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Abstract

We present a universal coding scheme, based on polar codes, that can achieve the compound capacity

of any finite set of binary-input asymmetric channels. The scheme is a hybrid combination of Honda

and Yamamoto’s polar coding scheme for asymmetric channels and a universal polar coding scheme for

symmetric channels proposed by Hassani and Urbanke. In the proposed universal construction for the

asymmetric setting, we exploit the staircase structure in the universal scheme for symmetric channels

[5] to define a coding strategy that requires neither storage-intensive shared boolean functions nor a

side-channel between encoder and decoder in order to transmit bits corresponding to bit-channels that

are not completely polarized. We need a condition that the cardinality of the intersection of good bit-

channels will be greater than the cardinality of not completely polarized bit-channels in our staircase

construction. If the condition is not satisfied, we propose to make use of another universal polar coding

scheme based on bit-channel combining [5] to produce a hybrid polar block which satisfies the required

condition and we use such a block in the staircase scheme. In particular, we present an algorithm based

on this scheme to produce a hybrid polar block of length at most 2s−1 times the original polar block

length for satisfying the desired condition, where s is the number of DMCs in the compound channel.

Keywords: Polar codes, binary-input asymmetric channel, compound channel

I. INTRODUCTION

Arikan [1] constructed capacity-achieving codes for binary-input symmetric channels. A capacity-

achieving coding scheme based on source and channel polarization for binary-input asymmetric

channels was proposed by Honda and Yamamoto [7] which, following Mondelli et al. [8], we
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refer to as the integrated scheme. In this scheme, boolean functions are shared between encoder

and decoder for non-information carrying bit-channels, requiring exponential storage complexity.

En Gad et al. [4] used randomized rounding for low entropy and not completely polarized bit-

channels. In addition, a side channel was used to reliably transmit bits corresponding to not

completely polarized bit-channels whose fraction is vanishing with respect to the block length.

This reduces the storage requirement to polynomial complexity. It was noted in [8] that better

simulation results were achieved when an argmax rule was used in place of randomized rounding

to encode low-entropy bits, an observation subsequently confirmed analytically by Chou and

Bloch [2].

A compound channel is a set of discrete-memoryless channels (DMCs), (X , {ps(y|x) : s ∈

S},Y) where y ∈ Y for every state s in the set S. The compound channel can be looked

at as a DMC with state, where the state is arbitrarily selected and fixed for the transmission

of an entire block. The assumption is that the decoder knows the channel state. Hassani and

Urbanke [5], [6] presented two “polar-like” universal coding schemes to achieve rates close to the

compound capacity of binary-input symmetric DMCs. In this paper, we present a universal polar

coding scheme for the asymmetric setting that combines elements of the integrated scheme in [7]

and the staircase construction in [5], [6] when the compound capacity-achieving distribution is

non-uniform. Our modifications to these constructions eliminate the need for using either storage-

intensive shared Boolean functions or a separate side channel to transmit bits corresponding to

bit-channels that are not completely polarized.

In Section II we introduce some notation and recall some background results. In Section

III we reformulate the integrated scheme for achieving the capacity of binary-input asymmetric

channels in [7], [4]. In Section IV we describe the universal polar coding scheme for binary-input

asymmetric DMCs that uses a modification of the staircase construction in [5] to simplify the

encoding and decoding of incompletely polarized bit-channels. We initially assume a condition

on the polar block for the compound channel. If the condition is not satisfied by the polar

block, we propose to instead use a hybrid polar block in the staircase that is produced using

a universalization technique based on bit-channel combining [5] for satisfying the required

condition. In Section V, we propose an algorithm to produce the hybrid polar block at a specified

block length for the staircase scheme. In Section VI, we illustrate the encoding and decoding

method in the case of compound channel with two states for a block produced after the first step
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of the recursive procedure in the universalization technique based on bit-channel combining.

II. PRELIMINARIES

We denote the input alphabet of the compound channel by X = {0, 1} and the output alphabet

by Y . We express any set of random variables Xi, Xi+1, . . . , Xj (i < j) by a row vector

(Xi, Xi+1, . . . , Xj) which is denoted by X i:j . We denote the set {1, 2, 3, . . . , N} by [N ]. We

denote the set {i, i + 1, · · · , j} by [i : j] (i < j). Let U1:N be a row vector and let A ⊂ [N ].

The row vector consisting of elements in U1:N corresponding to the positions in A is denoted

by UA. We use the abbreviation "w.p." for "with probability".

Let S = {1, 2, . . . , s}, s ∈ N, be a set of DMCs which are characterized by the conditional

distributions pl(y|x), l ∈ S. Let (X1, Y1), (X2, Y2), ..., (XN , YN) be identical and independent

(iid) random tuples distributed according to PX(x)pl(y|x), where l ∈ S and N = 2n. Let GN be

the conventional polar transformation [1], represented by a binary matrix of dimension N ×N .

If U1:N = X1:NGN , then we denote P(U1:N = u1:N) by PU1:N (u1:N) and similarly we denote

P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N) by PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N). For two random variables

(X, Y ) distributed as PX(x)pl(y|x), the Bhattacharya parameter is defined as

Z(X|Y ) = 2
∑
y

PY (y)
√
PX|Y (1|y)PX|Y (0|y).

Let β < 0.5 and define the following subsets obtained by polarization, with notation adapted

from [4].

HX = {i ∈ [N ] : Z(Ui|U1:i−1) ≥ 1− 2−N
β}.

LX = {i ∈ [N ] : Z(Ui|U1:i−1) ≤ 2−N
β}.

HX|Yl = {i ∈ [N ] : Z(Ui|U1:i−1Y 1:N) ≥ 1− 2−N
β}.

LX|Yl = {i ∈ [N ] : Z(Ui|U1:i−1Y 1:N) ≤ 2−N
β}.

Note that LX ⊆ LX|Yl , l ∈ S. From Theorem 1 in [7] we have the following results.

lim
N→∞

1

N
|HX | = H(X).

lim
N→∞

1

N
|LX | = 1−H(X).

lim
N→∞

1

N
|HX|Yl | = H(X|Y ).

lim
N→∞

1

N
|LX|Yl | = 1−H(X|Y ).
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We define several other subsets of bit-channels as follows.

Il = HX ∩ LX|Yl

Fl = HX ∩ LcX|Yl

D = LX

R = (HX ∪ LX)c

We refer to these as good, bad, deterministic, and not completely polarized bit-channels, respec-

tively. The capacity of a compound channel is well known [3, p. 172] and is given by

Cc = max
PX(x)

min
l∈S

I(X;Y ).

where (X, Y ) is distributed as PX(x)pl(y|x). The compound capacity-achieving distribution

could be non-uniform only if at least one of the DMCs in S is asymmetric. In this paper, we

consider universal polar coding with non-uniform input distribution.

Example:

Let S = {1, 2}. Let DMC 1 be a Z-channel with cross-over probabilities p(0|1) = 0.5, p(1|1) =

0.5 and p(0|0) = 1. Let DMC 2 be a binary erasure channel with erasure probability 0.5. Here

I(X;Y2) dominates I(X;Y1) for all input distributions. Hence the compound capacity-achieving

distribution is same as the capacity-achieving distribution of DMC 1. If X is distributed as

Bernoulli(α), then mutual information becomes I(X;Y1) = H(Y1)−H(Y1|X) = H(α
2
)−α. The

derivative of mutual information w.r.t α becomes d
dα
I(X;Y1) = 1

2
log(1−α/2

α/2
)−1. By equating the

derivative to zero, we get α = 2/5. This gives the capacity-achieving distribution for DMC 1 as

mutual information is concave in α. It will also be the compound capacity-achieving distribution

for the compound channel S. Therefore the compound capacity of S is H(1/5)− 2/5 = 0.322.

III. POLAR CODING FOR BINARY-INPUT ASYMMETRIC CHANNELS USING INTEGRATED

SCHEME

In this section, we present the capacity-achieving asymmetric channel coding scheme based

upon [7], [4], [2] which is used as a building block in our proposed universal polar coding scheme.

Let the asymmetric DMC be characterized by p(y|x) and let p(x) be the non-uniform capacity-

achieving input distribution. We use the same notation as in Section II with the substitution of

I and F for Il and Fl respectively as we are considering here the single channel case. Now we

describe the encoding and decoding procedure.
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A. Code construction

We first generate random function f : F → {0, 1}, where each f(j), j ∈ F is chosen

independently and uniformly. These frozen bits are shared between encoder and decoder.

We also generate independent random boolean functions λi : {0, 1}i−1 → {0, 1} for each i ∈ R

by using the following probability rule:

λi(u
1:i−1) = u w.p. PUi|U1:i−1(u|u1:i−1), for u ∈ {0, 1}

independently for each u1:i−1. Let the set of random functions be denoted by λR. These functions

are shared between encoder and decoder, which can require exponential storage complexity. The

encoding algorithm is described as follows.

Encoding

Input: Uniformly distributed message M1:|I|

Output: codeword X1:N

for i = 1 : N , encode Ui as follows.

1. If i ∈ I , the value of Ui is given by setting U I = M1:|I|.

2. If i ∈ F , we set Ui = f(i).

3. If i ∈ D, we encode Ui using the argmax rule [2]

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

4. If i ∈ R, we set Ui = λi(U
1:i−1).

end

Transmit X1:N = U1:NGN .

The decoding algorithm is as follows.

