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Abstract—We study the performance of LDPC codes over output is the output of the last subchannel in the cascade.
the cascaded BSC-BAWGN channel. This channel belongs to aThe outputs (resp. inputs) of all subchannels other than the
family of binary-input, memoryless, symmetric-output channels, 55t (resp. first) are inaccessible. Note that from the déini

one that we call the{CBMSC(p, o)} family. We analyze the belief . ;
propagation (BP) decoder over this channel by characterizig it follows that two subchannels can be cascaded only if the

the decodable region of an ensemble of LDPC codes. We thenOUtput alphabet of the first is the same as the input alphdbet o
give inner and outer bounds for this decodable region basedro the next. We will assume that the cascaded channel consists o

existing universal bounds on the performance of a BP decoder only two subchannels. A generalization to an arbitrary nemb
We numerically evaluate the decodable region using density of subchannels is straightforward

evolution. We also propose other message-passing scheméie .
terest and give their decodable regions. The performance afach Further, we W'”_C‘Tﬂ”_ a cascaded channetascaded BMS
proposed decoder over the CBMS channel family is evaluated (CBMS) channel if it is a cascade of a BMS channel with

through simulations. Finally, we explore capacity-approghing a memoryless, symmetric channel. It is easy to see that any

LDPC code ensembles for the(CBMSC(p, o)} family. CBMS channel is symmetric and memoryless. Since the input
to a CBMS channel is binary, CBMS channels belong to
|. INTRODUCTION the family of BMS channels. However, unlike simple BMS

. . channels, CBMS channels are parameterized by the fidelities
Low-density parity-check (LDPC) codes [1], [2] have beer(}f both the constituent subchannels.

shown to achieve performance close to capacity over binary-We note here that a CBMS channel could be a degraded

|nput,_ memoryless, symmetric-output (BMS [3.’]) channél | BMS channel belonging to the same channel family as the first
the binary erasure channel (BEC) [4], the binary Symmetrls%bchannel [8], e.g. a BAWGN channel followed by another
channel (BSC) [5] and the binary-input additive white Gau €G- y

sian noise channel (BAWGNC) [5], [6], [7]. We consider AWGN channel will give a CBMS channel which is also a

class of channels which belong to the same BMS channel f:BAWGN channel with a larger noise variance. In this case the

ily as the BEC, BSC and BAWGNC. Owing to this similarity,@BMS channel is in the same family as the first subchannel.
. ; . . However, a BAWGN channel followed by a Laplace channel
much of the terminology and notation used in this paper are : .
- : is’also a CBMS channel, one not belonging to the family of
reminiscent of the analysis of LDPC ensemble performanceé;AWGN channels
[3]. However, the channels under consideration exhibitager '
differences from the BMS channels in [3] because of their
multidimensional channel space. B. Cascaded BSC-BAWGN channel
This paper is organized as follows. In Section Il, we The cascaded BSC-BAWGN channel, as the name sug-
introduce the CBM&{, o) channel family and discuss somegests, is a CBMS channel where the first subchannel is a
characteristics of this family of channels. We then consid8SC with crossover probability and the second subchannel
coding over this channel using LDPC codes and analyze tikea BAWGNC with noise variance?2. It is denoted as
belief propagation (BP) decoder in Section Ill. On similaCBMSC(p, s) and is depicted in Figure 1. Note that the
lines, we propose and analyze two other message-passing

schemes in Section IV. We give experimental results for w.
the performance of the three message-passing decoders in X, —1BSC(p) —"@* Y,
Section V. In Section VI, we explore good LDPC codes for N, N(0,02)
the CBMSp, o) channel. We conclude by summarizing our
findings in Section VII. Fig. 1. The CBMS{, o) channel.
Il. THE CHANNEL MODEL channel spacéor this channel is given ag” = [0,1/2] x R*.
A. Cascaded channels The family of channels oves” is denoted{ CBMSC(p, o)}.

