values of the bits, rather than modifying the
constraints as we propose here.

2) Existence of Fractional Cycles: In Theorem 4 below, we
show that a fractional cycle always exists for any noninteger
pseudocodeword.5

Lemma 3: At any point in the fundamental polytope of LP
decoding, no check node of the corresponding Tanner graph is
connected to exactly one fractional variable node.

Proof: See Appendix B.

We can represent the fractional subgraph corresponding to
the pseudocodeword by a disjoint union of connected com-
ponents (or briefly, components) , for some

.

Theorem 4: Let be a fractional pseudocodeword
of LP decoding for a code represented by Tanner graph , and
let denote the fractional subgraph corresponding to . Then
each component , of contains a cycle.

Proof: Since is a vertex of the fundamental polytope, it
should be the unique solution to the system of equations formed

5However, it should be emphasized that not every RPC constraint obtained
from a fractional cycle generates a cut.
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by turning the active parity inequalities and box constraints at
into equations. Consider a component of the fractional sub-
graph, containing (fractional) variable nodes. Clearly, none
of the box constraints corresponding to these variable nodes
are active at . Hence, there should be linearly independent
active parity inequalities, introduced by the check nodes in ,
that uniquely determine the values corresponding to the variable
nodes in in terms of the rest of the variables. Let us denote
by the subgraph obtained by removing all the check
nodes in which do not introduce any active parity inequality
at , and all the edges connected to them.

A consequence of Lemma 1 is that, if a parity inequality
given by a check node is active at vertex , the rest of the
parity inequalities introduced by check node are not necessary
to define vertex , since they cannot be violated at any point

where is active. Hence, to uniquely determine the
values of the variable nodes in , it is sufficient to consider
only one active constraint given by each check node in . We
conclude that, in order to have enough equations, the number
of check nodes in , denoted by , cannot be smaller than .
According to Lemma 3, each of these check nodes should be
connected to at least two variable nodes in . Therefore, the
number of edges in is at least , while the total number of
nodes in this subgraph is . This means that cannot
be a tree or a forest, since it contains at least as many edges as
nodes. Consequently, , and hence, , contain a cycle.

3) Randomized Algorithm for Finding RPC Cuts: The pre-
ceding results motivate the following algorithm to search for
RPC cuts.

Algorithm 3:
Step 1: Given an LP decoding solution and the original

Tanner graph of the code, prune the graph by re-
moving all the variable nodes with integer values.

Step 2: Starting from an arbitrary check node, randomly
walk through the pruned graph until a cycle is
found.

Step 3: Create an RPC by combining the rows of the parity-
check matrix corresponding to the check nodes in
the cycle.

Step 4: If this RPC introduces a cut, add this cut to the set of
constraints in the LP relaxation, and exit; otherwise
go to Step 2.

When the fractional subgraph contains many cycles and it is
feasible to check only a small fraction of them, the randomized
method described above can efficiently find cycles. However,
when the cycles are few in number, this algorithm may actually
check a number of cycles several times, while skipping some
others. In this case, a structured search, such as one based on
the depth-first search (DFS) technique, can be used to find all the
simple cycles in the fractional subgraph. We can then check to
see if any of them introduces an RPC cut. However, to guarantee
that all the potential cut-generating RPCs are checked, one will
still need to modify this search to include complex cycles, i.e.,
clusters of cycles which share some edges.

As shown above, by exploiting some of the properties of the
linear code LP decoding problem, one can expedite the search

for RPC cuts. However, there remains a need for more efficient
methods of finding RPC cuts.

B. Complexity Considerations

There are a number of parameters that determine the com-
plexity of the adaptive algorithm with RPC cuts, including
the number of iterations of Algorithm 3 to find a cut, the total
number of cuts that are needed to obtain an integer solution,
and the time taken by each run of the LP solver after adding a
cut. In particular, we have observed empirically that a number
of cuts less than the length of the code is often enough to ensure
convergence to the ML codeword. By using each solution of
the LP as a warm start for the next iteration after adding further
cuts, the time that each LP takes can be significantly reduced.
For example, for a -regular code of length with RPC
cuts, although as many as 70 LP problems may have to be
solved for a successful decoding, the total time that is spent on
these LP problems is no more than 10 times that of solving the
standard problem (with no RPC cuts). Moreover, if we allow
more than one cut to be added per iteration, the number of these
iterations can be further reduced.

