
Efficient Iterative LP Decoding of LDPC Codes
with Alternating Direction Method of Multipliers

Xiaojie Zhang
Samsung R&D America, Dallas, Texas 75082

Email: eric.zhang@samsung.com

Paul H. Siegel
University of California, San Diego, CA 92093

Email: psiegel@ucsd.edu

Abstract—In this paper, we propose an efficient message-
passing algorithm to solve the LP decoding problem. This algo-
rithm is based on the alternating direction method of multipliers
(ADMM), a classic technique in convex optimization theory
that is designed for parallel implementation. The computational
complexity of ADMM-based LP decoding is largely determined
by the method used to project a vector of real values to the
parity polytope of a given parity check. The key contribution
of this paper is a novel, efficient projection algorithm that can
substantially improve the decoding speed of the ADMM-based
LP decoder.

I. INTRODUCTION

Alternating direction method of multipliers (ADMM) is
a classic optimization technique that was developed in the
1970s, which combines the benefits of dual decomposition and
augmented Lagrangian methods for constrained optimization
[1]. The use of ADMM in LP decoding was first suggested
by Barman et al. [2]. The LP problem in decoding LDPC
codes is a constrained convex optimization problem, which
is readily solved by ADMM techniques [1, Chapter 5]. A
key component in solving constrained optimization problems
with ADMM is the method used to project a vector of real
values to the convex set of feasible solutions, known as the
fundamental polytope in the context of LP decoding [5]. In
[2], Barman et al. proposed a projection algorithm, which was
further improved in [3]. This algorithm is based on the fact that
a constrained convex polytope defined by a parity check can
be expressed as the convex hull of a set of “slices,” where each
slice is the convex hull of all binary vectors of the same even
weight. Hence, for a given vector, the algorithm first sorts the
coordinates of a vector in descending order and characterizes
two slices whose convex hull contains the projection; then,
it finds the projection of the ordered vector by solving a
quadratic program. However, the ordering of all coordinates
that is required before projecting any given vector increases
the complexity of the algorithm.

In this paper, we propose a novel and efficient projection
algorithm for ADMM-based LP decoding. Based on the cut
search algorithm (CSA) introduced in [4], the proposed al-
gorithm can efficiently determine whether a vector is inside
the check polytope without first ordering its coordinates. At
the same time, if the vector lies outside the polytope, the
algorithm identifies the hyperplane containing the projection.
Our software implementation of ADMM-based LP decoding
demonstrates that the proposed projection algorithm is more

computationally efficient than the “two-slice” projection algo-
rithm proposed in [2] and [3].

The remainder of the paper is organized as follows. In
Section II, we review the formulation of LP decoding and its
ADMM presentation. In Section III, we describe the proposed
projection algorithm. Section IV presents some complexity
analysis and numerical results, and Section V concludes the
paper.

II. FORMULATION OF LP DECODING

A. LP Relaxation of ML Decoding
Consider a binary linear block code C of length n and

a corresponding m × n parity-check matrix H. Each row
of H corresponds to a parity check, or check node in the
Tanner graph, indexed by J = {1, . . . ,m}, and each column
corresponds to a codeword symbol, or variable node in the
Tanner graph, indexed by I = {1, . . . , n}. Let Nj = {i ∈ I :
Hji = 1} be the index set of neighboring variables of check
j ∈ J , and analogously let Ni = {j ∈ J : Hji = 1} be
the index set of neighboring checks of variable i ∈ I . The
degree of check j is denoted by dj = |Nj |, and the degree
of variable i is di = |Ni|, where for a set X , |X | denotes its
cardinality. Finally, let Nj(k) ∈ Nj be the kth element in Nj ,
1 ≤ k ≤ |Nj |.

A codeword y ∈ C is transmitted across a memoryless
binary-input output-symmetric (MBIOS) channel, resulting in
a received vector r. Assuming that the transmitted codewords
are equiprobable, the ML decoder finds the solution to the
following optimization problem

minimize γTu (1)
subject to u ∈ C,

where ui ∈ {0, 1}, i ∈ I , and γ is the vector of log-likelihood
ratios (LLR) defined as

γi = log

(
Pr (Ri = ri|ui = 0)

Pr (Ri = ri|ui = 1)

)
.