A cascaded channel is one where the output of one channe-l(;he capgcity of ca?gaded channels has been consjdered
is fed as input to another. The constituent channels ofURder certain cases of interest in [9], [10], [11], [12]. &n

cascaded channel are C"f‘”edbCh?nn?lSThe input of the  1e will refer to BMS channels parameterized by a single \weisas
cascaded channel is the input to its first subchannel, and #igpleBMS channels.



the CBMSp, o) channels are BMS channels, the capacity of The CBMSg, o) channel can also model other scenarios
the family of these channels can be numerically evaluatékle an earth-satellite-earth link with a simplistic haddeision

[3]. Figure 2 shows the contours of equal capdcity a decoder on the satellite and a more powerful soft-decision
subset of¥. Though we write the parameters of the channelecoder at the receiver on the earth. In general, all memssyl
as the ordered paifp, o) in accordance with the order of (multihop) relay channels with thresholding at intermeéelia
the subchannels, all figures in this paper are depicted witbdes can be modeled as CBMS{) channels.

p as the ordinate for convenience. Note that the extremal

D. Coding for the CBM$(, o) channel

00 Owing to the asymptotically close-to-optimal performance

0.45]- J of LDPC codes over the subchannels of the CBMS&]
channel, we will consider coding for the CBM&¢) chan-

0.4 ‘ ‘ ‘ 1 nel using LDPC codes and the performance of these codes

with iterative message-passing decoders with emphasiseon t
asymptotically bit-optimal BP decoder.

Note that since message-passing schemes are in general
hypothesized on some channel model, estimation of channel
parameters plays a key role in decoding. In this case, this
translates to the availability of good estimates foand the
SNR (defined in dB as SNR= —201og o) of the constituent
subchannels of the CBMB(c) channel, which will be as-
sumed.

IIl. THE BELIEF PROPAGATION DECODER

Since the CBMS{, o) channel is a BMS channel, the Log-
Likelihood Ratio (LLR) of the channel output is a sufficient
statistic for decoding [3]. The BP decoding scheme thus
remains the same as in the case of simple BMS channels,
Fig. 2. Contours of Capacitg(p, o) of the family {CBMSC(p, o)} in bits except for the initial channel LLR density. Hence, the asizly
per channel use. of the BP decoder over the CBMSE) channel can be

performed using the standard density evolution [3], [6], [8
channels in this family correspond to the familigBSC(p)} of the LLR of the channel output, i.e. the convergence to the
and {BAWGNC(c)} wheno = 0 andp = 0 respectively. tree channel, the restriction to the all-zero codeword ded t
concentration around the ensemble average argumentsri3] ca
be carried forward to this case. In this case, we have the LLR

C. Motivation / to be
The motivation for considering the CBM&() channel l=1In (1-p)e'+p 1
family comes from a new-generation magnetic recording me- (1—p)+ pel

dia calledbit patterned medigdBPM). BPM is claimed to N

surpass conventional magnetic recording media in storayBerel = 2y/o?, a function of the channel outpyt Note
capacities owing to its structure. The superparamagnfi¢icte that in case of a BAWGNC] gives the actual LLR (which
that makes it difficult to reduce the size of bit cells in camve can be readily seen by settipg= 0).

tional media is avoided by storing bits on magnetic islands We fix a code ensemble [3], p), and define thelecodable
isolated by non-magnetic material. However, this strietufegion of the ensemble as

brings to fore the challenge of good timing and positional o o) _ 5
synchronization of the write head during the write process. Rixp) = {(p’o) () T O} @

There is therefore a possibility of writing data erronegusl (p,0) .
on the disk [13]. We model thisvrite channelas a BSC, where P\ © denotes the probability that the message on a

P .
which is followed by a memorylesead channelmodelled random edge of the Tanner graph of a code in the ensemble

as a BAWGNC. The CBMS( o) channel therefore serves as()\,.p.) is in error, average_d over the ensembile, in the Iimiti of
a first-order approximation of the BPM channel — the (codeﬂr}:'n'te blocklength and infinite rounds OT message-passing
information X,, (See Figure 1) gets written onto the disk e boundary of the decodable region is analogous to the
as W,, which is then read a%,,. A more realistic model thresholdvalge of simple BMS_ channels [3], [8].