Since Algorithm 3 involves a random search, there is no guar-
antee that it will find a cut (if one exists) in a finite number of it-
erations. In particular, we have observed cases where, even after
a large number of iterations, no cut was found, while a number
of RPCs were visited repeatedly. This could mean that either no
RPC cut exists for these cases, or the cuts have a structure that
makes them unlikely to be selected by our random search algo-
rithm.

In order to control the complexity, we can impose a limit,
, on the number of iterations of the search, and if no cut is

found after trials, we declare failure. By changing ,
we can trade complexity for performance. Alternatively, we can
put a limit, , on the total time that is spent on the decoding
process. In order to find a proper value for this maximum, we ran
the algorithm with a very large value of and measured the
total decoding time for the cases where the algorithm was suc-
cessful in finding the ML solution. Based on these observations,
we found that 10 times the worst case running time of the adap-
tive LP decoding algorithm of Section III serves as a suitable
value for .

C. Numerical Results

To demonstrate the performance improvement achieved by
using the RPC-based cutting-plane technique, we present sim-
ulation results for random -regular LDPC codes on the
AWGN channel. We consider codes of length 32, 100, and 240
bits, and in each case, we count about 200 failures to estimate
the WER.

In Fig. 8, for the length- code, we plot the WER versus
SNR for different values of , demonstrating the tradeoff
between performance and complexity. As in the previous sec-
tion, the SNR is defined as the ratio of the variance of the trans-
mitted discrete-time signal to the variance of the noise sample.

For purposes of comparison, the WER of LP decoding with
no RPC cut, as well as a lower bound on the WER of the ML
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Fig. 8. WER of RPC-based cutting-plane LP versus SNR for different values of � .

decoder, have been included in the figure. In order to obtain
the ML lower bound, we counted the number of times that the
RPC-based cutting-plane LP algorithm, using a large value of

, converged to a codeword other than the transmitted code-
word, and then divided that by the total number of transmitted
codewords. Due to the ML certificate property of LP decoding,
we know that ML decoding would fail in those cases, as well.
On the other hand, ML decoding may also fail in some of the
cases where LP decoding does not converge to an integral solu-
tion. Therefore, this estimate gives a lower bound on the WER
of ML decoding.

However, for codes of length greater than , in almost all
instances where the ML decoder had an error, an RPC-based
LP decoder also failed to provide an integral (i.e., ML) solu-
tion. Therefore, it was not possible to obtain an estimate of
the performance of the ML decoder using the above technique.
Therefore, as an alternative, we used the performance of the
Box-and-Match soft decision decoding algorithm (BMA) devel-
oped by Valembois and Fossorier [18] as an approximation of
the ML decoder performance. For the codes that we consider,
the error probability of BMA is guaranteed to be within a factor

of that of ML decoding.
In Figs. 9–11, the performance of LP decoding with RPC

cuts is compared to that of standard LP decoding, sum–product
decoding, and also the BMA (for the first two figures). Each
figure corresponds to a fixed block length, and in all three cases
sum–product decoding had 100 iterations. In these scenarios,
instead of enforcing a limit on the iterations, we allow each de-
coding to take at most 10 times the average time required by the
Adaptive LP decoder of Section III. The curves show that, as the
SNR increases, the proposed method outperforms the LP and the
SPA, and significantly closes the gap to the ML decoder perfor-
mance. However, one can see that, as the code length increases,

the relative improvement provided by RPC cuts becomes less
pronounced. This may be due to the fact that, for larger code
lengths, the Tanner graph becomes more tree-like, and there-
fore the negative effect of cycles on LP and message-passing
decoding techniques becomes less important, especially at low
SNR.

V. CONCLUSION

In this paper, we studied the potential for improving LP de-
coding, both in complexity and performance, by using an adap-
tive approach. Key to this approach is the ML certificate prop-
erty of LP decoders, that is, the ability to detect the failure to find
the ML codeword. This property is shared by message-passing
decoding algorithms only in specific circumstances, such as on
the erasure channel. The ML certificate property makes it pos-
sible to selectively and adaptively add only those constraints that
are “useful,” depending on the current status of the LP decoding
process.