The transfer matrix Tj selects from an n-vector the coordi-
nates corresponding to the dj neighboring variables of check
j. For example, if the jth row of parity-check matrix H is
hj = (0, 1, 0, 1, 0, 1, 0), then the corresponding transfer matrix
is

Tj =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

 .

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

1501



Hence, Tjx has dimension |Nj |.
Definition 1: The check polytope, Pd, is the convex hull of

all binary vectors of length d with an even number of 1s, i.e.,

Pd , conv
({

x ∈ {0, 1}d | x has an even number of 1s
})
.

Note that the definition of the check polytope resembles
that of the parity polytope [6], the difference being that, in
the latter, the number of 1s in x is odd.

Feldman et al. [5] shown that the ML decoding problem in
(1) can be relaxed to the following optimization problem:

minimize γTu (2)
subject to Tju ∈ Pdj ∀j ∈ J.

B. ADMM formulation
One way to solve the optimization problem (2) is to use

ADMM, which is intended to combine the decomposability
of dual ascent with the superior convergence properties of the
method of multipliers [1]. In order to make the LP decoding
problem perfectly fit the ADMM template given in [1, p. 33],
we first rewrite (2) as follows

minimize γTx (3)
subject to Tjx = zj , zj ∈ Pdj , ∀j ∈ J.

The augmented Lagrangian (using the scaled dual variable)
is then

Lρ(x, z,y) = γTx+
ρ

2

∑
j∈J
‖Tjx− zj +yj‖22−

ρ

2

∑
j∈J
‖yj‖22,

(4)
where yj ∈ Rdj is the scaled dual variable and ρ > 0 is
called the penalty parameter.

So, the scaled form of ADMM for this problem consists of
the following iterations

xk+1 := argmin
x

γTx +
ρ

2

∑
j∈J
‖Tjx− zkj + ykj ‖22

 (5)

zk+1
j := ΠPdj

(
Tjx

k+1 + ykj
)

(6)

yk+1
j := ykj + Tjx

k+1 − zk+1
j , (7)

where ΠPd
(u) is the Euclidean projection of vector u on Pd.

After some simplification, the ADMM-based decoding al-
gorithm can be expressed in the form of an iterative message-
passing algorithm, as described in Algorithm 1. Each check j
updates its outgoing messages based on the received messages
from its neighboring variables (i.e., xi for i ∈ Nj), and its
locally stored yj from the previous iteration. For each vari-
able, the variable update computation uses only the incoming
messages from neighboring checks, as can be seen in (10).
As with other message-passing decoding algorithms, one can
compute the updates for all the checks simultaneously, and
likewise for all the variables.

In Step 1 of Algorithm 1, there can be different ways to
initialize x. For example, we can set

xi =

{
0 if γi ≥ 0

1 if γi < 0.
(11)

Algorithm 1 Iterative ADMM-based LP decoding algorithm
1: Initialization: Properly initialize x, zj , and yj ∀j ∈ J .
2: Check update: For each check j ∈ J , update zj and yj

using (6) and (7), respectively. We rewrite them as

w← Tjx + yj zj ← ΠPdj
(w) yj ← w − zj . (8)

The message transmitted to neighboring variables is

Lj→i ← (zj)i − (yj)i. (9)

3: Variable update: For each variable i ∈ I , the messages
transmitted to its neighboring checks are the same, and
are computed using (5), which can be rewritten as

xi ←
1

di

∑
j′∈Ni

Lj′→i −
γi
ρ

 . (10)

4: Stopping criterion: If
∑
j∈J ‖Tjx − zj‖2 < εpri and∑

j∈J ‖zkj − zk−1j ‖2 < εdual, where εpri > 0 and εdual > 0
are feasibility tolerances, the ADMM algorithm converges
and x is the optimal solution; otherwise, go to Step 2.

If this x is not a valid codeword, then one starts the ADMM
decoding; otherwise, it is the ML codeword. The scaled dual
variable yj can be set to be all zeros for all j ∈ J . The
initialization of zj does not affect the ADMM decoding. Note
that different initializations of x, zj , and yj can only affect
the number of iterations required to converge, and they would
not change the optimal solution obtained by ADMM (within
the feasibility tolerances).

In Algorithm 1, except for the projection ΠPdj
in (8),

the computations are quite straightforward, involving only
additions and multiplications, and are standard update pro-
cedures of ADMM taken from [1]. However, the projection
ΠPdj

of a given vector onto the check polytope of dimension
dj has to be specially designed, and the efficiency of the
projection algorithm directly determines the complexity of
ADMM decoding. In the next section, we will introduce the
key contribution in this paper, which is an efficient algorithm
that projects any given vector onto the check polytope.

