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Abstract

This paper addresses the performance of maximum-likelihood decoding of a

serial concatenation comprising a high-rate convolutional code or a turbo code, a

uniform interleaver, and a dicode partial-response channel. The e�ect of a channel

precoder on the system performance is also considered. Bit- and word-error-rate

estimates based upon properties of the average Euclidean distance spectrum of

the coded partial-response channel are derived. The estimates are compared to

computer simulation results, and implications for system design are discussed.

1 Introduction

Trellis coding techniques that improve the reliability of binary input-constrained, inter-

symbol interference (ISI) channels are of interest in both digital communications and data

storage applications. Drawing inspiration from the success of turbo codes [1], [2], several

authors have recently considered iterative decoding architectures for coding schemes of

the form depicted in Fig. 1, where the outer encoder is a convolutional or turbo encoder,

� is an interleaver, g(D) represents a precoder function, and h(D) is the channel transfer

polynomial.

This system resembles serial concatenation of interleaved codes, investigated by Bene-

detto, et al. [3], with the inner code replaced by the ISI channel. For such a system, Douil-

lard, et al. [4] presented an iterative receiver structure, dubbed \turbo-equalization," to

combat ISI due to multipath e�ects on convolutionally-coded Gaussian and Rayleigh

transmission channels. They introduced an interleaver between the encoder and channel,

and, as in turbo decoding, soft-output decisions from the channel detector and from the

convolutional decoder are used in an iterative and cooperative fashion.

Encoder Π h(D)
Precoder

g(D)

Figure 1: Trellis coded partial response system.



Motivated largely by the potential applications to digital magnetic recording, several

authors have explored the application of turbo coding methods to the dicode and class-

4 partial-response (PR4) channels, which have transfer functions h(D) = 1 � D and

h(D) = 1�D2; respectively. Heegard [5] and Pusch, et al. [6] illustrated the design and

iterative decoding of turbo codes for the dicode channel, using rates 1/2 and lower. Reed

and Schlegel [7], extending prior results on a low-complexity, iterative multiuser receiver

structure with interference cancellation, have evaluated the bene�ts of turbo-equalization

for a rate 1/2, convolutionally-coded, PR4 channel and E2PR4 channel.

Ryan, et al. [8], and Ryan [9], demonstrated that by using as an outer code a parallel-

concatenated turbo code, punctured to achieve rates 4/5, 8/9 and 16/17 typical of com-

mercial magnetic recording systems, one could obtain signi�cant coding gain relative

to previously known high-rate trellis-coding techniques on a precoded dicode or PR4

channel.

Recently, Souvignier, et al. [10] considered serial concatenated systems similar to that

addressed in [8],[9]. On a precoded dicode channel, the performance achievable with a

high-rate outer convolutional code, rather than a turbo code, was investigated by means

of computer simulation. Somewhat surprisingly, the convolutional code was found to

perform as well as the turbo code. Moreover, removal of the channel precoder was found

to improve the performance of the turbo-coded system at low SNR, while degrading the

performance of the convolutionally-coded system.

This paper was motivated, in part, by the desire to understand better the empirically

observed di�erences in error-rate in the precoded and non-precoded serial concatenated

systems. We address the performance of maximum-likelihood decoding of a serial con-

catenated system as shown in Fig. 1, comprising a high-rate convolutional encoder or a

parallel concatenation of two convolutional encoders, an interleaver, and a dicode partial-

response channel, with and without a channel precoder.

The maximum{likelihood (ML) union bound on word error rate (WER) for a block-

coded, additive white Gaussian noise (AWGN) channel can be expressed as [11]

Pw �

1X
dE=dmin

T (dE)Q

�
dE

2�

�
; (1)

where dE denotes Euclidean distance between two channel output words, T (dE) denotes
the average Euclidean weight enumerator which is the average number of codewords with

Euclidean distance dE from the output of a given codeword, and �2 denotes the noise

variance on the channel. The corresponding bit error rate (BER) bound is [11]

Pb �

1X
dE=dmin

T (dE)w(dE)

K
Q

�
dE

2�

�
; (2)

where w(dE) denotes the average information Hamming distance to codewords whose
outputs have distance dE, and K denotes the number of information bits in a codeword.