Using a cutting-plane approach, we proposed an adaptive LP
decoding algorithm with decoding complexity that is indepen-
dent of the code degree distributions, making it possible to apply
LP decoding to parity-check codes of arbitrary densities. How-
ever, since general-purpose LP solvers are used at each itera-
tion, the complexity is still a super-linear function of the block
length, as opposed to a linear function as achieved by the mes-
sage-passing decoder. It remains an open question whether spe-
cial LP solvers for decoding of LDPC codes might take advan-
tage of the sparsity of the constraints and other properties of the
LP decoding problem to provide linear complexity.

In the second part of the paper, we explored the application of
cutting-plane techniques for improving the error rate of LP de-
coding. We showed that redundant parity checks provide strong
cuts, even though they may not guarantee ML performance. The
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Fig. 9. WER of RPC-based cutting-plane LP versus SNR for length �� and maximum decoding time 10 times that of LP decoding.

Fig. 10. WER of RPC-based cutting-plane LP versus SNR for length ��� and maximum decoding time 10 times that of the LP decoding.

results indicate that it would be worthwhile to find more effi-
cient ways to search for strong RPC cuts by exploiting their
properties, as well as to determine specific classes of asymp-
totically good codes for which RPC cuts are particularly effec-
tive. It would also be interesting to investigate the effectiveness
of cuts generated by other techniques, such as lift-and-project
cuts, Gomory cuts, or cuts specially designed for this decoding
application.

APPENDIX A
PROOF OF LEMMA 2

Proof: Let , and denote the sets of variable nodes
in the neighborhoods of , and , respectively, and define

. Hence, we will have . We can
write as a union of disjoint sets , and , which
respectively, represent the members of whose values in are

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 28, 2009 at 13:52 from IEEE Xplore.  Restrictions apply.



TAGHAVI N. AND SIEGEL: ADAPTIVE METHODS FOR LINEAR PROGRAMMING DECODING 5409

Fig. 11. WER of RPC-based cutting-plane LP versus SNR for length ��� and maximum decoding time 10 times that of the LP decoding.

equal to , equal to , or lie in the range . In order to prove
the lemma, it is enough to show that .

Parity check generates a cut, hence there is an odd-sized
subset of its neighborhood for which we can write

(14)

Since and have no common member in , we can write

(15)

where and are disjoint, and exactly
one of them has odd size. Since and do not generate cuts,
all the constraints they introduce should be satisfied by . Now
consider the two sets and . As is disjoint
from both and , and exactly one of and is odd-sized,
we further conclude that exactly one of and
is odd-sized, as well. Without loss of generality, assume that

is odd and is even.
We proceed by dividing the problem into two cases, corre-

sponding to whether is even or odd.
Case 1 ( Is Even): Noting that is

odd, consider the following parity inequality given by :

(16)

Since and , we can sim-
plify (16) as

(17)

Now, starting from (14) and (15), and using the fact that
, we have

(18)

where for the last inequality we used (17). Since
, (18) yields

(19)

Hence, is a nonempty set, and since it is even in size, we
must have .

Case 2 ( Is Odd): We start by writing two parity in-
equalities induced by and , which are, by assumption, sat-
isfied at . For we write

(20)

and for

(21)

By adding (20) and (21), we obtain after some cancellation

(22)
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Note that

(23)

Now, (14) can be rewritten as

(24)

Combining (24) and (22) yields

(25)

and we conclude that .

APPENDIX B
PROOF OF LEMMA 3

By Contradiction: Assume, to the contrary, that at a point
, some check node is connected to

exactly one fractional variable node, , with the
corresponding value . We show that one of the
parity inequalities in (3) introduced by the check node must
be violated at , contradicting the assumption that .

Let denote the set of integral neighbors of the check node
with value . We consider two cases for the cardinality of .
Case 1 ( Is Odd): Setting , we find that

(26)

Case 2 ( Is Even): Setting , we find in this
case that

(27)

Consequently, in both cases, the check node introduces a vi-
olation of a parity inequality (3).
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