III. EFFICIENT PROJECTION ONTO CHECK POLYTOPE

In [2] and [3], two projection algorithms were proposed.
They are based on the so-called “two-slice” representation of
any vector in the check polytope, whereby any given vector
can be expressed as a convex combination of two binary
vectors of Hamming weight r and r+2, for some even integer
r. The Majorization Theorem [7] is used to characterize the
convex hull of the two slices, where a sorting of all coordinates
of the given vector is required to decide if it is within the
check polytope. If the given vector is outside the polytope,
the projection algorithm involves two steps: the vector is first
projected onto a scaled version of one of the two slices, and
then the residual is projected onto another scaled slice [2].
Find the appropriate scaling value is difficult, however. In [3],

2013 IEEE International Symposium on Information Theory

1502



this issue is addressed by expressing the projection problem as
quadratic program after the two slices have been characterized
by the majorization method.

In this section, we propose a new, more efficient projection
algorithm. We first use the cut search algorithm (CSA), intro-
duced in [4], to determine the facet of the polytope in which
the projection point lies. We then use an efficient algorithm to
project the vector onto this facet.

A. Cut Search Algorithm

From [5], we know that the check polytope Pd of dimension
d can be described by a set of box constraints and parity
inequalities as follows

0 ≤ ui ≤ 1, ∀i ∈ [d] (12)∑
i∈V

ui −
∑
i∈V c

ui ≤ |V | − 1, ∀V ⊆ [d] with |V | odd. (13)

Define by θV the indicator vector of set V such that

θV,i =

{
1 if i ∈ V
−1 if i ∈ V c,

where V c = [d] \ V is the complement of V . Then, the
inequality (13) can be written as

θTV u ≤ |V | − 1.

For a given vector u ∈ [0, 1]d, if there exists a set V ∈ [d]
of odd cardinality such that

θTV u > |V | − 1, (14)

then u lies outside the check polytope. The violated parity
inequality (14) is called a cut at u, and the corresponding V
of odd cardinality is called a cutting set. The following result
shows that, for a given vector, there exists at most one cutting
set.

Proposition 1 (Th. 1 in [8]): If at any given point u ∈
[0, 1]d, one of the parity inequalities in (13) is violated, the
rest of them are satisfied with strict inequality.

In [4], Proposition 1 served as the motivation for a highly
efficient technique for finding cuts, the Cut Search Algorithm
(CSA), was introduced. The CSA is shown in Algorithm 2,
from which it is clear that, to determine whether a given vector
lies inside the check polytope or not, the algorithm visits every
coordinate only once, and no ordering of the coordinates is
required.

B. Projection onto the Check Polytope

It can be seen from Definition 1 that the check polytope
Pd lies inside the [0, 1]d hypercube, i.e., Pd ⊂ [0, 1]d. This
means that all points outside the hypercube are also outside
the check polytope. To find the check polytope projection
of a vector outside the hypercube, we first check with CSA
whether or not its projection onto the hypercube is also in
the check polytope. If the hypercube projection is outside the
check polytope, the cut found by CSA can be further used to
find the check polytope projection, as will be shown later in
this subsection.

Algorithm 2 Cut search algorithm
Input: vector u ∈ [0, 1]d.
Output: indicator vector θ ∈ {−1, 1}d of cutting set V (if

exists)

1: θi ←

{
1 if ui > 1

2

−1 otherwise
2: if the cardinality of set {i : θi > 0} is even then
3: i∗ ← argmin

i

∣∣ 1
2 − ui

∣∣.
4: θi∗ ← −θi∗ .
5: end if
6: V = {i : θi > 0}.
7: if θTu > |V | − 1 then
8: return θ is the indicator vector of cutting set V , and

u /∈ Pd.
9: else

10: return No cut found, and u ∈ Pd.
11: end if

The projection of any vector onto the hypercube can be
done easily by applying a threshold on all coordinates. Let
z = Π[0,1]d (u) be the [0, 1]d projection of vector u ∈ Rd;
then we have

zi =


1 if ui > 1

0 if ui < 0

ui otherwise.
(15)

It is easy to verify that the z computed in (15) is indeed the
Euclidean projection of u onto the [0, 1]d hypercube. If z ∈
Pd, then z is exactly ΠPd

(u), and the projection is completed.
Therefore, in the remaining part of this subsection, we focus on
vectors whose [0, 1]d projection z = Π[0,1]d (u) is outside the
check polytope, i.e., z /∈ Pd. From Proposition 1, there exists
only one set V of odd cardinality such that θTV z > |V | − 1.
We will make use of the following relationship between u and
its [0, 1]d projection, z.

