
Adaptive Linear Programming Decoding of
Polar Codes

Veeresh Taranalli and Paul H. Siegel
University of California, San Diego, La Jolla, CA 92093, USA

Email: {vtaranalli, psiegel}@ucsd.edu

Abstract—Polar codes are high density parity check codes
and hence the sparse factor graph, instead of the parity check
matrix, has been used to practically represent an LP polytope
for LP decoding. Although LP decoding on this polytope has
the ML-certificate property, it performs poorly over a BAWGN
channel. In this paper, we propose modifications to adaptive cut
generation based LP decoding techniques and apply the modified-
adaptive LP decoder to short blocklength polar codes over a
BAWGN channel. The proposed decoder provides significant
FER performance gain compared to the previously proposed LP
decoder and its performance approaches that of ML decoding
at high SNRs. We also present an algorithm to obtain a smaller
factor graph from the original sparse factor graph of a polar
code. This reduced factor graph preserves the small check node
degrees needed to represent the LP polytope in practice. We show
that the fundamental polytope of the reduced factor graph can
be obtained from the projection of the polytope represented by
the original sparse factor graph and the frozen bit information.
Thus, the LP decoding time complexity is decreased without
changing the FER performance by using the reduced factor graph
representation.

I. INTRODUCTION

Polar codes, first introduced in [1], were shown to be
capacity-achieving for binary input memoryless output sym-
metric channels. However, their performance on a binary addi-
tive white gaussian noise channel (BAWGNC) with successive
cancellation (SC) decoding is unimpressive at practical block-
lengths. Thus, improving their performance either by improved
decoding algorithms or modified constructions of polar codes
has been a recent topic in coding theory. The most notable
improvement in error rate performance was observed using
the successive cancellation list (SC-List) decoding algorithm
proposed in [2]. Alternatively, a cyclic redundancy check
(CRC) concatenated polar code with SC-List decoding was
also shown to improve the performance significantly [2].

Linear Programming (LP) decoding has been a research
topic in coding theory and is attractive mainly because of
its maximum likelihood (ML)-certificate property [3]. It was
introduced for polar codes in [4] where the sparse factor
graph was used to represent the LP polytope instead of the
high density parity check matrix. For polar codes over a
binary erasure channel (BEC), it was shown that LP decoding
achieves capacity and also outperforms SC decoding at finite
blocklengths [4]. However, for a BAWGNC, the LP decoder
in [4] is suboptimal and performs very poorly. Adaptive LP
decoding techniques were proposed in [5], [6] to improve the

decoding time complexity as well as the error rate perfor-
mance. Based on these techniques, we propose modifications
to the adaptive cut generation based LP decoder in [6] that
significantly improve its error rate performance for polar codes
over a BAWGNC. We then present an algorithm to obtain
a smaller factor graph representation of a polar code called
the reduced factor graph, which decreases the representation
complexity of the fundamental polytope and hence improves
the decoding time complexity of the modified-adaptive LP
decoder.

In Section II, we review the LP decoding of polar codes
proposed in [4]. In Section III, we review the adaptive
LP decoding techniques [5], [6] and describe the proposed
modified-adaptive LP decoder for short blocklength polar
codes, along with simulation results. In Section IV, we present
the algorithm for reducing a polar code sparse factor graph.

II. LP DECODING OF POLAR CODES

Consider a binary linear code Cl of length N and rate
r = k

N , where k < N is the number of information bits
in a codeword. Let H denote a parity check matrix for Cl.
Suppose a codeword x ∈ Cl is transmitted over a binary input
memoryless output symmetric channel and y is the received
vector. ML decoding is equivalent to solving the optimization
problem [3]:

minimize γTx subject to x ∈ Cl (1)

where xi ∈ {0, 1}, i ∈ 1, . . . , N and γ is the vector of log-
likelihood ratios (LLR) defined as

γi = log

(
Pr(yi|xi = 0)

Pr(yi|xi = 1)

)
. (2)