For an exact analysis, the full compound error-event characterization for a code in-

terleaved and concatenated with the ISI channel must be determined. The complexity of

this computation is generally prohibitively high. To overcome this di�culty, we introduce

a technique for computing an approximation to the average weight enumerator T (dE) for

a high-rate, coded partial response channel. The result depends only upon the output

Hamming weight enumerator of the outer code,

A(d) =

KX
i=0

A(d; i); (3)



where A(d; i) denotes the average number of error words of Hamming output weight d
and input weight i.

In Section 2, we present the analysis for the dicode channel, �rst without a precoder,

then with a precoder of the form g(D) = 1=(1 � D): In Section 3, we consider systems

incorporating a rate 8/9 outer punctured convolutional code and a rate 4/5 turbo code.

The analytical performance estimates are compared to the results of computer simulation.

Section 4 concludes the paper.

2 Error Event Analysis on the Dicode Channel

Referring to the system model in Fig. 1, we assume that the encoder is a block encoder,

for example, a truncated convolutional encoder or a turbo encoder. Let b = [b1; : : : ; bN ]

denote a codeword, and c = �(b) be the corresponding output of the interleaver. The

output of the precoded channel is denoted x = [x1; : : : ; xN ]:

Given two codewords b1 and b2, let e = b1 � b2 be the corresponding Hamming

error word, and similarly de�ne the interleaved Hamming error word f = c1 � c2. The

Euclidean error word is given by � = c1� c2 and the corresponding output error word is

� = x1 � x2:

We will make two simplifying assumptions in the analysis of the system performance.

First, we assume that the interleaver � is a uniform interleaver, as de�ned by Benedetto

et al. [12]. Second, we make the assumption that, for any codeword e, the contribution

to T (dE) of all error words � = b1 � b2, where b1 = b2 � e, is approximately equal to

the contribution of the set of error words produced when b1 and b2 are not restricted to

lie within the code. This is equivalent to treating the permuted code bits within an error

event at the output of the interleaver as independent and identically distributed (i.i.d.),

with equiprobable bit values. The resulting estimate of the contribution to the Euclidean

weight enumerator therefore depends only upon the Hamming weight of the word e. The

rationale behind this second assumption is that the system uses a very high-rate linear

encoder, in tandem with the uniform interleaver.

In Section 2.1, we investigate the relationship between the Hamming weight dH(f)

of the interleaved Hamming error word and the squared Euclidean distance d2E(�) =PN
i=1 �i

2 of the corresponding output error word on the dicode channel, h(D) = 1�D.

We then examine the distribution of error events induced by the action of the uniform

interleaver. Using these results, we then derive an estimate for the system performance.

In Section 2.2, we derive the corresponding result for the dicode channel with a

precoder characterized by g(D) = 1=(1�D) .

2.1 Dicode Channel With No Precoder

2.1.1 Error Event Distance Properties

Fig. 2 shows a trellis section for the dicode channel with no precoder. The branch labels

are of the form ci=xi, where ci is the input to the channel at time i, and xi is the

corresponding channel output.

Let f be an error word with Hamming weight l = dH(f), corresponding to a possibly

compound input error event. Referring to Fig. 2, and assuming a �xed initial state for

all codewords, f can be uniquely decomposed into a concatenation of disjoint error sub-

events fi; i = 1; : : : ; m, for some m � 1, consisting of one or more consecutive errors.
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Figure 2: Trellis section for the dicode
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Figure 3: Trellis section for the pre-

coded dicode channel.

Letting li = dH(fi) denote the number of errors in the sub-event, we have l =
Pm

i=1 li:

For i � m� 1, the sub-event fi corresponds to a simple closed error event on the trellis,

diverging from and remerging with the correct path, with no common intermediate states.

For i = m, the corresponding sub-event fm may be either closed or open; in the latter

case the paths diverge and never remerge.