Proposition 2: Given a vector u ∈ Rd, let z = Π[0,1]d (u).
If there exists a cut θTV z > |V |−1, then ui ≥ zi for all i ∈ V
and ui ≤ zi for all i ∈ V c. This implies θTV u ≥ θTV z, where
equality holds if and only if z = u.

The proposed projection algorithm is based on the following
result.

Theorem 3: For a given vector u ∈ Rd, let z = Π[0,1]d (u).
If V is a cutting set for z, i.e., θTV z > |V | − 1, then ΠPd

(u)
must be on the facet of Pd defined by V , i.e., ΠPd

(u) ∈
FV ,

{
x ∈ [0, 1]d | θTV x = |V | − 1

}
.

Proof: Proposition 1 implies that the cutting set V for z
is unique and that for any vector x ∈ FV ∩ [0, 1]d, x ∈ Pd.
Suppose that ΠPd

(u) = w ∈ Pd, but w /∈ FV ; then, w must
satisfy θTVw < |V | − 1.

Let s = θTV z− |V |+ 1 > 0, t = |V | − 1− θTVw > 0, and
define vector v = t

s+tz + s
s+tw. Then,

θTV v =
t

s+ t
θTV z +

s

s+ t
θTVw = |V | − 1,

2013 IEEE International Symposium on Information Theory

1503



which implies v ∈ FV . The vector v is also in the convex
hypercube [0, 1]d because it is a linear combination of z and
w. Hence, by Proposition 1, we have v ∈ Pd.

Since z is the projection of u onto the [0, 1]d hypercube,
then it follows from (15) that for any x ∈ [0, 1]d, we have the
following equality

|ui − xi| = |ui − zi|+ |zi − xi|, 1 ≤ i ≤ d. (16)

From the definition of v, we have

zi − vi =
s

s+ t
(zi − wi), 1 ≤ i ≤ d. (17)

Setting x = v and substituting (17) into (16), we get

|ui − vi| = |ui − zi|+
s

s+ t
|zi − wi|

≤ |ui − zi|+ |zi − wi|
= |ui − wi|.

Since z 6= w, the inequality above cannot hold with equality
for all i, hence ‖u − v‖22 < ‖u − w‖22. Because the check
polytope is convex, the Euclidean projection of any vector
onto it is unique. This contradicts the assumption that w is
the Euclidean projection of u onto Pd.

Now the only thing needed to complete the projection
is an efficient algorithm to solve the following optimization
problem: for any given vector u /∈ Pd,

minimize ‖u− x‖22 (18)
subject to 0 ≤ xi ≤ 1, i = 1, . . . , d

θTV x = |V | − 1,

Since the optimization problem (18) has differentiable
convex objective and constraint functions, any points that
satisfy the Karush-Kuhn-Tucker (KKT) conditions are optimal
solutions. With some algebra, omitted due to space limitations,
the solution to (18) can be expressed as

x∗ = Π[0,1]d (u− ν∗θV ) , (19)

where ν∗ is a scalar such that θV x∗ = |V | − 1.
Algorithm 3 describes an efficient method for computing the

scalar ν∗. Its complexity is |T | log(|T |, where |T | is usually
much smaller than d. By combining Algorithms 2 and 3, we
can determine the projection of any given point onto the check
polytope, as described in Algorithm 4. This algorithm can be
incorporated into Step 2 (check update) in the ADMM-base
LP decoder, Algorithm 1.

In terms of computational efficiency, Algorithm 4 compares
favorably to the two-slice projection algorithms proposed in
[2] and [3]. In the two-slice algorithms, the determination of
whether or not a given point lies inside the check polytope
requires that the coordinates of the point be ranked in descend-
ing order. In contrast, the proposed algorithm finds the cutting
facet on which the projection of the point lies by visiting each
coordinate only once. For a point outside the check polytope,
the two-slice algorithms represent the projection in a form
similar to that in (19). However, the underlying optimization

Algorithm 3 Solving optimization problem (18)
Input: vector u ∈ Rd and vector θV ∈ {−1, 1}d.
Output: solution of optimization problem (18) in terms of ν∗.