Decoding

Input: received vector Y 1:N

Output: message estimate M̂1:|I|

for i = 1 : N

1. If i ∈ F , set Ûi = f(i)

2. If i ∈ LX ∪ I , set
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Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1, Y 1:N) ≥ PUi|U1:i−1,Y 1:N (0|Û1:i−1, Y 1:N)}

3. If i ∈ R, set Ûi = λi(Û
1:i−1).

end

Decode M̂1:|I| = Û I .

For i ∈ D, the induced conditional distribution δi(u|u1:i−1) on Ui given U1:i−1 satisfies δi(u|u1:i−1) = 1

and δi(u+ 1|u1:i−1) = 0 where

u = argmaxx∈{0,1}PUi|U1:i−1(x|u1:i−1).

The ensemble average distribution of U1:N is

E(λR,f)[P(U1:N = u1:N |(λR, f))] = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LXδi(ui|u1:i−1).

This average distribution is O(2−N
β′

) close in total variation distance to the distribution when

X1:N is an i.i.d. random vector, for β′ < 0.5. Therefore, the decoding method is reliable,

with average probability of error E(λR,f)[Pe(λR, f)] = O(2−N
β′

) [7]. In [4], use of a side-

channel is proposed for bit-channels (HX ∪ LX|Y )c as an alternative to sharing boolean func-

tions. In contrast to [4] we propose sharing boolean functions for bit-channels (HX ∪ LX)c

to enable the use of this scheme for universal coding. The quantities PUi|U1:i−1(u|u1:i−1) and

PUi|U1:i−1,Y 1:N (u|u1:i−1, y1:N) used during encoding and decoding can be computed in O(N logN)

real operations using techniques in [7].

IV. STAIRCASE SCHEME WITH NON-UNIFORM INPUT DISTRIBUTION

Let p(x) be the non-uniform compound capacity-achieving distribution for compound channel

S. Consider the good bit-channels Il and bad bit-channels Fl for l ∈ S, as well as the deterministic

channels D and not competely polarized channels R. Note that |R| is a vanishing fraction with

respect to the block length as N increases.

Let L = min{|I1|, |I2|, . . . , |Is|}. Clearly, limN→∞
L
N

= Cc. If the inequality |I1∩I2∩. . .∩Is| ≤

L is strict, then not all channels in the set S share the same set of good bit-channels. By

assigning message bits to indices in I1 ∩ I2 ∩ . . . ∩ Is, uniform random frozen bits to indices

in HX − (I1 ∩ I2 ∩ . . . ∩ Is), and encoded bits derived using the same coding scheme as in

Section III, we can get a reliable code, but it will not be capacity-achieving.

Note that Fl ∪ Il = HX for all l ∈ S. This implies that for any channels l,m ∈ S, l 6= m, a

bit-channel which is good for channel l and not good for channel m will be a bad bit-channel
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for channel m. This fact will enable us to adapt the universal coding scheme for symmetric

channels [5] to the asymmetric case and to construct codes that achieve rates close to L
N

. As in [5],

[6], we use a staircase composed of polar blocks to achieve rates close to L
N

and universality. We

exploit the staircase structure to avoid sharing storage-intensive boolean functions for encoding

bits corresponding to not completely polarized indices in R. To do so, we initially assume

|I1∩ I2∩ ....∩ Is| ≥ |R|, an assumption that will be relaxed in Section V. Take I ′ to be a subset

of I1 ∩ I2 ∩ .... ∩ Is such that |I ′| = |R|. Define an arbitrary bijection g : I ′ → R. Now we are

ready to present the rigorous code construction illustrating the encoding and decoding schemes.

Let L′ = min{|I1|, |I2|, . . . , |Is|} − |I ′|.

A. Code construction

Generate a random frozen vector W 1:N such that

P(W 1:N = u1:N) = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LXδi(ui|u1:i−1).

The vector W 1:N is shared between encoder and decoder. Let us assume that there is a linear

Maximum distance seperable (MDS) code M with blocklength |HX | − |R| over a field GF (2q)

for some q ∈ N, and consider its equivalent binary linear code representation. We will make use

of the following lemma in our universal code construction.

Lemma 1. Let G be the generator matrix of the linear MDS code M over GF (2q). If G does

not have a zero column, then any position in the binary representation of codewords of M will

have an equal number of zeros and ones.

Proof: Let j be any column of G. Since it is non-zero, it has a non-zero entry gij ∈ GF (2q).

The jth position of the codeword corresponding to message [0, . . . ,mi, . . . , 0] will be migij . As

mi ranges over all elements of GF (2q), migij also does. Therefore the binary representation of

this codeword entry ranges over all possible binary q-tuples. This ensures that for any position

in the binary representation ofM there exists a codeword which has the value 1 in that position.

Due to linearity of the equivalent binary representation, we must have an equal number of zeros

and ones in that position.

We arrange polar blocks of size N , for N sufficiently large, in a staircase with height N .

We extend the staircase by placing k ∈ N such staircases side-by-side. Now take q such

extended staircases, graphically placed one above the other, as illustrated in Fig. 1 for the
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Figure 1. Extended staircases with k = 3, N = 6 and q = 2

case N = 6, k = 3, and q = 2. While encoding we fill all the polar blocks column-by-

column from left to right in the staircase structure, and we follow the same order for de-

coding. Hence we encode/decode different polar blocks in parallel while encoding/decoding

a column. The total number of columns is (k + 1)N − 1, and we label them with indices

1 : (k + 1)N − 1 from left to right. Our goal is to encode each polar block in the stair-

case with the same ensemble average distribution as we produced in the asymmetric channel

coding so that decoding will be reliable. The encoding and decoding schemes are as follows.

Encoding

Input: qL′ information bits for each full-height column.

Output: U1:N of each polar block in the staircase.

• To encode non-full-height columns on the left from t = 1 : N − 1, we assign Ui = Wi

for the block with channel index i in that column. Repeat this for all q staircases. This

step ensures that the prefix part of the polar blocks satisfies the required ensemble average

distribution.

• To encode full-height columns from t = N ≤ i ≤ kN :

– First, encode the blocks with index i ∈ LX in column t using the argmax rule. Repeat

this for all q staircases. This maintains the required conditional distribution for these

indices.

– Second, encode the blocks with index i ∈ R in column t using the randomized rounding

rule, i.e., Ui = u w.p. PUi|U1:i−1(u|U1:i−1) for d ∈ {0, 1}. Repeat this for all q staircases.
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Figure 2. Full-height column structure: X is the parity of the information bits of the column and U is the encoded bit in the

block with index g(i) in the column.

This will maintain the required conditional distribution. Since these are randomly gener-

ated, we use the inverse function g−1 to copy these bits to I ′ ⊆ I1 ∩ I2 ∩ . . . ∩ Is where

they can be reliably decoded.

– Third, finish encoding the blocks with index i ∈ I ′ by assigning Ui = X ⊕ U ′g(i), where

U ′g(i) is the bit copied from the block with index g(i) ∈ R and X is the parity of the

information bits corresponding to that column. We do the same for all q staircases. This

maintains the distribution of the indices in HX and also ensures the independence from

previously encoded bits of the polar block. This is the key step of the construction, since

the direct use of U ′g(i) to encode Ui would not satisfy the required distribution.

– Fourth, encode the blocks with indices i ∈ HX − I ′.

∗ Encode qL′ information bits (equivalent to L′ symbols over GF (2q)) into codeword

m in the binary representation of M.

∗ Fill blocks with indices in i ∈ HX − I ′ in all q staircases with codeword m as shown

in Fig. 2. By Lemma 1, a uniform distribution is guaranteed for these positions, as

required for indices in HX . Since m depends only on the information bits of the

current column, independence from previously encoded bits of the polar block is also

guaranteed.

• To encode non-full-height columns t = kN + 1 : (k + 1)N − 1 on the right, we generate
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all bits randomly to satisfy the distribution of the polar block. This is done as follows:

– For blocks with index i ∈ HX generate Ui independently and uniformly.

– For blocks with index i ∈ R, generate Ui = u w.p. PUi|U1:i−1(u|U1:i−1), for u ∈ {0, 1}.

– For blocks with index i ∈ LX use argmax rule.

• Transmit X1:N = U1:NGN for each polar block in certain order.

Decoding

Input: Received vector Y 1:N for each block.

Output: Estimates of encoded information bits.

• To decode non-full-height columns on the left from t = 1 : N − 1, we estimate Ûi = Wi

for the block with channel index i in that column. Repeat this for all q staircases.

• To decode full-height columns from t = N ≤ i ≤ kN :

– First, decode the blocks with index i ∈ LX ∪ I ′ in column t using standard successive

cancellation decoding. This is possible since these indices are either good for all channels

or deterministic.

– Second, decode the blocks with index in HX − I ′:

∗ Decode the L′ symbols from the good indices based on the channel that is selected.

Let C be the partially recovered codeword.

∗ The codeword m̂ can be recovered from C by erasure decoding since it is an MDS

codeword, providing an estimate of qL′ information bits corresponding to the column.

Let X̂ be the parity of the decoded information bits in the column.

– Last, decode blocks with index i ∈ R by estimating Ûi = X̂ ⊕ Û ′g−1(i) where Û ′g−1(i) is

the already decoded bit corresponding to the block with index g−1(i) ∈ I ′ in the same

column.

• Ignore and do not decode non-full-height columns t = kN + 1 : (k+ 1)N − 1 on the right.

Note that this will not prevent further decoding.