would be a similar write and read channel cascade where the/Vhereas in the case of simple BMS channels the chan-

subchannels have memory, which is a subject for future wor} .I families are totally orde_req by degra_ldation [8], the
CBMSC(p, o)} channel family is onlypartially ordered by

2Throughout the paper, we will assume that information tegoiquantities degradatiop. We therefore dqute attention to Charam'griz
like entropy and capacity are measured in terms of bits. and bounding the decodable region of an LDPC code ensemble



for the family of CBMSp, o) channels. For completeness, we From Theorem 1 and the channel degradation argument of
revisit the definition of degradation. [8], we have the following lemma

Definition 1 (Degraded channels)A channelZ|X is out- Lemma 2 (Monotonicity ip): If (p,0) € R, then
put degraded with respect | X if X - Y — Z,i.e.X,Y (p,0) €ERx,p) VP <p.
and Z form a Markov chain. A consequence of Lemmas 1 and 2 is that if a péint)
is found to be iR, ,), then we can conclude that all channel
points with a smaller and a smallep (points to the left and

A Character-lzatlon OR(x.p) _ below (p, o) in the channel space”’) are also guaranteed to
The following can be deduced directly from the channglejong tOR (.-

degradation argument of [8].
Lemma 1 (Monotonicity im): If (p,o) € R, then g Bounds forR .,
(p,g)ER(,\ﬂp)Vgga. '
In order to prove a similar monotonicity in the parameter
we construct a channel that is equivalent to the CBd&)
channel, but is degraded with respect to BAWGNE Note
that it is not immediately obvious that the CBMS§)

We now give inner and outer bounds for the decodable
region of a code ensemble based on existing universal bounds
on the performance of the BP decoder.

Proposition 1 (Bhattacharyya outer bound))et

channel, as in Figure 1, is output degraded with respect £6\») = {(p’a) € .7 :B(p,0) <Bf, , ;. whereB(p, o) is

BAWGNC(0). the Bhattacharyya constant [3hssociated with the channel
Definition 2 (Input-distorted channelslet X — Y be a CBMSC(p,0) andBy, ) := inf{b(z) : b(z) = z,z € (0,1]},

BSC with crossover probability, and lety’ — Z be any BMS With _ P

channel with transition probabilityf ;.. Then the channel b(z) = —\

Z|X is said to be input-distorted with respect to the channel A (Zk pry/1—(1—22) >

zly.

Note that any CBMS channel with its second subchannEen, R, C Bx p)-

being a BMS channel itself is an input-distorted channel hyjscyssionThis follows from the universal upper bound on
definition. the Bhattacharyya constant given in [14], [15]. First, any
Theorem 1 (Equivalence of input-distortion & degradatiorgs channel is expressed as a convex combination of BSCs
Any input-distorted channek’ — Y — 7 is degraded with of crossover probabilities ranging from to 1/2. Noting
respect to the channél — Z. that the check node processing for a density corresponding
Proof: By definition, we haveX € X = {£1}, Y € {0 a BSC gives the smallest Bhattacharyya constant for the
Y=2X, fyix(ylz) = (1= p)é(y — x) + pd(y + x) for some oytput density, the above upper bound on the Bhattacharyya

o € [0,1/2], whered(z) 1 z= 0’ andfy (—z|—y) = parameter can be obtained.