In [3], the ML decoding problem (1) was relaxed to a linear
programming (LP) problem, where the relaxed polytope, also
known as the fundamental polytope Q has both integral and
non-integral vertices. The polytope Q is defined by linear
inequalities, also referred to as constraints, generated from
each row j of the parity-check matrix H, given by∑

i∈V
xi −

∑
i∈N (j)\V

xi ≤ |V | − 1 (3)

∀ V ⊆ N (j) s.t. |V | is odd

where N (j) is the support of the row j of H. This polytope
Q has the ML-certificate property which guarantees that an

integral solution of the LP problem would be a valid ML
codeword. The number of constraints needed to define the
polytopeQ is exponential in the maximum parity-check degree
of H, i.e., O(2

max
j
|N (j)|

).
Let a polar code C be constructed using the channel

polarization transform of length N = 2m proposed in [1],
which is denoted by a matrix GN, where GN = BNG2

⊗m,
G2 =

[
1 0
1 1

]
, the operator ⊗m represents the m-times Kro-

necker product of G2, and BN is the bit-reversal permutation
matrix defined in [1]. Assuming all the N − k frozen (non-
information) bits in C are set to 0, a parity check matrix H for
C can be constructed by selecting the columns corresponding
to the frozen bit indices in GN as the parity checks [4]. Thus,
H consists of high density rows with the maximum possible
parity-check degree being N . Hence, the number of constraints
needed to define the polytope Q as per (3) is O(2N−1). This
is clearly impractical for all but very short length polar codes.
It was also shown in [4] that LP decoding on the fundamental
polytope Q will fail for a BEC(ε), binary symmetric channel
BSC(p) or a BAWGNC(σ), even if the polytope Q could be
represented in practice.

A sparse factor graph representation with O(N logN) aux-
iliary variable nodes was proposed in [1] for the polar code C.
An example sparse factor graph for N = 8 is shown in Fig. 1.
It is easy to see that there are only degree-3 or degree-2 check
nodes in the sparse factor graph. Let HP denote the adjacency
matrix of the sparse factor graph where the rows and columns
represent the check and variable nodes, respectively. The LP
polytope P is defined as the intersection of local minimal
convex polytopes of each row (parity check) in HP and the set
of cutting planes corresponding to the frozen column indices
(variable nodes) in HP [4]. Using the polytope P , an LP
decoder for the polar code C as proposed in [4] is given by

minimize γT x̄

subject to x ∈ P ⊆ [0, 1]N(1+logN) (4)

where x̄ is defined as the first N component subset
of x and corresponds to the codeword variable nodes,
x̄i = xi ∀ i ∈ {1, . . . , N}. Similarly, the projection of
polytope P is defined [4] as

P̄ = {x̄ ∈ [0, 1]N | ∃ x̂ s.t. (x̄, x̂) ∈ P} (5)

It was shown that if the projection x̄ (on P̄) of the LP decoder
output vector x in (4) is integral then it is guaranteed to be the
ML codeword i.e., LP decoding on the polytope P as defined
in (4) has the ML-certificate property (Lemma 3 in [4]). It
was also shown (Theorem 1 in [4]) that the projection P̄ of
polytope P is tighter than the fundamental polytope Q.

III. ADAPTIVE LP DECODING OF POLAR CODES

A. Adaptive LP Decoding of a Binary Linear Code

An Adaptive LP (ALP) decoder for binary linear codes
solves a sequence of LP decoding problems with the addition
of intelligently chosen constraints called cuts at every itera-
tion [5]. A cut at a point x ∈ [0, 1]N is a violated constraint

u0 = s3,0

u4 = s3,1

u2 = s3,2

u6 = s3,3

u1 = s3,4

u5 = s3,5

u3 = s3,6

u7 = s3,7

s2,0

s2,1

s2,2

s2,3

s2,4

s2,5

s2,6

s2,7

s1,0

s1,1

s1,2

s1,3

s1,4

s1,5

s1,6

s1,7

s0,0 = x0

s0,1 = x1

s0,2 = x2

s0,3 = x3

s0,4 = x4

s0,5 = x5

s0,6 = x6

s0,7 = x7

Fig. 1. Sparse factor graph representation of a length-8 polar code.