1: T ← {ui − 1 | ui > 1} ∪ {−ui | ui < 0}, δ ← θTV u −
|V |+ 1, and ζ = d.

2: if T 6= ∅ then
3: Sort elements in T = {ti} such that ti ≥ ti+1.
4: for i = 1 to |T | do
5: if δ/ζ > ti then
6: Exit to line 12.
7: else
8: δ ← δ − ti and ζ ← ζ − 1.
9: end if

10: end for
11: end if
12: return ν∗ ← δ/ζ is optimal solution.

Algorithm 4 Efficient check polytope projection algorithm
Input: vector u ∈ Rd.
Output: the projection ΠPd

(u) ∈ Pd.
1: Run Algorithm 2 with input Π[0,1]d (u).
2: if cutting set V is found then
3: Run Algorithm 3 with input parameters u and θV , then

get output ν∗.
4: return Π[0,1]d (u− ν∗θV ).
5: else
6: return Π[0,1]d (u).
7: end if

problem that they solve requires rank ordering of a set of size
2d+ 2 and may also need to check all of the elements in the
set before finding the optimal scalar ν∗ [3, Algorithm. 2].
In contrast, the proposed Algorithm 3 only considers the
coordinates whose values lie outside the interval [0, 1], and the
calculation which uses them is relatively much simpler. As we
will show in Section IV, with the same ADMM parameters, the
iterative ADMM-based LP decoder incorporating the proposed
algorithm runs at least 3 times faster than the one based upon
the improved two-slice projection algorithm in [3].

IV. NUMERICAL RESULTS

To demonstrate the improved performance offered by the
proposed ADMM-based LP decoder, we compare its per-
formance to that of several other LDPC decoders, such as
an ADMM-based LP decoder using the two-slice projection
algorithm [3], an adaptive LP (ALP) decoder [9], and a
floating-point box-plus SPA decoder [11]. We apply these
decoders to two LDPC codes of different lengths, rates, and
degree distributions, namely a rate-0.77, (3,13)-regular LDPC
code of length 1057 [10] and a rate- 13 irregular LDPC code
of length 1920 [10]. The frame error rate (FER) curves are
based on Monte Carlo simulations that generated at least 200
error frames for each point in the plots.

The performance of the ALP decoder can be viewed as the

2013 IEEE International Symposium on Information Theory

1504



3 3.25 3.5 3.75 4 4.25 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e

 E
rr

o
r 

R
a

te
 (

F
E

R
)

 

 

ADMM Tmax = 20
ADMM Tmax = 30
ADMM Tmax = 50
ADMM Tmax = 100
ADMM Tmax = 200
ADMM Tmax = 500
ALP
Floating-point SPA

Fig. 1. FER comparison of ADMM-base LP decoder with various
maximum number of iterations for (1057,833) LDPC code on AWGNC.

0

0.5

1

1.5

2

2.5

3

3.5

FER ≈ 6×10
−5

A
v
g
. 
C

P
U

 r
u
n
−

ti
m

e
 p

e
r 

fr
a
m

e
 (

m
s
)

 

 ALP
Modified ALP
ADMM [3]
floating−point SPA
Proposed ADMM
Modified ADMM

(a) Rate 0.77 and length 1057.

0

50

100

150

FER ≈ 5×10
−4

A
v
g
. 
C

P
U

 r
u
n
−

ti
m

e
 p

e
r 

fr
a
m

e
 (

m
s
)

 

 

ALP
Modified ALP
ADMM [3]
Floating−point SPA
Proposed ADMM
Modified ADMM

(b) Rate 0.33 and length 1920.

Fig. 2. Average simulation time for decoding one codeword.

best that ADMM-based LP decoders can achieve by solving
the standard LP decoding problem (3). It can be seen that
the error-rate performance of ADMM-based LP decoding with
Tmax = 100 is already very close to that of ALP decoding,
and with Tmax = 200, it essentially achieves the ALP decoder
performance. We can also see that the error-rate curves of all
of the LP decoders are steeper than that of the SPA decoder.
(A similar phenomenon was observed in [4].)