0 else Proposition 2 (Entropy outer bound):et  H, =
fzv(ly). Then, i(p,cr) €. :H(p,o) <H{, ¢  Wwhere H(p,o) is
fax(zl) = frzix (v, 2|2) the entropy (channel equivocation) (3], [8], [16]
yey associated with the channel CBMSC(p,s) and
= > Frixle) 2y (zly) HY, ) = inf{A(@) : h(z) > 2,2 € (0,1/2]}, with
- () = )
=D {0 =p)aly — 2) +pd(y + 2)} fzv (2ly) A (S pihs (HO=250Y)
- ng_ p)fziy (2|z) + pfzy (2] — x) %here hs(-) is the binary entropy functionThen, R, ,y C
=1 =p)fzv(zlz) + pfz)y(—2|z) @) e

) DiscussionThis follows from the best case of the “extremes of
Consider the channel systerfh— 2 — W where the channel j,ormation combining” [16]. As in Proposition 1, the smesit

Y — Z is given as before, and the chanigl~ W satisfies gniropy of the output density is obtained for input densitie
WeWw =z andfiwz(w|z) = (1-p)d(w—2)+pS(w+2).  corresponding to BSC at the check node and BEC at the

Then variable node. Using these best case densities, we obtin th
Forpy (wly) = / Frwiy (2 wly)dz upper bound for the entropy.
z€2 Proposition 3 (Capacity outer bound):et C_(A_,p) =
= / f2iv (21y) fw 2 (w|z)dz {(p,o) € .7 :C(p,o) > (A, p)} whereC(p, o) istfh]e g:a)lgacity
Z of the channelCBMSC(p, o) andr()\, p) = 1 — 1422 s
=1 =p)fziy(wly) +pfziy(—wly) (4) I

the design rateof the code. TherR, ,) C C(x p)-

From (3) and (4), we havg¢, x = fw)|y. Since the channel Proof: Since the asymptotic (in blocklength) actual rate
Y — Z degrades toY — W, we conclude tha” — Z r of a code is equal to its design ratg3], the result follows
degrades toX — Z. m from the channel coding theorem. [ |



Proposition 4 (Degradation outer bound):et ﬁ(m) =
{(p,a) €S :0<0(,,P< pzﬁ)\_’p)}, where o7, | is the

threshold for the(\,p) code ensemble over the family

{BAWGNC(0)}, andpy, ) is that over the family{ BSC(p)}.
Then,R(A_,p) C D(A,p)-
Proof: Suppose to the contrary thé’tgi’;g = 0 for

someo > o(, ,. Then, since BAWGN() degrades to

CBMSCp, ), we have]P’E" 0 =0 = (0,0) € Ry, which

contradicts the assumption tha, , is the threshold for the

BAWGN channel family. A similar argument holds fp(/\ »)

This bound is more easily stated as the contrapositive of the 04

claims made in Lemmas 1 and 2. [ ]

Figure 3 shows the outer bounds discussed here for two cod
ensembles. The s&, ,) "H(x, ) NC(x.p) ND(r,p) IS therefore
an outer bound for the decodable region. We have observe
that the Bhattacharyya bound and the entropy bound haw
been strictly looser than the capacity bound in all cases we ‘ ‘ : ‘ : ‘ : ‘ ‘
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considered, with the Bhattacharyya bound being the loosest o

Proposition 5 (Bhattacharyya inner boundet B, , =
(p,o) € L :B(p,o) < B,()\,p)}, WhereB'(W) = inf{b(x) :
b(x) > z,z € (0,1]}, with

Then,ﬁ(m) C Rxp)-

DiscussionThis follows from the universal lower bound on
the Bhattacharyya constant of a BMS channel [14], [15]. In 10}
this case, the lower bound is obtained as in Proposition 1,
by noting that the check node processing for a density corre- =
sponding to a BEC gives the largest Bhattacharyya constan

for the output density.

Note that the above bound is tight for the BEC, in which case
the Bhattacharyya constant is given by the channel erasur
probability. The above definition (If therefore coincides

with the definition of the threshold for the BEC in [3], [8].
Proposition 6 (Entropy inner bound).et  H, , =

(p,0) € .7 : H(p,0) < H, p)} where H, =
inf{ha(p),p € (0,1/2): Iz € (0,1/2) : h(z,p) > 0}, with

hr.p) = 1= ha(x) = p (1= h(r.2.p))

i) =30, Z( a2 o

andh(p,z,j,1) as in (5). Then}H, ,) C Rxp)-

DiscussionThis follows from the worst case of the “extreme
of information combining” [16]. As in Proposition 2, the lew

() (3,6) regular code ensemble Xz) = 22, p(z) = 2°.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
a

(b) Rated.9 code ensemble optimized[5] for the BAWGNC -
A(z) = 0.4402122 4 0.0529353x° 4 0.126393z* 4 0.23159822 +
0.148861x, p(z) = 0.5z%¢ + 0.524%, henceforth referred to as the
“Optimized rated.9 code ensemble.”