at x derived from a check node. An ALP decoder starts by
solving the initial LP with the constraints

xi ≥ 0 if γi ≥ 0; xi ≤ 1 if γi < 0 (6)

The solution of this initial LP coincides with the output of a
hard decision decoding of the received LLR values. The ALP
decoder then searches constraints from all parity checks to
find cuts, adds the cuts to the LP and solves the resulting
LP. This procedure is repeated until an integer solution is
obtained or no further cuts can be found. Violated constraints
or cuts can also be generated using redundant parity checks
(RPCs). RPCs are obtained by the modulo-2 addition of parity
checks in the parity check matrix of the code. The addition
of cuts from RPCs during the LP decoding iterations can only
tighten the LP polytope and hence can only improve the error
rate performance. In [6], efficient algorithms to perform the
cut-search on parity checks and to find cut-inducing RPCs
were proposed. Based on these algorithms, an adaptive cut
generation based LP (ACG-ALP) decoder (Algorithm 2 in [6])
was proposed. Next, we present modifications to the ACG-
ALP decoder which make it suitable for decoding polar codes.

B. Modified ACG-ALP Decoder for Polar Codes
A polar code can be defined using the sparse factor graph

(HP) with the frozen bit information or the parity check
matrix (H). The availability of these two representations
motivates the idea of modifying the ACG-ALP decoder (Al-
gorithm 2 in [6]) to improve its performance when compared
to a LP decoder. The ACG-ALP decoder uses the parity check
matrix to generate constraints and cuts. RPCs and cuts from
these RPCs are also derived from the parity check matrix
by the ACG-ALP decoder. Based on these observations, we
investigate four ways of using the sparse factor graph and the
parity check matrix representations in the ACG-ALP decoder:

1. Use the unmodified ACG-ALP decoder with the parity
check matrix H.

2. Use HP as the parity check matrix in the ACG-ALP
decoder. Add the frozen bit constraints to the inital-LP.

3. Initialize the ACG-ALP decoder with the polytope P
and generate subsequent cut-inducing RPCs from HP .

4. Initialize the ACG-ALP decoder with the polytope P
and generate subsequent cut-inducing RPCs from H.

Note that the ACG-ALP decoders 1 and 2 do not use con-
straints from parity checks in defining the initial LP. Hence,

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
A

ve
ra

ge
T

im
e

(s
ec

on
d

s)

ACG-ALP-1

ACG-ALP-3

ACG-ALP-4

Fig. 2. Average time for decoding one codeword of a (64, 32) polar code
over a BAWGN channel with ACG-ALP decoding.

these decoders are expected to have a larger average decod-
ing time complexity compared to the ACG-ALP decoders 3
and 4, as shown in Fig. 2. Due to its large decoding time
complexity, the simulation results corresponding to the ACG-
ALP decoder 2 could not be obtained. We have empirically
observed that the other three ACG-ALP decoders (1, 3, 4)
perform equally well in terms of the frame error rate (FER)
performance but the ACG-ALP decoder 4 has the smallest
average decoding time complexity. Hence, we select this
modified decoder for decoding polar codes (ACG-ALP-Polar)
as shown in Algorithm 1.

Algorithm 1 ACG-ALP decoding algorithm for Polar codes
Input: γ, HP , frozen bit indices, H
Output: Optimal solution of the current LP problem

1: Initialize the LP problem with the constraints obtained
from HP and frozen bit information.

2: Solve the current LP problem to get the solution x∗.
3: if x∗ is nonintegral then
4: Construct cut-inducing RPC matrix H̃ from H [6].
5: Apply the cut-search algorithm (Algorithm 1 in [6]) to

each row of H̃.
6: if No cut is found then
7: Terminate.
8: else
9: Add the cuts found to the LP problem, go to line 2.