Note that we encoded L′q information bits only in full-height columns. Hence we get the rate
L′

N
for each full-height column. Since |I

′|
N

is diminishing, the rate for each such column will be

close to L
N

. Also, as k increases, the full-height columns will constitute a significant fraction

of the total block length. The exact relation between achievable rate R and k can be found in
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[5], [6].

We used a linear MDS code in our asymmetric staircase construction. Notice that in the

symmetric channel construction, linearity is not required. Now we derive an upper bound on

q, which also upper bounds the total number of polar blocks in the staircase structure. If we

consider a Reed-Solomon (RS) code as the linear MDS code over GF (2q), the blocklength of

the code should divide 2q − 1. We bound q as follows.

• If |HX | − |R| is odd:

By Euler’s Theorem, q can take value φ(|HX | − |R|) where φ is Euler’s totient function.

Therefore q ≤ φ(|HX | − |R|) ≤ |HX | − |R| ≤ N .

• If |HX | − |R| is even:

Use a RS code of blocklength (|HX | − |R|)− 1. Then q ≤ N since the blocklength is odd.

Fill the remaining position with the parity of the information bits to maintain the distribution

of the set HX in all q staircases and modify the scheme accordingly.

The description of the coding scheme indicates why each polar block will satisfy the required

distribution. The following theorem charaterizes the decoding probability of error and encod-

ing/decoding complexity of the scheme.

Theorem 1.

1. For every polar block encoded in the staircase

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LXδi(ui|u1:i−1)

. 2. Let Pe,l(W 1:N) be the probability of error when DMC l is selected in S for a given code in

the above random code construction. The average probability of error is EW 1:N [Pe,l(W
1:N)] =

O(Nqk2−N
β
) for β < 0.5 for each l ∈ S.

3. Encoding and decoding take O((log2N)qlog2 3−1) and O((log2N)2qlog2 3−1) binary operations

per bit, respectively. Encoding and decoding also take O(log2N) real operations per bit.

Proof: Refer to the Appendix.

B. Existence of universal code with high probability

Theorem 1 states that the average probability of error over the random ensemble is the same

for any DMC that gets selected in S. We now show the existence of universal codes with high
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probability in the random ensemble of codes. Let K be a positive constant. By the Markov

inequality, we get the following:

PW 1:N (Pe,l > KsEW 1:N [Pe,l(W
1:N)]) < 1/Ks.

By the union bound, we get the following.

PW 1:N (∪l∈S(Pe,l > KsEW 1:N [Pe,l(W
1:N)])) < 1/K.

Therefore by taking the probability of the complementary event we get

PW 1:N (∩l∈S(Pe,l ≤ KsEW 1:N [Pe,l(W
1:N)])) ≥ 1− 1/K.

By substituting K = N in the above equation, universal codes that have the probability of

error O(sN2qk2−N
β
) exist with high probability 1 − 1/N in the random ensemble of codes.

Such an analysis is not needed in the symmetric channel case as we have an explicit universal

code construction without randomization.

C. Delay advantage in staircase scheme

We have k sub-staircases adjoined to form the extended staircase which gives the total block

length. We need to increase the width of the staircase k to infinity for achieving the rates arbitrary

close to L
N

. Such a large k contributes to a very large block length. We can still optimize the

delay in communication by overcoming the large width factor k. The idea of saving delay here

is due to a possible continuous encoding followed by decoding of sub-staircases sequentially

rather than encoding the whole block followed by decoding the whole block. Let us index such

sub-staircase components as m = 1, 2, · · · , k.

• Set j = 1. We encode Uis for columns t = 1 : N − 1 + N . Then we can encode and

transmit X1:N corresponding to the polar blocks in sub-staircase m = 1. So the decoder

has received vectors corresponding to the polar blocks in sub-staircase m = 1. Now we

decode Ûis for columns t = 1 : N . Increment j.

• Now we encode Uis for next N columns t = jN : jN +N − 1. Then we can encode and

transmit X1:N corresponding to the polar blocks in sub-staircase m = j. So the decoder

has received vectors corresponding to the polar blocks in sub-staircase m = j. Now we

decode Ûis for columns t = (j − 1)N + 1 : jN . Decode X̂1:N corresponding to the polar

blocks in sub-staircase j − 1. Increment j.
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Figure 3. Delay saving through continuous encoding and decoding when N = 3, k = 5 and q = 1

• We repeat the above step until j = k.

• We encode Uis until the last column. Then we can encode and transmit X1:N corresponding

to the polar blocks in sub-staircase m = k. So the decoder has received vectors correspond-
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ing to the polar blocks in sub-staircase m = k. Now we can decode Ûis until the last column.

Now we recover the X̂1:N corresponding to the polar blocks in sub-staircases k− 1 and k.

Figure 3 illustrates these sequential steps pictorially. Notice that this delay saving is general and

applies to both symmetric and asymmetric settings.

V. HYBRIDIZED STAIRCASE SCHEME

Figure 4. Universal polar code based on combining several bit-channels

If the required condition |I1∩ I2∩ . . .∩ Is| ≥ |R| does not hold, we can use the universalizing

procedure based on bit-channel combining [5] to produce a partially universalized block that

satisfies the desired condition. We propose to use such a hybrid polar block in the staircase

structure. Let us briefly discuss the idea of the scheme, which can be readily adapted to the

asymmetric case.

The idea of the scheme can be explained by considering two independent polar blocks. If we

combine (standard polar combining operation [1]) a bit-channel of the first polar block which
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is good (resp. bad) for DMCs say 1, 2, . . . , i and bad (resp.good) for DMCs i + 1, i + 2, . . . , s

with a bit-channel of the second polar block that is bad (resp. good) for DMCs 1, 2, . . . , i and

good (resp. bad) for DMCs i + 1, i + 2, . . . , s, then we get two new bit-channels, one bad for

all DMCs 1, 2, . . . , s and the other one good for all DMCs 1, 2, . . . , s. This combining of bit-

channels governs the new order of decoding for the combined polar blocks since there is a

dependency between two polar blocks due to the combining. At this point, we have got one new

bit-channel that became good for all DMCs 1, 2, . . . , s of the combined polar block.

We now see that we can combine many such bit-channels at a time with these two independent

polar blocks to achieve universalization. Let us consider bit-channel index set A and B. Suppose

A has bit-channels that are good for DMCs 1, 2, . . . , i and bad for i + 1, . . . , s whereas B has

bit-channels that are bad for DMCs 1, 2, . . . , i and good for i+1, . . . , s. As already explained, if

we consider two polar blocks and combine a bit channel in A of the first polar block say x with

a bit channel in B of the second polar block then we get two new bit channels, one is bad for

all the channels and the other one is good for all channels. In a polar block, a later bit-channel

output has the previous bit-channel input as one of its components. So a next valid bit-channel

combining could be any bit-channel later than x in A of the first polar block with any bit-

channel later than y in B. Hence a best way to combine bit-channels A with bit-channels B is to

combine them in order without missing any bit-channels in between. So if A = {x1, x2, . . . , x|A|}

, B = {y1, y2, . . . , y|B|} and G =min{|A|, |B|}, then we do bit-channel combinings xj with yj

for each j < G. This will create a specific order of decoding according to the combining. This

is again due to the fact that a later bit-channel output has the previous bit-channel input as one

of its components. Now we have G new bit-channels that are good for all channels per updated

block length 2N .

We can consider two such universalized blocks produced in this manner and apply this

procedure again. This procedure can be done recursively. So a universalized block obtained

after t steps would be of size 2tN . We propose to use a hybrid polar block obtained after this

universalization procedure in the staircase that satisfies the required condition. We call such a

staircase scheme a hybridized staircase scheme. We discuss the average decoding probability of

error analysis for the hybridized staircase scheme in the following subsection.
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A. Average probability of error analysis for hybridized staircase scheme

We did combining only for bit-channels HX of original polar blocks in the first step of the

recursive procedure. The bit-channels in LX and R are left as is (as shown in Figure 4,) in all

the steps of the recursive procedure while producing the hybrid polar block.

Let t be the number of steps in the recursive procedure to produce the hybrid polar block. So

we have 2t original polar blocks in the hybrid polar block. Let us first understand the ensemble

average distribution of original polar blocks involved in the hybrid polar block that is used in the

staircase scheme. Let us denote the high-entropy bit-channels of the hybrid polar block as HXt .

The bits coded for HXt will be uniform iid in the staircase scheme as explained in Section IV.

This will assign bits to all bit-channels in HX of the original polar blocks involved in the hybrid

polar block. The ensemble average distribution of all those bits that go to HX in all original

polar blocks will be uniform iid for two immediate reasons. One is because combinings form a

bijective transform and hence the entropy of bits will be preserved. Second one is because the

entropy is maximal for uniform iid distribution and the output of the bijective transformation

has an equal number of bits as the input. So the output also has maximal entropy and is uniform

iid distributed.

We did not involve the bit-channels in LX and R in the combining procedure. We use argmax

rule for encoding bit-channels in LX as described in Section III. As we use this universalized

hybrid polar block in the staircase, for encoding positions in R when the bit-channel lies in a

full-height column, we will use randomized rounding rule as explained in Section IV. Notice

that all of the original polar blocks in the hybrid polar block are statistically independent of each

other according to the average distribution of the random code.