Fig. 3. Outer bounds for the decodable regip, ). The sets correspond
to the region under the curves marked in the figure.

and@(-) is the Q-function of the standard normal distribution.

SThen Dirp) CRp)-

bound is obtained by noting that the largest entropy of the Froof: Let X — Y — Z be the CBM$p, o) channel.

output density is obtained for input densities correspogdd
BEC at the check node and BSC at the variable node.

Proposition 7 (Degradation inner bound)et D, , =
{(p,a) € p*xQ(2) < pzm)} where p(, , is as in
Proposition 4axb = a(l —b) +b(1 —a), ¥V a,b € [0,1/2]

Consider the channek — Y — Z — W, whereW =
+1, Z>0
Z =
wulZ) =3 1, g
andpy | x (w|r) = (1 —p")o(w — x) + p’d(w + x), with p’ =
pxQ (L). Thus,X — W is a BSC with crossover probability
p’. Thus, ifp” < p{, ., the threshold for the familyBSC(p)},

. We haveWW e W = {£1} = X



h’(p7 $7j,l) = p10g2

1— j—1-21
1+—p< ’ )
p 11—z

+ (1 —p)log,

1+1fpp (110)]'1%} (5)

we haveP?:\ 0 = 0. Since the channek — Z degrades to

the channelX — W, P¥, = =0 = P{>°) = 0. Hence, if oaf , | |
(p,O’) S Q(X,p)' then(p,o) S R()\,p). |

Proposition 8 (Soft bit inner bound)et S, , =

0.09F . . . . . . 4

{(b.0) € 7 :5(p.0) < b}, , (1=, )} where s(p,0) 000
is the Soft bit value[15] of the CBMSp,s) channel and 0.07

p’(*k ) is as in Proposition 4. Therﬁ(,\,p) CRxp)-
0.06
DiscussionThis follows from the one-dimensional non- =

iterative bound based on tt&oft bit valuegiven in [15]. 0.05

Figure 4 shows the inner bounds for the two code ensemble  o.04
considered before. We note here that the degradation inne
bound and the soft bit inner bound are tight on phaxis, i.e.
on thep-axis, theD andS bounds meet th® bound. The set 0.02
Q(W) UH () UQ(_,\,p) UQ(/\,p) is there_fore an inner bound to
the decodable regioR , ). Note that in the case of th@, 6) 0.01
regular code ensemble, the soft bit inner bound is tightan th ; ; ; ; ; ; ; ;
all other inner bounds. This, however, is not true in the case o1 02z 03 04 05 06 07 08 09
of the optimized rat€-.9 code ensemble (See Figure 4).

0.03

(@) (3,6) regular code ensemble.

x 10

C. Decodable region 16

The actual decodable region was found using density evolu-
tion. By fixing o, we are guaranteed by Lemma 2 the existence 14t 1
of a thresholdp’ — the largesp for which the decoder gives
a zero error. The boundary @&, , is therefore estimated 12} 1
by finding thep; for a fixed set ofs values within the range
[0, 07, )] Whereo(,  is as in Proposition 4. This is shown
in Figure 5 for our example code ensembles. We conjecture
that the decodable region of a code ensemble, like most of the
bounds we have obtained, iscanvexsubset of the channel

space..

101 B

IV. MESSAGEPASSING

In this section, we propose two alternative message-passin
schemes to the BP decoder. The schemes and the motivatic
for considering them are discussed below.