C. Simulation Results

Fig. 3 and Fig. 4 show the FER performance over a
BAWGNC of rate-0.5 length-64 and length-128 polar codes,
respectively. The performance of the proposed ACG-ALP-
Polar decoder is compared with the previously proposed
LP decoder for polar codes [4], the SC and the SC-List
decoders [2]. We choose a list size = 32 for the SC-List
decoder (SC-List-32) as it is known to have performance close
to the ML lower bound [2]. The polar codes are constructed
using the bit channel degrading merge algorithm presented
in [7] optimized for a BAWGN channel with signal-to-noise

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−4

10−3

10−2

10−1

100

F
ra

m
e

E
rr

or
R

at
e

(F
E

R
)

SC Decoder

SC-List Decoder, List size = 32

LP Decoder

ACG-ALP-Polar Decoder

ML Lower Bound

Fig. 3. FER performance of a (64, 32) polar code over a BAWGN channel.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−4

10−3

10−2

10−1

100

F
ra

m
e

E
rr

or
R

at
e

(F
E

R
)

SC Decoder

SC-List Decoder, List size = 32

LP Decoder

ACG-ALP-Polar Decoder

ML Lower Bound

Fig. 4. FER performance of a (128, 64) polar code over a BAWGN channel.

ratio, SNR (Es/N0) = 3.0 dB. The proposed decoder uses the
LP solver in the CVXOPT package [8]. A total of 200 frame
errors were recorded at each Eb/N0 point. We also show an
ML lower bound obtained using the ML-certificate property
of the proposed decoder. The ACG-ALP-Polar decoder shows
a significant improvement in performance compared to the LP
decoder for both polar codes. For the length-64 polar code, the
ACG-ALP-Polar decoder performance is very close to the ML
lower bound. However, for the length-128 polar code, there
is a performance gap in the lower SNR region. The ACG-
ALP-Polar decoder performs better than the SC decoder for
both polar codes studied. Compared to the SC-List-32 decoder,
the ACG-ALP-Polar decoder performs equally well for the
(64, 32) polar code while its performance is worse in the low
SNR region for the (128, 64) polar code. Although the ACG-
ALP-Polar decoder shows promise in FER performance, we
have empirically observed that its decoding time complexity
is larger than that of the SC-List-32 decoder especially in the
low SNR region and is prohibitively high for moderate to long
blocklength polar codes.

IV. POLAR CODE SPARSE FACTOR GRAPH REDUCTION

Due to its recursive structure the polar code sparse fac-
tor graph has some redundant variable nodes connected to
degree-2 check nodes. We use this redundancy and the frozen

bit information to propose an algorithm for reducing the
number of constraints needed to represent the sparse factor
graph based LP polytope P . Simulation results show that the
new reduced factor graph representation can be used in the
ACG-ALP-Polar decoder to achieve an improvement in the
time complexity.

A. Polar Code Sparse Factor Graph Reduction Algorithm

The sparse factor graph, the set of frozen bit indices and
their values define the polar code. The set of frozen bit indices
is obtained using a polar code construction technique [7]. We
assume that all frozen bits are set to 0.

(a) Z-shaped structure (b) Propagate frozen bit-pairs and
eliminate

(c) Single frozen bit (d) Remove a degree-2 check node

Fig. 5. Reducing a polar code sparse factor graph.

Every pair of degree-2 and degree-3 check nodes in the
sparse factor graph is interconnected through a Z-shaped
structure shown in Fig. 5(a), referred to as a Z-structure.
The possible configurations of frozen variable nodes in a Z-
structure are:

1. Both the variable nodes on the left are frozen.
2. Only a single variable node is frozen and due to the

channel polarization principle, this must be the degree-1
variable node on the left.

In case (1), we propagate the left frozen variable node values
(0’s in this case) to the right variable nodes of the Z-structure
and eliminate the Z-structure as shown in Fig. 5(b). We
note that this step is similar to the one proposed in the
simplified successive cancellation decoder [9] used to reduce
the complexity of the SC decoder. We are left with Z-structures
in the graph where only a single bit is frozen i.e., the case (2).
We reduce such a Z-structure by replacing it with a degree-2
check node as shown in Fig. 5(c). Now, there are no more
frozen variable nodes in the factor graph and hence starting at
the code bit variable nodes on the right, we iteratively reduce
degree-2 check nodes as shown in Fig. 5(d).