Let ji denote the bit position at which the sub-event fi begins. For a closed sub-event,

the contribution to the squared Euclidean distance is given by

d2E(fi) = 2 + 4

ji+li�1X
k=ji+1

ck � ck�1: (4)

If fm is open, the contribution is

d2E(fm) = 1 + 4

jm+lm�1X
k=jm+1

ck � ck�1: (5)

The compound error event f generates squared Euclidean distance

d2E(f) =

mX
i=1

d2E(fi) = 2m+ 4

mX
i=1

jm+lm�1X
k=ji+1

ck � ck�1 � �(jm + lm � 1�N); (6)

where

�(n) =

�
1 if n = 0

0 otherwise:
(7)

Invoking the assumption regarding the distribution of code bit values in the error

events { namely, that their values are i.i.d. and equiprobable { we obtain an approximate

contribution of an error word f of Hamming weight d to the average Euclidean distance

spectrum. For example, for the case when fm is closed, the result is:

Pr(d2E(f) = 2m+ 4yjd;m; fm closed) =

�
d�m

y

�
0:5d�m: (8)

The derivation of the approximate contribution for the case where fm is open is similar.

2.1.2 Sub-Event Distribution at the Interleaver Output

Let e be an error word with Hamming weight dH(e) = d. A speci�ed interleaver will map e

into an error word f which can be decomposed into m error sub-events, fi; i = 1; : : : ; m,



with corresponding weights li satisfying l =
Pm

i=1 li; as described above. A uniform

interleaver maps the error word e into all
�
N

d

�
possible error words f with equal probability

1=
�
N

d

�
. In this section, we determine the distribution of the number m of sub-events of

f , conditioned upon the Hamming weight d of the error word e, under the action of the

uniform interleaver.

There are
�
d�1
m�1

�
distinct decompositions of a sequence of d elements into m sub-

sequences, each of length at least 1. The number of con�gurations in which these m

subsequences can occur in a word of length N , with consecutive subsequences separated

by at least one position, is given by
�
N�d+1

m

�
, so there are

�
N�d+1

m

��
d�1
m�1

�
weight d words

with m sub-events. Taking into consideration the nature of the sub-event fm, we can

compute the conditional joint probabilities:

Pr(m; fm closedjd) =

�
N�d
m

��
d�1
m�1

�
�
N

d

� (9)

and

Pr(m; fm openjd) =

�
N�d
m�1

��
d�1
m�1

�
�
N

d

� : (10)

2.1.3 Approximation of the Euclidean Weight Enumerator

The approximation �(dE) to the average Euclidean weight enumerator T (dE) can be

computed by substituting (8) and its counterpart for the open case, along with (9) and

(10) into

T (dE) =

NX
k=1

A(k)Pr (dEjdH = k)

=

NX
k=1

A(k)

kX
m=1

(Pr (dEjdH = k;m; fm closed)Pr (m; fm closedjdH = k)

+ Pr (dEjdH = k;m; fm open)Pr (m; fm openjdH = k)) :

(11)

The approximate average input error weight enumerator is similarly computed by

substitution into

w(dE) =
1

T (dE)

NX
k=1

A(k)W (k)

kX
m=1

Pr (dEjdH = k;m)Pr (mjdH = k) ; (12)

where W (k) is the average input weight for codewords of Hamming weight dH = k.

2.2 Precoded Dicode

2.2.1 Error Event Distance Properties

Fig. 3 shows a trellis section for the dicode channel with precoder g(D) = 1=(1 � D) .

The branch labels are of the form ci=xi, where ci is the input to the precoder at time i,

and xi is the corresponding channel output.



Referring to Fig. 3, it can be seen that an error word f may be decomposed into a

sequence of m = ddH(f)=2e simple error sub-events fi; i = 1; : : : ; m. For 1 � i � m� 1,

each sub-event is closed, Sub-event fm may be either closed or open. The length of the

sub-event fi is denoted li, and the Hamming weight of a sub-event satis�es

dH(fi) =

8><
>:
2 i = 1; : : : ; m� 1

2 i = m and dH(f) even

1 i = m and dH(f) odd:

(13)