A. Decoding schemes

Hard Decision decoder (HD)Here we threshold the output
of the CBMSg, o) channel and consider the channel to now (b) Optimized rate 0.9 code ensemble.
function as a BSC with crossover probability=p * Q (1)
wherex and Q(-) are as defined in Proposition 7. We the
perform BP for this modified BSC. The rationale is that a

errors well. _ _ therefore the decoder is slightly less complex than therothe
Gaussian Noise decoder (GN)n this case, we have ayyg decoders in this respect.

decoder that ignores the first subchannel and performs BP .

under the assumption that the channel is a simple BAWGRI Decodable regions

channel. Analysing the performance of this decoder is Uisefu The degradation inner bourid of the BP decoder gives the
e.g. in the case of magnetic recording, to understand ttlecodable region for the HD decoder. This is true because the
penalty paid in naively assuming that the information weritt construction in the proof of Proposition 7 is the same as the
on to a disk is error-free. Note that since we ignore the fireperation performed in the HD decoder.

0.5 0.6 0.7

rIlzig. 4. Inner bounds for the decodable regiRpy ).



01t S 01 » o _m 1

—*—GN
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(@) (3,6) regular code ensemble.

Fig. 6. Decodable regions for the BP, HD, and GN decoders($06)
regular code ensemble.

0.016

0.014r 1 by using the modified LLR density.

In Figure 6, we give the decodable regions for the HD,
0.012f ] GN and BP decoders for th€3,6) regular code ensemble.
We make two observations from this figure — first, the non-
0.01F - - - - - - 1 monotonicity of the performance of the GN decoder apparent
from the shape of its decodable region, and second, the
o 0.008} : : : : : : E similarity in the performance of the HD and BP decoders
for small o (large SNR) and large. Also note that the
0.006L , decodable region of the GN decoder is another inner bound
R(/\’p) to the decodable region of the BP decoder.

The non-monotonicity of the GN decoder in for large
enoughp is because the decoder in this case is being fooled
into believing that the channel is reliable when it is notr Fo
largep and smallo, the performance of the HD decoder and

o 1 1 1 1 1 the BP decoder coincide because the CBMS channel in this
0 0.1 02 03 0.4 05 0.6 0.7 case is very similar to the BSC, i.e. the behaviour of the
° cascaded channel is dominated by the behavior of the first
(b) Optimized rate 0.9 code ensemble. subchannel. Also, as expected, the HD and the GN decoders
_ . are as good as the BP decoder when the channel is dominated
Fig. 5. BP Decodable regioRy ). by the BSC and the BAWGNC respectively.

0.004 b

0.002[ 4

V. EXPERIMENTAL RESULTS

For the GN decoder, since the det_:oder_ assumes a WIong, s section, we shall explore the performance of binary
channel model, we use density evolution with the LLR Ca|Cl1l_-DPC codes on the CBM$(c) channel with the three dif-
— 2 i i
lated asi = 2y/o°, wherey is the channel output Condltloneciferent message-passing schemes proposed in earlierrsectio

on the transmission of &~ A rate-1/2 binary LDPC code of blocklength096 bits that
! (y—1)° was randomly sampled (with multiple edges between nodes
Frx i) ~Vano? (L=pexp (=55~ )+ avoided) from the Gallage3,6) regular ensemble was used
1 (y+1)2 to estimate the decoder performance. The values useg for
Vono? {peXp (_ 952 )} : ranged from1% through5%.

Since the CBMS{, o) channel is memoryless, all the de-
In this case, we can make no claim of the monotonicityin coding schemes have the same complexity and this complexity
of the decoder performance. The decodable region for the Gbhles a®(Ln(d,q + 7d.qlog, ¢)) whereL is the maximum
decoder is found as in the case of the BP decoder, howemember of iterations performed, is the blocklength of the
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Fig. 8. Performance comparison of the BP, HD, and GN decoiderdifferent p values.