Let X1:N
1 , X1:N

2 , . . . , X1:N
2t be the codeword components for each of the original polar blocks

of a hybrid polar block in the staircase and Y 1:N
1 , Y 1:N

2 , . . . , Y 1:N
2t be the corresponding received

word components when passed through a DMC l selected in S. Let U1:N
j = X1:N

j GN , for

j = 1, 2, . . . , 2t. Now it is clear that the ensemble average distribution of U1:N
j is the same as in

the single asymmetric channel case for each j while {U1:N
j }

2t

j=1
are iid distributed. Let us index

each hybrid polar block in the staircase as b = 1, 2, . . . , Nqk. Let this actual ensemble average

measure on the hybrid polar block b be Q (which is the same for all the hybrid polar blocks

in the staircase). Let P be the measure on the hybrid polar block when X1:N
j is iid distributed

according to p(x) for each j while {X1:N
j }

2t

j=1
are iid distributed.
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If we would like to use the hybrid polar block directly for the universal code without using

in staircase, information bits have a uniform iid distribution which are provided to universalized

bit-channels. Randomly and independently generated frozen bits with uniform iid distribution are

used for other high entropy bit-channels of the hybrid polar block. Boolean functions should be

generated for bit-channels in R independently for each of the the original polar blocks involved

in the hybrid polar block. They consume exponential storage complexity. Hence the proposed

combination of both the schemes above saves these boolean functions. Now it is clear that the

ensemble average distribution of hybrid polar block is same as discussed in the above paragraph,

here as well.

Lemma 2. Let P j
X,Y (x, y) be a joint distribution on (X, Y ) supported on X × Y for each

j ∈ J . Let Q(j) be the distribution on J . Define PX,Y (x, y) =
∑

j∈J Q(j)P j
X,Y (x, y). Then

Z(X|Y ) ≥
∑

j∈J Q(j)Zj(X|Y ) where Zj(X|Y ) = 2
∑

y∈Y

√
P j
X,Y (0, y)P j

X,Y (1, y).

Proof: Refer to the Appendix.

Lemma 2 is used in the proof of the following proposition.

Proposition 1. Let (X1, Y1) and (X2, Y2) be independent random variable pairs which may

not be identically distributed. X1 and X2 are defined over X = {0, 1}, where Y1 and Y2 are

distributed over alphabets Y1 and Y2. Let U1 = X1 +X2 and U2 = X2. Then

1. Z(U1|Y1Y2) ≥ max{Z(X1|Y1), Z(X2|Y2)}.

2. Z(U2|U1Y1Y2) = Z(X1|Y1)Z(X2|Y2).

Proof: Refer to the Appendix.

Lemma 3. Let P1(x1) and Q1(x1) be distributions on random variables X1 and assume the

total variation distance between P1 and Q1 is ε1. Let P2 and Q2 be distributions on random

variable X2 and assume the total variation distance between P2(x2) and Q2(x2) is ε2. Now

P (x1, x2) = P1(x1)P2(x2) and Q(x1, x2) = Q1(x1)Q2(x2) become two joint distributions on

random variables X1 and X2 such that both the random variables are mutually independent.

Then the total variation distance between the distributions P and Q is at most ε1 + ε2.

Proof: Refer to the Appendix.

Lemma 4. Let the (X, Y ) random variable pair have two measures defined as Q(x, y) =
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Q(x)p(y|x) and P (x, y) = P (x)p(y|x), respectively. So the conditional distributions Q(y|x)

and P (y|x) are both equal to p(y|x). Now the total variation between the joint distributions

||QX,Y − PX,Y || becomes ||QX − PX ||.

Proof: Refer to the Appendix.

The analysis of asymptotic probability of error is as follows:

• Let us denote the low entropy bit-channels of the hybrid polar block as LXt . Let Eb =

∪i∈Il∪LXtEib be the error event corresponding to a hybrid polar block b in the staircase.

Here Il is the updated good bit-channel set of a hybrid polar block and Eib is the error

event of bit-channel i for hybrid polar block b. Notice that Eb is not the actual decoding

error event for the hybrid polar block in the staircase since bit corruption in bit-channels

HXt −∪i∈Il∪LXt may occur due to errors in other hybrid polar blocks while RS decoding.

Now the average probability of error Q(Eb) can be bounded as the sum of two entities as

follows.

Q(Eb) ≤ P (Eb) + ||P −Q||

• The Bhattarcharya parameters of the updated good bit-channels Il of hybrid polar block

in measure P is O(2−N
β
) where β < 0.5. This is deduced by the recursive application of

Proposition 1. So the sum of all such Bhattarcharya parameters is at most O(2t2−N
β
). So

P (Eb) is upper bounded by O(2t2−N
β
) using the union bound. This accounts for one of the

sum components of the upper bound on Q(Eb).

• Now, the total variation distance satisfies

||P −Q||
(a)

≤
2t∑
j=1

||PX1:N
j ,Y 1:N

j
−QX1:N

j ,Y 1:N
j
||

(b)
=

2t∑
j=1

||PX1:N
j
−QX1:N

j
||

The identity (a) is due to the fact that {X1:N
j }2

t

j=1 are iid distributed in both the measures

P ,Q and also due to Lemma 3. The identity (b) is true by the application of Lemma 4

coupled with the fact that conditional measure of Y 1:N
j given X1:N

j is same in both the P

and Q measures that is induced by the selected DMC in S. Now the total variation distance

||PX1:N
j
− QX1:N

j
|| is O(2−N

β
) as we discussed in Section III for the single asymmetric

channel. Overall ||P −Q|| is again upper bounded by O(2t2−N
β
).
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• Hence Q(Eb) is upper bounded by O(2t+12−N
β
) for any DMC l in S.

• As mentioned in the Theorem 1, the overall error event becomes E = ∪b∈{1:Nqk}∪i∈LXt∪IlEib.

• The overall average error probability is upper bounded by
∑

b∈{1:Nqk}Q(Eb), as we did in

Theorem 1 using union bound. Hence the overall average error probability of the hybridized

staircase scheme will become O(Nqk2t+12−N
β
).

If one would like to do the probability of error analysis for the universal code by just using

the hybrid polar block without the staircase scheme, we can mimic the above steps as we had

the same ensemble average distribution on hybrid polar block. In Section VI, we will illustrate

the scheme in more detail with the universal block produced after the first step of the recursive

combining procedure in the case of S = {1, 2}.

Remark: We would also like to mention that the chaining construction for universalization

provided in [6] can be extended for asymmetric case (where the component codewords of the

original polar blocks involved in the construction become dependent). The same set of boolean

functions could also be used for all original polar blocks involved in universalization for not-

completely-polarized bit-channels R since the statistical independence is absent between original

blocks. The probability of error in the asymmetric case would be O(2w2−N
β
) where w is the

number of blocks involved in the construction.

B. Algorithm to produce hybrid polar block for the staircase scheme

Now we provide a method to produce the hybrid polar block that achieves the required

condition with a blocklength that is at most 2s−1 times the original polar block length.

If |I1 ∩ I2 ∩ . . .∩ Is−1| ≥ 2|R|, then we consider two polar blocks. We combine "bit channels

that are good for 1, 2, . . . , s − 1 and bad for s" of one block with "bit channels that are good

for DMC s and bad for DMCs 1, 2, . . . , s− 1" of the other block. Hence we get "min{|I1∩ I2∩

. . . ∩ Is−1| − |I1 ∩ I2 ∩ . . . ∩ Is|, |Is| − |I1 ∩ I2 ∩ . . . ∩ Is|}” number of good bit-channels for all

DMCs from 1, 2, . . . , s. The improvement per block length N will be half of the above quantity

which is at least 2|R|−|I1∩I2∩...∩Is|
2

. So the updated |I1 ∩ I2 ∩ . . . ∩ Is| per block length N would

be |R|+ |I1 ∩ I2 ∩ . . .∩ Is|/2, which is greater than or equal to |R|. Hence our condition is met

for the block to be used in the staircase scheme.

If |I1 ∩ I2 . . . ∩ Is−1| < 2|R|, we do the same kind of combining step explained in the above

paragraph at this step and get the required condition |I1 ∩ I2 ∩ . . . ∩ Is−1| > 2|R| to execute
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the step in the previous paragraph. This is a recursive procedure and the required condition will

be guaranteed at some point because as the recursive procedure hits s − 1 steps, we will have

min{|I1|, |I2|, . . . |Is|} > 2s|R| for large enough block length. So we have at most s − 1 steps

in the recursive procedure and so the maximum block length will be at most 2s−1N .

Algorithm 1 and 2 together will provide the high-level representation of the recursive procedure

just mentioned for producing the required hybrid polar block to be used in the staircase. By

calling Algorithm 1, we get the required hybrid polar block of size at most 2s−1N .

Algorithm 1 : GetHybridizedPolar Block
1: procedure GETHYBRIDIZEDPOLARBLOCK

2: Initialize currentType as per original polar block. . variable to update polar block

3: Set S = {1, 2, ..., s}

4: if (| ∩i∈S Ii| < |R|) . | ∩i∈S Ii| denotes size per block length N of currentType

5: recursivelyUpdateBlock(0,S);

6: end if

7: return

Algorithm 2 : recursivelyUpdateBlock(recursiveCount, channelsInvolved)
1: procedure RECURSIVELYUPDATEBLOCK

2: Set S = argmaxS⊂channelsInvolved:|S|=|channelsInvolved|−1| ∩i∈S Ii| ;

3: if (| ∩i∈S Ii| < 2recursiveCount+1|R|)

4: recursivelyUpdateBlock(recursiveCount+ 1,S);

5: end if

6: Consider two polar blocks of currentType

7: Combine bit channels that are "good for S and bad for channelsInvolved − S " of one

block with bit channels that are "bad for S and good for channelsInvolved − S " of the

other block to produce the updated polar block;

8: Update the global variable CurrentType as per the updated polar block that has the size

| ∩i∈channelsInvolved Ii| ≥ 2recursiveCount|R|

9: return;
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The global variable currentType used in Algorithm 1 and 2 denotes the updated polar block.