Let j0i denote the bit position in the word where error event fi begins. For closed events,

let j1i denote the bit position where it terminates. Then li = j1i � j0i + 1 for all closed

sub-events, If fm is open, we de�ne j1m = N + 1, and lm = j1m � j0m. Finally we de�ne

L =
Pm

i=1 li:

For an error event fi, the total contribution d2E(fi) to the squared Euclidean distance

at the channel output is given by

d2E(fi) = dH(fi) + 4

j1
i
�1X

k=j0
i
+1

ck: (14)

The error word f has total squared Euclidean distance

d2E(f) =

mX
i=1

d2E(fi) = dH(f) + 4

mX
i=1

j1
i
�1X

k=j0
i
+1

ck: (15)

We now invoke the assumption regarding the distribution of code bit values in the error

events { namely, that their values are i.i.d. and equiprobable { to obtain an approximate

contribution of an error word f of Hamming weight d to the average Euclidean distance

spectrum. Under this assumption, we obtain

Pr(d2E(f) = zjdH(f) = d; L) =

�
L� d

(z � d)=4

�
0:5L�d: (16)

The i.i.d. approximation is supported for error words f with a small value of L by the

action of the uniform interleaver. For error words with large value of L, the contribution

to the dominant terms of the Euclidean error weight enumerator will be negligible, due

to the low probability of generating small Euclidean distance.

2.2.2 Sub-Event Distribution at the Interleaver Output

Let e be an error word of Hamming weight d. A permuted error word f can be decomposed

intom = dd=2e error events fi, as described in Section 2.2.1. In this section, we determine

the distribution of the total length L of error words generated by the action of a uniform

interleaver upon the error word e.

The distribution is computed in two steps. First, we �nd the number of unique

back-to-back concatenations of m sub-events of total length L. Then, we determine the

number of con�gurations in which the m sub-events can occur in a word of length N .

Consider the following description of the permuted error word f ,

0; : : : ; 0; 11; 01; : : : ; 01; 11; 0; : : : ; 0; : : : ; 1m; 0m; : : : ; 0m; 1m; 0; : : : ; 0;



where the subscript denotes to which sub-event a bit belongs. There are
�
L�d(d�1)=2e�1

b(d�1)=2c

�
unique back-to-back concatenations of sub-events fi of total length L. If d is even,

the remaining N � L bits can be partitioned in
�
N�L+m

m

�
di�erent ways. If d is odd,

the permutation has to end with an open error event, so there are
�
N�L+m�1

m�1

�
possible

permutations.

The conditional distribution Pr(Ljd) of the total length L, given an error word of

Hamming weight dH(e) = d, is therefore given by

Pr(Ljd) =

�
N�L+bd=2c

bd=2c

��
L�1�d(d�1)=2e

b(d�1)=2c

�
�
N

d

� : (17)

2.2.3 Approximation of the Euclidean Weight Enumerator

The approximate Euclidean weight enumerator �(dE) can be computed by substituting

(16) and (17) into

T (dE) =

NX
k=1

A(k)

N�kX
L=k

Pr (dEjk; L)Pr (Ljk) : (18)

In a similar way, the approximate average input error weight enumerator may be

obtained from

w(dE) =
1

T (dE)

NX
k=1

A(k)W (k)

N�kX
L=k

Pr (dEjk; L)Pr (Ljk) : (19)

3 Computed Bounds and Simulation Results

In this section, we compute truncated maximum likelihood (ML) union bound estimates

using the method outlined in the paper, and we compare these with computer simulation

results. We consider two outer encoders: (1) a rate 1/2, recursive systematic convolu-

tional (RSC) encoder with encoder polynomials (31; 33)octal, with parity bits punctured

to yield code rate 8/9; and (2) a rate 4/5 turbo code consisting of a parallel concatenation

of two of the RSC encoders. Both encoders use an information block of size K = 4096.

The decoding technique used in the simulations is iterative, with a posteriori probability

(APP) decoders used for the channel detectors as well as the decoders. Soft information

is shared between all decoders for ten full iterations.

Fig. 4 shows the word error rate (WER) results for the rate 8/9 system, with and

without precoder. Fig. 5 shows the corresponding results for bit error rate (BER).