code,d, andd. are the maximum variable and check nodg), the HD decoder handles the channel better than the GN

degrees respectively in the Tanner graph of the coede,the decoder. Note that beyond a certainthe performance of the

normalized redundancyf the code, given a8 = 1 —r where GN decoder is non-monotonic im, e.g. whenp = 5%, the

r is the design ratey is the size of the Galois field over whichBER first reduces and then increases with increasing SNR (See

the code is defined;(= 2). Figure 7). Also notice that the gap between the BP and the HD

decoder (Figure 8) at a high SNR reduce$ ascreases, going

Figure 7 shows the performance of each decoder over figm ~ 1.5 dB whenp = 1% to ~ 0.8 dB whenp = 5%.

range ofp values. In Figure 8, we compare the three decodeThese agree with the observations made in Section IV-B from

for different values ofp. We see from Figure 8 that thethe decodable regions of these decoders.

BP decoder outperforms both the HD and the GN decoders,

as expected. However, with increasipg the HD decoder VI. GOOD CODES FOR THECBMS(p, o) CHANNEL

performs better than the GN decoder at high SNR values, i.eFrom Figure 3(b), we see that the optimized rat@-code

as the channel becomes more like the BSC (smallarge comes very close to achieving capacity on the BAWGNC —



~
~

with a threshold ofo* =~ 0.5089 while capacity isc® We analyzed the theoretical decodable regions of LDPC codes
0.5113. However, it falls well short of the capacity on theunder BP decoding over the family of CBM&S¢) channels by
BSC. The threshold for this code on the BSC was observgiying inner and outer bounds to the decodable region based
to be p* ~ 0.0058 while a capacity 0f0.9 bits per channel on channel parameters like the entropy, the Bhattacharyya
use was achieved by a channel with ~ 0.01298. This constant, the Soft bit value and the capacity, and also based
suggests that a code optimized for the BAWGNC might baen the channel ordering introduced by degradation. We also
far from optimal on the BSC. In Figure 9, we show theumerically estimated the decodable regions for three pro-
decodable regions of the BP decoder for two code enseposed message-passing decoders, including the BP decoder
bles of rate0.75, one optimized for the BAWGNQCY using density evolution.

(04035222 +0.0007697x5 + 0.07411032° + 0.1150542* 4 We conducted performance estimation for a rate-(3, 6)-
0.000008z3 +0.22131522+0.1852212, 0.52'7 +0.52'%) with  regular LDPC code of blocklength096 bits with the three

the decodable regiorR,, and another optimized for theproposed message-passing schemes and showed the decoder
BSC C* = (0.4195582%° + 0.002132112% + 0.2464252° + characteristics suggested by theory. In particular, weveko
0.07214072° +0.1479282% 4 0.111817x, %) with decodable that ignoring the BSC (as in the GN decoder) can result in
region R,. These optimized codes were obtained from [17h large penalty in performance, more so when the channel
SNR is high. By looking at codes optmized for the BSC
and BAWGNC, we noted that optimizing a code over the
BSC works better than optimizing for the BAWGNC. Both
these suggest that the first subchannel, the BSC, plays a
very key role in the CBMS{, o) channel, and any good
code construction for the channel should take into account
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Also shown in the figure is the capacity outer bound for the
decodable region of a code of rater5. The ideal rateé.75  [9]
code for the{f CBMSC(p, o)} family hasC, ,) as its decodable [10]
region.
We see from Figure 9 that the code optimized for thigi]
BSC performs better (is closer to the capacity bound) than
the code optimized for the BAWGNC except near the [
axis, i.e. the BAWGNC optimized code is superior only when
the channel is dominated by the BAWGN subchannel. THs!
suggests that a good strategy to obtain good codes for the
CBMS(p, o) channel is to optimize a code for the BSC, rathdt4]
than optimizing for the BAWGNC. A better scheme would be
to optimize the degree distributions for a fixed rate code ove
both the BAWGNC and BSC simultaneously, which is clearlj5s]
a more complex optimization problem.

Fig. 9. Decodable region estimates for the two optimizedecedsembles
CY9 and C* of rate 0.75.

[16]
VII. CONCLUSION

We have introduced a new class of BMS channels that)
model many scenarios including the BPM recording channel.

its effects.
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