Fig. 2 presents an intuitive way of comparing the com-
putational complexity of different decoding algorithms. It
compares the average decoding time when we implement
these algorithms using C++ code on a desktop PC. The SPA
decoder is implemented in software with messages represented
as double-precision floating-point numbers, and the pair-wise
box-plus SPA is computed in the manner described in [11].
The SPA decoder iterations stop as soon as a codeword is
found, or when the maximum allowable number of iterations
Tmax = 200 have been attempted. To ensure a fair comparison
with the two-slice projection algorithm in [2], we incorporated
into our C++ platform for ADMM-based LP decoders the C++
code obtained from the website [12] of one of the authors of
[2].

The simulation time is averaged over one million frames
for each decoder, and the channel condition is set to let
all decoders achieve approximately the same FER as shown
in the figures. We can see that, compared to the two-slice
projection algorithm in [3], the proposed projection algorithm
significantly improves the efficiency of the ADMM-based LP
decoder, especially for low-rate codes. The modified ALP

(MALP) decoding algorithm [9], which is much faster than
the standard LP decoder proposed by Feldman et al. in [5],
uses the open-source GNU Linear Programming Kit (GLPK)
as its LP solver. From the simulation results, we can see that all
ADMM-based LP decoders are faster than MALP, especially
for the low-rate code, where the decoding time is reduced by
more than 3 orders of magnitude. This is because the general-
purpose LP solver used in MALP does not take advantage of
the sparsity of the constraints in the LP decoding of LDPC
codes. The modified ADMM uses early termination and over-
relaxation to further improve the decoding speed by a factor
of 2. Details can be found in [13].

V. CONCLUSION

In this paper, we propose an efficient message-passing
algorithm to solve the LP decoding problem based on ADMM.
The computational complexity of ADMM-based LP decoding
is largely determined by the method used to project a vector
of real values to the check polytope of a given parity check.
We proposed a novel, efficient projection algorithm that can
substantially improve the decoding speed of the ADMM-based
LP decoder.

ACKNOWLEDGMENT

This research was supported in part by the Center for
Magnetic Recording Research at UCSD, by UC Lab Fees
Research Program, Award No. 09-LR-06-118620-SIEP, and by
NSF Grant CCF-1116739.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[2] S. Barman, X. Liu, S. Draper, and B. Recht, “Decomposition methods for
large scale LP decoding,” Proc. 46th Allerton Conf. Commun., Control,
Computing, Monticello, IL, Sep. 2011, pp. 253–260.

[3] S. Barman, X. Liu, S. Draper, and B. Recht, “Decomposition methods
for large scale LP decoding,” arXiv:1204.0556 [cs.IT], 2012.

[4] X. Zhang and P. Siegel, “Adaptive cut generation algorithm for improved
linear programming decoding of binary linear codes,” IEEE Trans.
Inform. Theory, vol. 58, no. 10, pp. 6581–6594, Oct. 2012.

[5] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming
to decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51, no.
3, pp. 954–972, Mar. 2005.

[6] M. Yannakakis, “Expressing combinatorial optimization problems by
linear programs,” J. Computer and System Sciences, vol. 43, no. 3, pp.
441–466, 1991.

[7] A. Marshall, I. Olkin, and B. Arnold, Inequalities: Theory of Majoriza-
tion and its Applications. New York: Springer, 2010.

[8] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5396–
5410, Dec. 2008.

[9] M. H. Taghavi, A. Shokrollahi, and P. H. Siegel, “Efficient implemen-
tation of linear programming decoding,” IEEE Trans. Inform. Theory,
vol. 57, no. 9, pp. 5960–5982, Sep. 2011.

[10] D. J. C. MacKay, Encyclopedia of Sparse Graph Codes. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[11] X. Hu, E. Eleftheriou, D. Arnold, and A. Dholakia, ”Efficient imple-
mentations of the sum-product algorithm for decoding LDPC codes,” in
Proc. IEEE Globecom, San Antonio, Nov. 2001, pp. 1036–1036E.

[12] C++ ADMM Decoder by X. Liu. [Online]. Available: https://sites.
google.com/site/xishuoliu/codes

[13] X. Zhang and P. Siegel, “Efficient iterative LP decoding of LDPC codes
with Alternating Direction Method of Multipliers,” to be submitted to
IEEE Trans. Inform. Theory.

2013 IEEE International Symposium on Information Theory

1505