In Table 1, the Euclidean weight enumerator estimates for the two systems are shown.

(The authors are thankful to Dr. Douglas N. Rowitch [13] for providing us with weight

enumerators.) For the dicode channel, the dominant contributor to the estimated error

rate is the d2E = 4 component; with the precoder, it is the d2E = 2 component.

The interleavers used in the simulations and the uniform interleaver induce di�erent

weight enumerators. Therefore the estimated bounds and the simulation results di�er

and in the case without precoder the simulation curve crosses the bound curve. Fig. 6

compares the BER simulation results with the estimates obtained by applying our ana-

lytical approach to the speci�c interleaver. The �t between the analysis and simulation

is improved, particularly in the precoded case. Without the precoder, accounting for the
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Figure 4: Word error rate union bound esti-
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Figure 5: Bit error rate union bound estimates

and simulation results.

Outer Code Precoded Not Precoded

dH A(dH) d2E �(dE) �(dE)

2 510 2 0.4426 0.1122

3 21421 3 0.02421 0.2274

4 357864 4 0.8084 523.6

5 13192299 5 0.06468 14.25

6 389079383 6 4.255 21864

7 9010184299 7 0.3166 336.1

8 236369355044 8 15.68 386587

Table 1: Hamming and approximate Euclidean weight enumerators for systems with

outer convolutional code.
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Figure 6: Truncated bound estimates for in-

terleaver used vs. simulation result.
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Interleaver 1 2 3 4

BER (6.0 dB) =10�5 0:6610 0:2689 0:0766 0:0407

Table 2: BER with precoder at Eb=N0 = 6:0 dB for three interleavers.

Outer Code Precoded Not Precoded

dH A(dH) d2E �(dE) �(dE)

2 0.031 2 0.000024 0.000006

3 0.462 3 0.000000 0.000000

4 2.111 4 0.000004 0.031273

5 4.100 5 0.000000 0.000000

6 8.842 6 0.000024 0.464084

7 20.337 7 0.000001 0.000000

8 50.743 8 0.000008 2.114827

Table 3: Approximate Hamming and Euclidean weight enumerators for turbo coded

systems.

speci�c interleaver used in the simulation made only a minor di�erence in the dominant

term T (d2E = 4). For smaller Euclidean distances, the relative changes were larger; for

example, for the interleaver used in the simulations, the estimated weight enumerator for

d2E = 2 was 10 times larger than the average.

In contrast, with the precoder, the interleaver choice has a signi�cant impact upon

the estimate of the dominant term T (d2E = 2). For the interleaver used, we computed

the contribution made to the estimated Euclidean weight enumerator by error events of

length L � 15 corresponding to error words of Hamming weight dH = 2. The result was

approximately 10 times the contribution of the average interleaver, leading to substantial

improvement in the accuracy of the estimated error rate.

The impact of the interleaver in the precoded case is further re
ected in simulation

results for three additional interleavers. Table 2 shows their BER values at Eb=N0 = 6:0

dB. The table suggests that suitable interleaver design can signi�cantly improve the

system performance.

Fig. 7 shows analytical BER estimates and simulation results for the rate 4/5 turbo

coded systems. The Hamming weight enumerator and the estimated Euclidean weight

enumerator for the turbo-coded system are shown in Table 3.

The bound for the precoded system is much lower at SNR up to about EB=N0 = 9:5

dB. However, in simulations, the system without precoder is superior down to Pb �

2 � 10�7, at which point the simulated BER curve 
attens out and tends to follow the

analytical curve. In fact, above 4.7 dB, the precoded system becomes superior to system

without the precoder, as predicted by the analysis. The explanation for the behavior

observed at very low SNR remains an open issue.

4 Conclusions

We have presented an analytical method for estimating the average Euclidean distance

spectrum for a serial concatenated, trellis-coded partial response channel. The technique

was applied to the dicode channel, with and without precoding. Using truncated union



bounds, we derived analytical BER and WER results and compared them to computer

simulations.

Future research directions are to bound the e�ect of the i.i.d. assumption, develop

methods for higher order channels, and include the entire Hamming distance spectrum

in the computations.
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