The size | ∩i∈S Ii| in Algorithm 1 and 2 gives the cardinality per blocklenth N according to the

updated polar block represented by currentType. Note that the recursive flow in Algorithm 2

is different from the recursive flow of the original scheme presented in [5]. In our algorithm,

the polar block used in the kth step is the polar block returned from the k + 1th recursive

call. That is why, the given algorithm has recursive call first and then the combining step for

the universalization. But in the original scheme [5], the polar block used in the kth step is

the block produced after k − 1th step. So the original scheme should have the combining step

first followed by the recursive call, in contrast to our proposed algorithm. Also note that the

recursion depth in the presented algorithm is at most s − 1 as we have the base condition

min{|I1|, |I2|, ....|Is|} > 2s|R| satisfied for the original polar block.

The combining in step 7 of Algorithm 2 would give at least |∩i∈SIi|−|∩i∈channelsInvolvedIi| new

bit-channels that are good for all channels in channelsInvolved per block length 2N . So the up-

dated |∩i∈channelsInvolvedIi| would be at least the sum of the present values of |∩i∈channelsInvolvedIi|

and |∩i∈SIi|−|∩i∈channelsInvolvedIi|
2

. So it would be at least |∩i∈SIi|+|∩i∈channelsInvolvedIi|
2

which would be

at least 2recursiveCount|R|. This should be the required condition before returning to the previous

recursive call.

We may improve the Algorithm 2 to have lesser recursive calls. Nevertheless the mentioned

recursive procedure guarantees a block length which will be at most 2s−1N . Hence the overall

block length of the hybridized staircase scheme would be O(2s−1qkN2).

VI. UNIVERSAL SCHEME BASED ON COMBINING DIFFERENT BIT-CHANNELS

In Section V, we analysed the probability of error considering a block produced by this

universal scheme in the context of hybridized staircase scheme. We now describe in detail the

code construction, including encoding and decoding methods in the case of S = {1, 2} for the

block produced after the first step in the recursive procedure.

A. Combining two polar blocks for universalizing with respect to both the DMCs in S

Let G = min{|I1 ∩ F2|, |I2 ∩ F1|}. Consider the sets A and B to be the first G indices in

I1 ∩ F2 and I2 ∩ F1 respectively. Let A = {x1, x2, . . . , xG} where x1 < x2 < . . . < xG and

B = {y1, y2, . . . , yG} where y1 < y2 < . . . < yG. Consider two independent polar blocks,
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say block 1 and block 2, of length N . Let X1:2N be iid distributed according to compound

capacity-achieving p(x) and

U1:N = X1:NGN , V 1:N = XN+1:2NGN (1)

Let us associate X1:N and XN+1:2N to block 1 and block 2, respectively. Now we combine

bit-channel xj of block 1 with yj of block 2, which produces two new bit-channels for each

j ∈ {1 : G} with inputs U ′xj = Uxj + Vyj and V ′yj = Vyj . For the remaining bit-channels which

are neither xj for block 1 nor yj for block 2, the same bit-channels are used. So we have U ′i = Ui

and V ′i = Vi for these bit-channels. This is shown in Figure 4. Let {(Xi, Yi)}2Ni=1 be iid distributed

according to p(x)pl(y|x) for l ∈ S.

Lemma 5. For each j ∈ {1 : G}, for any β′ < β < 0.5, for sufficiently large N

1. Z(U ′xj |U
1:xj−1V 1:yj−1Y 1:2N) ≥ 1− 2−N

β′
.

(U ′xi is almost random given U1:xj−1V 1:yj−1Y 1:2N for both DMCs l = 1, 2)

2. Z(V ′yi |U
1:xi−1V 1:yi−1U ′xiY

1:2N) ≤ 2−N
β′
.

(V ′yi is almost deterministic given U1:xj−1U ′xjV
1:N+yj−1Y 1:2N for both DMCs l = 1, 2)

Proof: Refer to the Appendix.

It follows from Lemma 5 that the bit-channel combinings mentioned above lead to 2|I1∩I2|+G

new good bit-channels with respect to block length (2N ).

The proposed random code construction makes (U ′1:N , V ′1:N) such that the ensemble average

distribution of (U ′1:N , V ′1:N) will be O(2−N
β′

) close to the distribution when the word X1:2N is

iid distributed according to p(x). Now we describe the code construction.

B. Code construction

We first generate random functions f1 : HX−(I1∩I2)→ {0, 1} and f2 : HX−((I1∩I2)∪B)→

{0, 1} where each fi(j), j ∈ F and i ∈ {1, 2} is chosen independently and uniformly. These

frozen bits are shared between encoder and decoder.

For both the block b = 1 and b = 2, we generate independent random boolean functions

λbi : {0, 1}i−1 → {0, 1} for each i ∈ R by using the following probability rule:

λbi(u
1:i−1) = u w.p. PUi|U1:i−1(u|u1:i−1), for u ∈ {0, 1}

independently for each u1:i−1. Let the set of random functions be denoted by λbR. These functions

are shared between encoder and decoder. Now we describe the encoding and decoding algorithms.
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Encoding

Input: uniformly distributed message M of 2|I1 ∩ I2|+G bits

Output: codeword X1:2N

for i = 1 : N , encode Ui as follows.

1. Partition M into M1 and M2 such that M1 takes the first |I1 ∩ I2| bits of M and M2 takes

the last |I1 ∩ I2|+G bits of M . Set U ′I1∩I2 = M1 and V ′(I1∩I2)∪B = M2.

2. Set U ′i = f1(i) for i ∈ HX − ((I1 ∩ I2)) and V ′i = f2(i) for i ∈ HX − ((I1 ∩ I2) ∪ B) in

block 1 and block 2 respectively.

3. Now Uxj = U ′xj + V ′yj and Vyj = V ′yj for j ∈ {1 : G}. Ui = U ′i and Vi = V ′i for other i ∈ HX .

4. For i ∈ LX for block 1 and block 2, we use the following argmax rule for encoding these

bit-channels.

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1)

Vi = argmaxx∈{0,1}PVi|V 1:i−1(x|V 1:i−1)

5. We assign Ui = λ1i (U
1:i−1) and Vi = λ2i (V

1:i−1) for encoding these indices. For i /∈ HX , take

U ′i = Ui and V ′i = Vi. Transmit X1:N = U1:NGN and XN+1:2N = V 1:NGN .

Decoding

Input: received vector Y 1:2N

Output: message estimate M̂ of 1 : 2|I1 ∩ I2|+G bits

1. Set j = 1, Set x0 = 0 and y0 = 0.

2. for i = xj−1 + 1 : xj − 1 of block 1

If i ∈ HX − (I1 ∩ I2) the set

Û ′i = Ûi = f1(i).

If i ∈ (I1 ∩ I2) ∪ LX then set

Û ′i = Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1, Y 1:N) ≥ PUi|U1:i−1,Y 1:N (0|Û1:i−1, Y 1:N)}.

If i ∈ (HX ∪ LX)c then set

Û ′i = Ûi = λ1i (Û
1:N−1).

end

for i = yj−1 + 1 : yj − 1 of block 2
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If i ∈ HX − (I1 ∩ I2) then set

V̂ ′i = V̂i = f2(i).

If i ∈ (I1 ∩ I2) ∪ LX then set

V̂ ′i = V̂i = 1{PUi|U1:i−1,Y 1:N (1|V̂ 1:i−1, Y N+1:2N) ≥ PUi|U1:i−1,Y 1:N (0|V̂ 1:i−1, Y N+1:2N)}.

If i ∈ (HX ∪ LX)c then set

V̂ ′i = V̂i = λ2i (V̂
1:N−1).

end

3. Set

Û ′xj = f1(xj).

V̂ ′yj = 1{PV ′yj |U1:xj−1U ′xjV
1:yj−1Y 1:2N (1|Û1:xj−1U ′xj V̂

1:yj−1Y 1:2N) ≥ PV ′yj |U
1:xj−1U ′xjV

1:yj−1Y 1:2N (0|

Û1:xj−1Û ′xj V̂
1:yj−1Y 1:2N)}.

Ûxj = Û ′xj + V̂ ′yj and V̂yj = V̂ ′yj .

4. Repeat step 2 and 3 for j = {2, 3, . . . , G}.

5. Set M̂1 = Û ′I1∩I2 and M̂2 = V̂ ′(I1∩I2)∪B. Combine M̂1, M̂2 to get M̂ .

Step 2 in the above decoding algorithm is to decode bit-channels, which are not involved

in the combining process, where as the step 3 is to decode the new bit-channels, which are

produced after combining.

Theorem 2. Let Pe,l(λ1R, λ
2
R, f1, f2) denotes the decoding probability of error when DMC l is

selected in S for a given code in the above random code construction. For sufficiently large

block length N , the average decoding probability of error E[Pe,l(λ
1
R, λ

2
R, f1, f2)] = O(2−N

β′
)

for any β′ < β < 0.5 and for each l ∈ S.

Proof: Refer to the Appendix.