Next, we show that for LP decoding, the polar code sparse
factor graph can be reduced further by eliminating degree-1
auxiliary variable nodes and their check node neighbors from
the graph.

Lemma 1: The constraints from a parity check node which
is connected to a degree-1 auxiliary variable node in the polar
code sparse factor graph do not affect the LP decoder solution
and hence the degree-1 auxiliary variable node and its check
node neighbor can be deleted from the graph.

Proof: From the formulation of LP decoding for polar
codes ((4) in Section II), we know that the LP decoder
objective function is independent of the auxiliary variable
nodes (which do not correspond to codeword bits). Hence a

x0 x1 x2 x3 x4 x5 x6 x7

x8

x9

Fig. 6. Reduced factor graph (RFG) of a (8, 4) polar code.

degree-1 auxiliary variable node is free to be assigned any
feasible value by the LP solver and can be deleted from the
graph.

The steps for reducing a polar code sparse factor graph are
described in Algorithm 2. Assuming u0, u1, u2, u4 (Fig. 1)
are the frozen bits, the reduced factor graph (RFG) of a (8, 4)
polar code sparse factor graph obtained using Algorithm 2 is
illustrated in Fig. 6.

Algorithm 2 Reduce Polar Code Sparse Factor Graph
Input: Polar code sparse factor graph HP , frozen bit indices
Output: Reduced factor graph

1: Step 1: Propagate frozen variable node pairs as shown in
Fig. 5(b) and eliminate the corresponding Z-structures.

2: Step 2: Replace Z-structures containing a single frozen
variable node with degree-2 check nodes. (Fig. 5(c))

3: Step 3: For each degree-2 check node, delete a variable
node neighbor connecting all its neighboring check nodes
to the other variable node neighbor. (Fig. 5(d))

4: Step 4: Iteratively delete degree-1 auxiliary variable nodes
and their check node neighbors until no further degree-1
auxiliary variable nodes exist.

Let HR be a parity-check matrix representation of the polar
code reduced factor graph. We show that HR has small degree
check nodes necessary to represent the LP polytope efficiently.

Lemma 2: A polar code reduced factor graph HR consists
of only degree-3 check nodes.

Proof: We refer to the steps of Algorithm 2 for this
proof. A polar code sparse factor graph has only degree-2
and degree-3 check nodes. Step 1 deletes check nodes in Z-
structures with two frozen bits (Fig. 5(b)) and hence does not
change the degree of any other check nodes. Step 2 operates on
Z-structures with a single frozen bit (Fig. 5(c)) and deletes the
degree-2 check node while reducing the degree of the degree-3
check node by 1. Step 3 iteratively deletes degree-2 check
nodes and does not affect the degree-3 check nodes. Hence,
we are left with only degree-3 check nodes in the factor graph.
Step 4 deletes the degree-1 auxiliary variable nodes and their
check node neighbors. Therefore, the reduced factor graph HR
consists of only degree-3 check nodes.

Theorem 1: Let R be the fundamental polytope of the
reduced factor graph HR of a polar code C. Then,
R ⊂ [0, 1]d, where d = f(N, r) is the dimension of the
vectors in R and is a function of the polar code blocklength
N and the rate r. Let P be the polytope obtained from the

original sparse factor graph and the frozen bit information
of C and let P̃ be the projected polytope obtained from the
projection of vectors in P onto the d variables in HR. Then,

R = P̃ (7)

Proof: First we show that P̃ ⊆ R i.e., every vector in
polytope P̃ is also in polytope R. Consider a vector u ∈ P; its
projection of length d, ũ ∈ P̃ , can be constructed by deleting
the components of u corresponding to the variable nodes
deleted in Algorithm 2. It is clear that no step in Algorithm 2
requires a change in the value of a variable node which is not
deleted and hence ũ ∈ R. Next, we show that R ⊆ P̃ . Let
v ∈ R; then v satisfies all the parity checks in HR. From
the proof of Lemma 2, we know that there are degree-3 parity
checks without frozen variable node neighbors in the original
sparse factor graph which cannot be reduced. In HR, even
though the variable node indices participating in these checks
may be different from those in HP , the parity checks remain
unchanged because there is one representative variable node
for a group of deleted variable nodes which were constrained
to take on the same values. Hence, the set of parity checks
in HR is a subset of the parity checks in HP and v ∈ P̃ .
Therefore, R = P̃ .