VII. CONCLUSION

We presented a universal polar coding scheme for a compound channel defined by a finite set of

binary-input asymmetric DMCs with non-uniform compound capacity-achieving input distribu-

tion. The proposed scheme exploits the underlying staircase structure in the code construction to

avoid the need for either side-channel transmission or storage-intensive boolean functions for bits



25

corresponding to not completely polarized bit-channels under an assumption on the cardinality

of the intersection of good-bit channels. When the assumption does not hold, we proposed a

hybridized staircase scheme with a block length that is at most 2s−1 times the original polar

block length that satisfies condition on the cardinality of the intersection of good-bit channels.

The scheme requires a large block length, leaving open the problem of designing codes with

short block length. Another open problem could be the construction of a stronger universal polar

code with reduced storage complexity that achieves rate r less than compound capacity with

non-uniform compound capacity-achieving input distribution p(x) and also achieves rate r for

any channel whose mutual information evaluated at p(x) is larger than r.
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APPENDIX A

Proof of Theorem 1:

1.
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We prove part 1 of Theorem 1 in the following steps.

Step 1:

Consider any polar block in the extended staircase which lies completely in the full-height column

regime. This polar block corresponds to N distinct full-height columns. To get the distribution

on encoded codeword U1:N for such a polar block, we first compute the conditional distribution

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) for each bit-channel i in the block.

If i ∈ LX , they by the encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = δi(ui|u1:i−1).

If i ∈ R, then by encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = PUi|U1:i−1(ui|u1:i−1).

If i ∈ HX − I ′, then by Lemma 1

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

If i ∈ I ′, then

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

Now we discuss the case i ∈ I ′ in detail. Let the parity of information bits corresponding to

that column be X . Let Y be the already encoded bit in the block corresponding to the bit-

channel g(i) in that column. Here we assigned Ui as X ⊕ Y . Here the distribution of X will be

Bernoulli(0.5). Let the distribution of Y be Bernoulli(p) for some p. Note that both the random

variables X and Y are independent.

Observe that

P(Ui = x|Y = y,W 1:N) = P(X + Y = x|Y = y,W 1:N)

= P(X = x+ y|Y = y,W 1:N)

(a)
= P(X = x+ y)

= 0.5.

Identity (a) is true since X and Y are independent. We established the independence of Ui and

Y . Now we establish that Ui is independent of all the encoded bits of previous columns and the

frozen vector W 1:N . This will imply that Ui is be independent of U1:i−1 of that block. Let P
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be the random vector denoting the encoded bits of the previous columns. Now the conditional

probability

P(Ui = ui|P ,W 1:N) =
∑

y∈{0,1}

P(Ui = ui, Y = y|P ,W 1:N)

=
∑

y∈{0,1}

P(Y = y|P ,W 1:N)P(Ui = ui|Y = y, P ,W 1:N)

(a)
=

∑
y∈{0,1}

P(Y = y|P ,W 1:N)P(Ui = ui|Y = y)

(b)
=

∑
y∈{0,1}

P(Y = y|P ,W 1:N)P(Ui = ui)

= P(Ui = ui)

= 0.5.

(2)

Identity (a) is true since Ui is independent of encoded bits of previous columns, given the random

variable Y . Identity (b) by independence of Ui with respect to Y . Hence the distribution of U1:N

for a block encoded in full-height column regime becomes

P(U1:N = u1:N |W 1:N) = Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)

= 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).
(3)

This implies that

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1). (4)

Step 2:

Consider a polar block which lies partly in the non-full-height column regime on the right side.

For Ui in a full-height column, the conditional probability rule is already derived in step 1. We

now derive the conditional probablility for Ui in a non-full-height column.

If i ∈ HX , then by encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

If i ∈ LX , then by the encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = δi(ui|u1:i−1).

If i ∈ R, then by encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = PUi|U1:i−1W 1:N (ui|u1:i−1).
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It implies that

P(U1:N = u1:N |W 1:N) = Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)

= 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).
(5)

The ensemble average distribution becomes

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1). (6)

Step 3:

Consider a polar block which lies partly in the non-full-height column regime on the left side.

Let H be the indices of the block that lies in non-full-height columns. Those bits are encoded

as Wi corresponding to every index i ∈ H .

Now,

EW 1:N [Πi∈H1(ui = Wi)] = EW 1:N [1(∩i∈H(ui = Wi))]

= EW 1:N [
∑

ui∈{0,1}:i∈Hc

1(∩i∈[N ](ui = Wi))]

=
∑

ui∈{0,1}:i∈Hc

EW 1:N [1(∩i∈[N ](ui = Wi))].

Hence,

EW 1:N [Πi∈H1(ui = Wi)]
(a)
=

∑
ui∈{0,1}:i∈Hc

2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈R

PUi|U1:i−1(ui|u1:i−1).

= 2−|H∩HX |Πi∈LX∩Hδi(ui|u1:i−1)Πi∈R∩H

PUi|U1:i−1(ui|u1:i−1).

(7)

Identity (a) is true because we have

EW 1:N [1(∩i∈[N ](ui = Wi))] = 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1)

from our random code construction. Now we compute the distribution of U1:N

P(U1:N = u1:N |W 1:N) = Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)

(a)
= Πi∈H1(ui = Wi)2

−|HX−H|Πi∈LX−Hδi(ui|u1:i−1)

Πi∈R−HPUi|U1:i−1(ui|u1:i−1).

(8)



29

Identity (a) is true since the conditional distribution of Ui given U1:i−1 in a non-full-height

column is derived in step 1.

This implies

EW 1:N [P(U1:N = u1:N |W 1:N)] = EW 1:N [Πi∈H1(ui = Wi)2
−|HX−H|Πi∈LX−H

δi(ui|u1:i−1)Πi∈R−HPUi|U1:i−1(ui|u1:i−1)]

= EW 1:N [Πi∈H1(ui = Wi)]2
−|HX−H|Πi∈LX−H

δi(ui|u1:i−1)Πi∈R−HPUi|U1:i−1(ui|u1:i−1)
(a)
= 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

(9)

Identity (a) follows from equation (7). We now have the required ensemble average distribution

of U1:N for these blocks as well. This concludes the proof of part 1.

2.

Let E be the error event and l be the DMC selected in S. The error occurs if and only if there is

a decoding error while decoding some bit-channel in LX ∪ Il of any polar block in the staircase.

Let us index each polar block in the staircase as b = 1, 2, . . . , Nqk. Let Eg be the error event

with a genie-aided decoder which has the accurate values of the past U1:i−1 when decoding any

bit-channel i ∈ LX ∪ Il for all polar blocks. Let Eib be the bit-channel error for the bit-channel

i corresponding to the block b. Note that for a bit-channel i that lies in the full-height column

of b,

Eib = {(U1:N , Y 1:N) of block b :

PUi|U1:i−1,Y 1:N (Ui|U1:i−1, Y 1:N) ≥ PUi|U1:i−1,Y 1:N (Ui|U1:i−1, Y 1:N)}.

If the bit-channel i that lies in the non-full-height column of polar block b, then Eib will be the

null event. Clearly we can deduce that Eg = ∪b∈{1:Nqk} ∪i∈{1:N} Eib. Note that error event E will

imply at least one of the error events {Eib : b ∈ {1 : Nqk} and i ∈ {1 : N}}. So we should have

E ⊂ Eg.

One the other hand, it is obvious that

Eg ⊂ E .

Hence the error event E will be as below:

E = ∪b∈{1:Nqk} ∪i∈LX∪Il Eib.
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The application of the union-bound followed by taking the expectation of the random ensemble

of codes gives the following upper-bound for ensemble average probability of error:

EW 1:N [P(E|W 1:N)] ≤
∑

b∈{1:Nqk}

EW 1:N [P(∪i∈LX∪IlEib|W 1:N)].

Now the ensemble average distribution is O(2−N
β
) close to the distribution when X1:N is iid

according to p(x) in total variation distance for each of these blocks in all the staircases.

Therefore the average probability of error EW 1:N [P(∪i∈LX∪IlEib|W 1:N)] becomes O(2−N
β′

)

for β′ < 0.5 as derived in [7]. Hence the overall ensemble average probability of error will be

O(Nqk2−N
β′

). This concludes the proof of part 2.

3.

Encoding Complexity: Encoding complexity consists of two factors: encoding the polar block

and encoding the RS codeword. Encoding the polar block takes O(N log2(N)) real operations.

Hence the number of operations per bit would be O(log2(N)) real operations. Encoding a RS

codeword can done in O(N log2(N)) operations over GF(2q). Addition and multiplication over

this field take q and qlog2(3) binary operations, respectively. Hence there can be maximum of

qlog2(3)O(N log2(N)) binary operations. One RS codeword contains L′q bits. Hence the encoding

takes O((log2N)qlog2(3)−1) binary operations per bit.

Decoding Complexity:Decoding complexity consists of two factors: decoding the polar block

and decoding the RS codeword. Decoding the polar blocks takes O(N log2N) real operations.

Hence the number of operations per bit would be O(log2(N)) real operations. Decoding a RS

codeword can be done in O(N(log2(N))2) operations over GF(2q). Addition and multiplication

over this field take q and qlog2(3) binary operations, respectively. One codeword contains L′q

bits. Hence there will be maximum of qlog2(3)O(N(log2(N))2) binary operations. Hence the

decoding takes O(N(log2(N))2)qlog2(3)−1) binary operations per bit. This concludes the proof of

part 3.

Proof of Lemma 2:

Z(X|Y ) = 2
∑
y∈Y

√
PX,Y (0, y)PX,Y (1, y)

= −1 +
∑
y∈Y

[∑
x∈X

√
PX,Y (x, y)

]2
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(a)

≥ −1 +
∑
y∈Y

∑
j∈J

Q(j)
[∑
x∈X

√
P j
X,Y (x, y)

]2
=
∑
j∈J

Q(j)(−1 +
∑
y∈Y

[∑
x∈X

√
P j
X,Y (x, y)

]2
)

=
∑
j∈J

Q(j)Zj(X|Y ).
(10)

Identity (a) is true by the following Minkowsky’s inequality, when r < 1 and ajk is non-negative:∑
k∈K

(
∑
j∈J

Q(j)ajk
1
r )
r
≥
[∑
j∈J

Q(j)(
∑
k∈K

ajk)
1
r
]r
.

Here r = 0.5 and ajk =
√
P j
X,Y (x, y).

Proof of Proposition 1:

The conditional distribution PU1|Y1Y2(u1|y1y2) will be as follows:

PU1|Y1Y2(u1|y1y2) =
∑
u2∈X

PU1,U2|Y1Y2(u1, u2|y1y2)

=
∑
u2∈X

PX1X2|Y1Y2(u1 + u2, u2|y1y2)

=
∑
u2∈X

PX1|Y1(u1 + u2|y1)PX2|Y2(u2|y2).

The conditional distribution PU2|Y1Y2U1(u2|y1y2u1) will be as follows:

PU2|Y1Y2U1(u2|y1y2u1) =
PU1,U2|Y1Y2(u1, u2|y1y2)
PU1|Y1Y2(u1|y1y2)

=
PX1|Y1(u1 + u2|y1)PX2|Y2(u2|y2)∑

u2∈X PX1|Y1(u1 + u2|y1)PX2|Y2(u2|y2)
.

The joint distribution PU1Y1Y2(u1, y1, y2) will be as follows:

PU1Y1Y2(u1, y1, y2) =
∑
u2∈X

PU1U2Y1Y2(u1, u2, y1, y2)

= PU1U2Y1Y2(u1, 0, y1, y2) + PU1U2Y1Y2(u1, 1, y1, y2)

= PU2(0)PU1Y1Y2|U2(u1, y1, y2|0) + PU2(1)PU1Y1Y2|U2(u1, y1, y2|1).

Let

P 1
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2(u1, y1, y2|0),

P 2
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2(u1, y1, y2|1)
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be the two joint distributions on random variable triplet (U1, Y1, Y2). We now derive the Bhat-

tacharya parameter corresponding to the distribution P 1
U1Y1Y2

(u1, y1, y2).

Z1(U1|Y1Y2) = 2
∑
y1y2

P 1
Y1Y2

(y1y2)
√
P 1
U1|Y1Y2(0|y1y2)P

1
U1|Y1Y2(1|y1y2)

= 2
∑
y1y2

PY1Y2|U2(y1y2|0)
√
PU1|Y1Y2U2(0|y1y20)PU1|Y1Y2U2(1|y1y20)

(a)
= 2

∑
y1y2

PY1(y1)PY2|U2(y2|0)
√
PX1|Y1Y2U2(0|y1y20)PX1|Y1Y2U2(1|y1y20)

(b)
= 2

∑
y1y2

PY1(y1)PY2|U2(y2|0)
√
PX1|Y1(0|y1)PX1|Y1(1|y1)

= 2
∑
y1

PY1(y1)
√
PX1|Y1(0|y1)PX1|Y1(1|y1)

= Z(X1|Y1).

Identity (a) is because Y1 is independent of U2 and also because Y2 is independent of Y1 given

U2. Identity (b) is true because X1 is independent of Y2U2 given Y1. Similarly we can easily

prove that Z2(U1|Y1Y2) = Z(X1|Y1). Now Lemma 2 implies that Z(U1|Y1Y2) ≥ Z(X1|Y1).

Exchanging the roles of (X1, Y1) and (X2, Y2), we also get Z(U1|Y1Y2) ≥ Z(X2|Y2). Therefore

Z(U1|Y1Y2) ≥ max{Z(X2|Y2), Z(X1|Y1)}.We now derive the Bhattacharya parameter

Z(U2|Y1Y2U1)

= 2
∑

y1y2u1∈Y1×Y2×X

PU1Y1Y2(u1y1y2)
√
PU2|U1Y1Y2(0|u1y1y2)PU2|U1Y1Y2(1|u1y1y2)

= 2
∑

y1y2u1∈Y1×Y2×X

PU1Y1Y2(u1y1y2)

PU1|Y1Y2(u1|y1y2)
[
PX1|Y1(u1|y1)PX2|Y2(0|y2)PX1|Y1(u1 + 1|y1)PX2|Y2(1|y2)

]0.5
= 2

∑
y1y2u1∈Y1×Y2×X

PY1Y2(y1y2)
[
PX1|Y1(u1|y1)PX1|Y1(u1 + 1|y1)PX2|Y2(0|y2)PX2|Y2(1|y2)

]0.5
= 2

∑
u1∈X

∑
y1∈Y1

∑
y2∈Y2

PY1(y1)PY2(y2)
[
PX1|Y1(u1|y1)PX2|Y2(0|y2)PX1|Y1(u1 + 1|y1)PX2|Y2(1|y2)

]0.5
= Z(X1|Y1)Z(X2|Y2).

Proof of Lemma 3:

||P −Q|| =
∑

(x1,x2)

1

2
|P (x1, x2)−Q(x1, x2)|
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=
∑

(x1,x2)

1

2
|P1(x1)P2(x2)−Q1(x1)Q2(x2)|

=
∑

(x1,x2)

1

2
|P1(x1)P2(x2)−Q1(x1)P2(x2) +Q1(x1)P2(x2)−Q1(x1)Q2(x2)|

(a)

≤
∑

(x1,x2)

(
1

2
|P1(x1)P2(x2)−Q1(x1)P2(x2)|+

1

2
|Q1(x1)P2(x2)−Q1(x1)Q2(x2)|)

=
∑

(x1,x2)

P2(x2)|P1(x1)−Q1(x1)|+
∑

(x1,x2)

Q1(x1)|P2(x2)−Q1(x2)|

=
∑

(x1,x2)

P2(x2)|P1(x1)−Q1(x1)|+
∑

(x1,x2)

Q1(x1)|P2(x2)−Q1(x2)|

=
∑
(x1)

|P1(x1)−Q1(x1)|+
∑
(x2)

|P2(x2)−Q1(x2)|

= ||P1 −Q1||+ ||P2 −Q2||

= ε1 + ε2.

Identity (a) is true by triangular inequality.

Proof of Lemma 4:

||QX,Y − PX,Y || =
∑

(x,y):P (x,y)>Q(x,y)

P (x, y)−Q(x, y)

=
∑

(x,y):P (x)p(y|x)>Q(x)p(y|x)

P (x)p(y|x)−Q(x)p(y|x)

=
∑

(x,y):P (x)>Q(x)

(P (x)−Q(x))p(y|x)

=
∑

x:P (x)>Q(x)

∑
y

(P (x)−Q(x))p(y|x)

=
∑

x:P (x)>Q(x)

(P (x)−Q(x))

= ||QX − PX ||.

Proof of Lemma 5:

1.

The Bhattacharya parameter of the new bit-channel produced with U ′xj and U1:xj−1V 1:yj−1Y 1:2N
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as input and output, respectively will be as follows.

Z(U ′xj |U
1:xj−1V 1:yj−1Y 1:2N)

(a)

≥ max{Z(Uxj |U1:xj−1Y 1:N), Z(Vyj |U1:yj−1Y N+1:2N)}
(b)

≥ 1− 2−N
β

.

Identity (a) is true by Proposition 1. Identity (b) follows because either of Z(Uxj |U1:xj−1Y 1:N)

(if DMC 2 is selected in S) will be greater than 1− 2−N
β or Z(Vyj |U1:yj−1Y N+1:2N) (if DMC

1 is selected in S) will be greater than 1− 2−N
β .

2.

The Bhattacharya parameter of the new bit-channel produced with V ′yj and U1:xj−1V 1:yj−1U ′xjY
1:2N

as input and output respectively will be as follows.

Z(V ′yj |U
1:xj−1V 1:yj−1U ′xjY

1:2N)
(a)
= Z(Uxj |U1:xj−1Y 1:N)Z(Vyj |V 1:yj−1Y N+1:2N)

≤ 2−N
β

.

Identity (a) is true by Proposition 1. Identity (b) follows because either of Z(Uxj |U1:xj−1Y 1:N)

(if DMC 1 is selected in S) will be less than 2−N
β or Z(Vyj |U1:yj−1Y N+1:2N) (if DMC 2 is

selected in S) will be less than 2−N
β .

Proof of Theorem 2:

Let the linear bijective transform which maps (U ′1:N V ′1:N) to (U1:N V 1:N) be H2N . Let the

word (u1:N v1:N) be obtained by applying H2N to the word (u′1:N v′1:N). The probability that

the word (U ′1:N V ′1:N)= (u′1:N v′1:N) and received vector Y 1:2N = y1:2N when a DMC in S is

selected will be as follows:

2−(2|I1∩I2|+|B|) · 1[∩i∈(HX−(I1∩I2)){f1(i) = u′i}] · 1[∩i∈(HX−((I1∩I2)∪B)){f2(i) = v′i}]·

1[∩i∈R{λ1(u1:i−1) = ui}] · 1[∩i∈R{λ2(v1:i−1) = vi}] · Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))·

PY 1:N |U1:N (y1:N |u1:N) · PY 1:N |U1:N (yN+1:2N |v1:N).