LP decoding on the polytope P has the ML-certificate
property [4] and from Theorem 1 it follows that the polytope
R also has the ML-certificate property. We replace the matrix
HP with HR in the ACG-ALP-Polar decoder (Algorithm 1).
The size of the matrix HR is strictly smaller than that of
HP for any polar code of rate < 1. Hence the decoding time
complexity of the ACG-ALP-Polar decoder can only decrease
by using the reduced factor graph.

B. Simulation Results

We present simulation results using the reduced factor graph
representation in the ACG-ALP-Polar decoder for the two
polar codes discussed in Section III-C. The FER performance
is unchanged (Fig. 3 and Fig. 4) and hence is not shown.
However, as Fig. 7 shows, the decoding time complexity is
decreased when using the reduced factor graph representation.
Compared to the SC-List-32 decoder, the ACG-ALP-Polar
decoder with the reduced factor graph has a lower average
decoding time complexity at higher SNRs. The reduction in
the representation complexity of polar codes using the reduced
factor graph is shown in Fig 8.

V. CONCLUSION

We proposed modifications to the ACG-ALP decoder [6]
which make it suitable for decoding short to moderate length
polar codes with FER performance close to the ML per-
formance. This indicates that with the proper polytope rep-
resentation, LP decoding works well for polar codes over
a BAWGNC. We also presented an algorithm to generate
an efficient reduced factor graph representation of a polar
code. This reduced factor graph decreases the decoding time
complexity of the ACG-ALP-Polar decoder without degrading
its error rate performance.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10−2

10−1

100

101

102

A
ve

ra
ge

T
im

e
(s

ec
on

d
s)

(128, 64) Polar Code(128, 64) Polar Code(128, 64) Polar Code

(64, 32) Polar Code(64, 32) Polar Code(64, 32) Polar Code

ACG-ALP-Polar Decoder (OFG)

ACG-ALP-Polar Decoder (RFG)

SC-List Decoder, List size = 32

ACG-ALP-Polar Decoder (OFG)

ACG-ALP-Polar Decoder (RFG)

SC-List Decoder, List size = 32

Fig. 7. Average time for decoding one codeword of a (64, 32) and (128, 64)
polar code over a BAWGN channel. OFG – with original factor graph; RFG –
with reduced factor graph.

6 7 8 9 10 11 12

m = log2(N)

102

103

104

105

N
u

m
b

er
of

V
ar

ia
b

le
N

o
d

es

OFG

RFG, r = 0.5

RFG, r = 0.7

RFG, r = 0.9

Fig. 8. Representation complexity (d = f(N, r)) for polar codes using
the original sparse factor graph (OFG) and the reduced factor graph (RFG).

ACKNOWLEDGMENT

The authors would like to thank Aman Bhatia for helpful
discussions. This work was supported in part by the Center for
Magnetic Recording Research at the University of California,
San Diego and the Western Digital Corporation.

REFERENCES

[1] E. Arikan, “Channel Polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), August 2011.

[3] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51,
no. 3, pp. 954–972, March 2005.

[4] N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar
codes,” in Proc. IEEE Inf. Theory Workshop (ITW), August 2010.

[5] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,” IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5396–
5410, December 2008.

[6] X. Zhang and P. H. Siegel, “Adaptive cut generation algorithm for
improved linear programming decoding of binary linear codes,” IEEE
Trans. Inform. Theory, vol. 58, no. 10, pp. 6581–6594, October 2012.

[7] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inform.
Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[8] M. S. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A python
package for convex optimization, version 1.1.6. Available at cvxopt.org,”
2013.

[9] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Communications Letters,
vol. 15, no. 12, pp. 1378–1380, December 2011.