(11)

Note that we used the fact, PU1:NY 1:N = PV 1:NY N+1:2N . Here the measure P is induced by

equation (1). Let Ebi be the error event for the ith bit channel of block b.

For i ∈ I1 ∩ I2, we define the following events:

E1i = {(u′1:N , v′1:N , y1:2N) : PUi|U1:i−1Y 1:N (ui + 1|u1:i−1y1:N) ≥ PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N)},

E2i = {(u′1:N , v′1:N , y1:2N) : PUi|U1:i−1Y 1:N (vi + 1|v1:i−1y1:N) ≥ PUi|U1:i−1Y 1:N (vi|v1:i−1y1:N)}.
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For j ∈ [G], we define the following event:

E2yj = {(u′1:N , v′1:N , y1:2N) : PV ′yj |U
1:xj−1U ′xjV

1:yj−1Y 1:2N (ui + 1|u1:xj−1u′xjv
1:yj−1y1:2N)

≥ PV ′yj |U
1:xj−1U ′xjV

1:yj−1Y 1:2N (ui|u1:xj−1u′xjv
1:yj−1y1:2N)}.

(12)

Therefore the error event E becomes as follows:

E = {∪i∈I1∩I2E1i } ∪ {∪i∈(I1∩I2)∪BE2i }.

Now the probability of error for the given f1, f2, λ1R, λ
2
R will be as follows:

Pe,l(λ
1
R, λ

2
R, f1, f2)

=
∑

(u′1:N ,v′1:N ,y1:2N )

2−(2|I1∪I2|+|B|) · 1[∩i∈(HX−(I1∩I2)){f1(i) = u′i}]·

1[∩i∈(HX−((I1∩I2)∪B)){f2(i) = v′i}] · 1[∩i∈R{λ1(u1:i−1) = ui}]·

1[∩i∈R{λ2(v1:i−1) = vi}] · Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))·

PY 1:N |U1:N (y1:N |u1:N)PY 1:N |U1:N (yN+1:2N |v1:N)·

1[(u′1:N , v′1:N , y1:2N) ∈ E ].

(13)

Now we take the ensemble expectation of Pe,l,

E[Pe,l(λ
1
R, λ

2
R, f1, f2)] =

∑
(u′1:N ,v′1:N ,y1:2N )

2−2|HX |Πi∈LX (δi(ui|u1:i−1)

δi(vi|v1:i−1))Πi∈R(PUi|U1:i−1(ui|u1:i−1)

PUi|U1:i−1(vi|v1:i−1))PY 1:N |U1:N (y1:N |u1:N)

PY 1:N |U1:N (yN+1:2N |v1:N)1[(u′1:N , v′1:N , y1:2N) ∈ E ].

(14)

Now we define the measure Q by considering the random variables U ′1:NV ′1:NY 1:2N as follows:

QU ′1:NV ′1:NY 1:2N (u′1:N , v′1:N , y1:2N) :
(a)
= 2−2|HX |Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))

Πi∈R(PUi|U1:i−1(ui|u1:i−1)

PUi|U1:i−1(vi|v1:i−1))PY 1:N |U1:N (y1:N |u1:N)

PY 1:N |U1:N (yN+1:2N |v1:N).

(15)

Identity (a) is true since (u1:N v1:N) is obtained by applying H2N map on the word (u′1:N v′1:N).

Note that

QU ′1:NV ′1:NY 1:2N (u′1:N , v′1:N , y1:2N) = QU1:NV 1:NY 1:2N (u1:N , v1:N , y1:2N).
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From equations (14) and (15), we have the following:

QU ′1:NV ′1:NY 1:2N (E) = E[Pe,l(λ
1
R, λ

2
R, f1, f2)]. (16)

By marginalizing the distribution in the equation (15) over the random variables (V 1:N , Y N+1:2N)

and (U1:N , Y 1:N), respectively we will have the following:

QU1:NY 1:N (u1:N , y1:N) = 2−|HX |Πi∈LXδi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1)

PY 1:N |U1:N (y1:N |u1:N).
(17)

QV 1:NY N+1:2N (v1:N , yN+1:2N) = 2−|HX |Πi∈LXδi(vi|v1:i−1)Πi∈RPUi|U1:i−1(vi|v1:i−1)

PY 1:N |U1:N (yN+1:2N |v1:N).
(18)

Note that,

QU1:NV 1:NY 1:2N (u1:N , v1:N , y1:N) = QU1:NY 1:N (u1:N , y1:N).QV 1:NY N+1:2N (v1:N , yN+1:2N). (19)

Therefore (U1:N , Y 1:N) and (V 1:N , Y N+1:2N) are independent and identically distributed with

respect to measure Q. So using QU1:NY 1:N = QV 1:NY N+1:2N and also equation (1) we get

||QU1:NY 1:N − PU1:NY 1:N || = ||QV 1:NY N+1:2N − PV 1:NY N+1:2N ||. (20)

Now we bound the probability of error as follows:

QU ′1:NV ′1:NY 1:2N (E) ≤ ||QU ′1:NV ′1:NY 1:2N − PU ′1:NV ′1:NY 1:2N ||+ PU ′1:NV ′1:NY 1:2N (E)

≤ ||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||+ PU1:NV 1:NY 1:2N (E)

≤ ||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||+
∑

i∈I1∩I2

PU ′1:NV ′1:NY 1:2N (E1i )

+
∑

i∈(I1∩I2)∪B

PU ′1:NV ′1:NY 1:2N (E2i ).

(21)

Now we bound each term in the last inequality of the summation. We now consider the first

term of the summation.

||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NV 1:NY 1:2N (u1:N , v1:N , y1:2N)− PU1:NV 1:NY 1:2N (u1:N , v1:N , y1:2N)|

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NY 1:N (u1:N , y1:N)QV 1:NY N+1:2N (v1:N , yN+1:2N)−

PU1:NY 1:N (u1:N , y1:N)PV 1:NY N+1:2N (v1:N , yN+1:2N)|
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Now we upper bound it as follows:

||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NY 1:N (u1:N , y1:N)QV 1:NY N+1:2N (v1:N , yN+1:2N)−

QU1:NY 1:N (u1:N , y1:N)PV 1:NY N+1:2N (v1:N , yN+1:2N)+

QU1:NY 1:N (u1:N , y1:N)PV 1:NY N+1:2N (v1:N , yN+1:2N)−

PU1:NY 1:N (u1:N , y1:N)PV 1:NY N+1:2N (v1:N , yN+1:2N)|
(a)

≤ 1

2

∑
(u1:N ,v1:N ,y1:2N )

QU1:NY 1:N (u1:N , y1:N)|(QV 1:NY N+1:2N (v1:N , yN+1:2N)−

PV 1:NY N+1:2N (v1:N , yN+1:2N))|+ |(QU1:NY 1:N (u1:N , y1:N)−

PU1:NY 1:N (u1:N , y1:N))|PV 1:NY N+1:2N (v1:N , yN+1:2N)

=
1

2

∑
(v1:N ,yN+1:2N )

|QV 1:NY N+1:2N (v1:N , yN+1:2N)− PV 1:NY N+1:2N (v1:N , yN+1:2N)|

+
1

2

∑
(u1:N ,y1:N )

|QU1:NY 1:N (u1:N , y1:N)− PU1:NY 1:N (u1:N , y1:N)|

= ||QV 1:NY N+1:2N − PV 1:NY N+1:2N ||+ ||QU1:NY 1:N − PU1:NY 1:N ||
(b)
= 2||QU1:NY 1:N − PU1:NY 1:N || = O(2−N

β

).

(22)

Identity (a) is true by triangular inequality. Identity (b) is true from equation (20). The above

steps are equivalent to applying Lemma 3.

For i ∈ I1∩ I2, P (Ebi ) can be bounded as in equation (60) in [7] which will become as follows:

P (Ebi ) ≤ 2−N
β

. (23)

For i ∈ B there exists a j ∈ [G] such that i = yj . We upperbound P (E2i ) corresponding to block

2 as follows:

PU ′1:N ,V ′1:NY 1:2N (E2i ) ≤
∑

u′1:xj v′1:yi−1y1:N

P (u′1:xjv′1:yj−1, y1:2N)P (v′yj |u
′1:xjv′1:yj−1, y1:2N)

1[P (v′yj |u
′1:xjv′1:yj−1, y1:2N) ≤ P (v′yj + 1|u′1:xjv′1:yj−1, y1:2N)]

≤
∑

u′1:xj v′1:yi−1y1:N

P (u′1:xjv′1:yj−1, y1:2N)P (v′yj |u
′1:xjv′1:yj−1, y1:2N)
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√
P (v′yj + 1|u′1:xjv′1:yj−1, y1:2N)

P (v′yj |u′1:xjv′1:yj−1, y1:2N)

Therefore,

PU ′1:N ,V ′1:NY 1:2N (E2i ) ≤ Z(V ′yj |U
′1:xj−1V ′1:yj−1Y 1:2N)

(a)

≤ 2−N
β′

.

(24)

Identity (a) is true by Lemma 5.

From equations (21), (22), (23) and (24), we conclude that

E[Pe,l(λ
1
R, λ

2
R, f1, f2)] = O(2−N

β′

)

for each l ∈ S = {1, 2}.


