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Abstract—In this work, we first revisit the integrated scheme
for achieving the capacity of binary input asymmetric channels
proposed by Honda and Yamamoto. The synthetic channels due
to polarization in this scheme are categorized as good channels,
bad channels, deterministic channels and synthetic channels
which are not polarized to the required level whose fraction is
diminishing with respect to block length. We give a rigorous proof
that argmax rule can also be used for encoding deterministic
synthetic channels instead of randomized rounding. Secondly and
mainly we are interested in universal polar codes for binary input
asymmetric channels for achieving rates close to the capacity of
compound channel. We propose two coding schemes that are a
hybrid combination of the integrated scheme and universal polar
coding schemes for symmetric channels proposed by Hassani and
Urbanke. By exploiting the stair case structure in one of the
proposed asymmetric universal polar coding schemes, neither
side-channel transmission nor sharing boolean functions with
high storage is required for bits corresponding to not completely
polarized synthetic channels.

I. INTRODUCTION

Arikan in [1] constructed capacity achieving codes for bi-
nary input symmetric channels. In this paper we first revisit the
integrated coding scheme proposed by Honda and Yamamoto
for achieving the binary input asymmetric channel capacity
[6]. This scheme is later modified by authors [4] to bring
down an exponential storage complexity to polynomial storage
complexity with the aid of a side channel which is used to
transmit at a rate which can be made arbitrarily small. If a
side channel is not used, pseudo-random functions need to
be shared between encoder and decoder for those indices of
synthetic channels which are not completely polarized whose
fraction is diminishing with respect to block length. In [4], for
encoding deterministic channel indices randomized rounding
rule is used. The authors in [7] mentioned that argmax rule
for encoding these indices give better simulation results than
randomized rounding rule. Here we give a rigorous proof that
argmax rule can be used to achieve the capacity. We found later
that similar result has been done in [3]. Here we include our
proof just in the context of binary input asymmetric channel
setting and our proof steps are not exactly same as in [3] that
give same result.

In independepent work [5] by Hassani and Urbanke, dif-
ferent code constructions are explained to achieve rates less
than compound capacity using polar codes for binary input
symmetric DMCs. In [8] Taranalli and Siegel computed the
capacity of truncated support beta binomial model which is
essentially computing the compound capacity for asymmetric

channel on a support set. This work is done in the context
of modeling flash memory channel. So compound capacity
achieving schemes for binary input asymmetric channels are
of practical interest. Here we are interested to find universal
polar codes for compound channel with a finite set of asym-
metric binary input DMCs. The compound channel is a set
of discrete memoryless channels, (X , {ps(y|x) : s ∈ S},Y)
where y ∈ Y for every state s in the set S. The compound
channel can be looked at as a discrete memoryless channel
with the state where the state is arbitrarily selected and fixed
for the transmission of entire block. The assumption is that
the decoder knows about the channel state. The authors in
[5] restricted their attention only on binary input symmetric
discrete memoryless channels. Here we present the universal
polar coding schemes for binary input asymmetric channels
that are a combination of schemes presented in [5] and [6]
to achieve rates less than compound capacity. In Section II we
will define some notations and preliminaries. In Section III
we present the integrated scheme for achieving the capacity
for binary input asymmetric channels. In Section IV and V
we present the two universal polar coding schemes for binary
input asymmetric channels, one based on polarizing indices
and another one using stair-case construction respectively.

II. NOTATIONS AND PRELIMINARIES

In this paper we always consider the binary input
asymmetric channels. We denote input alphabet by
X = {0, 1} and output alphabet by Y . We express any
set of random variables Xi, Xi+1, .....Xj (i < j) by a row
vector (Xi, Xi+1, .....Xj) in short hand as Xi:j . We denote
the set [N ] = {1, 2, 3, ...., N}. For row vector U1:N and
for A ⊂ [N ], we denote UA as row vector of dimension
1 × |A| which has only elements of U1:N whose position
i ∈ A in same order from left to right. We use w.p for "with
probability".
Let S = {1, 2, ..., s} be set of DMCs which are
characterized by pl(y|x) for each l ∈ S. Let
(X1, Yl1), (X2, Yl2), ....., (XN , YlN ) be IID random tuples
distributed according to p(x)pl(y|x), where N = 2n. Let
GN is the conventional polar transform which is binary
matrix of dimension N × N . If U1:N = X1:NGN , then
we denote P(U1:N = u1:N ) by PU1:N (u1:N ) and similarly
we denote P(Ui = ui|U1:i−1Y 1:N

l = u1:i−1y1:Nl ) by
PUi|U1:i−1Y 1:N

l
(ui|u1:i−1y1:Nl ) for the measure induced on



this set up. If two random variables (X,Yl) distributed as
PX(x)pl(y|x), bhattacharya parameter is defined as

Z(X|Yl) = 2
∑
y

PY (y)
√
PX|Yl(1|y)PX|Yl(0|y)

From [2] we have that

Z(X|Yl)2 ≤ H(X|Yl) (1)

H(X|Yl) ≤ log(1 + Z(X|Yl)) ≤ Z(X|Yl) (2)

Let β < 0.5 define the following sets,

HX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≥ 1− 2−N
β

}

LX = {i ∈ [N ] : Z(Ui|U1:(i−1)) ≤ 2−N
β

}

HX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N
l ) ≥ 1− 2−N

β

}

LX|Yl = {i ∈ [N ] : Z(Ui|U1:(i−1)Y 1:N
l ) ≤ 2−N

β

}

We have the following from theorem 1 of [6].

lim
N→∞

1

N
|HX | = H(X), lim

N→∞

1

N
|LX | = 1−H(X)

lim
N→∞

1

N
|HX|Yl | = H(X|Yl)

lim
N→∞

1

N
|LX|Yl | = 1−H(X|Yl)

The capacity of compound channel is defined as

Cc = max
p(x)

min
l∈S

I(X;Yl)

where (X,Yl) distributed as p(x)pl(y|x).

Lemma 1. limN→∞
1
N |HX ∩ LX|Yl | = I(X;Yl)

Proof: Refer to appendix

III. POLAR CODE FOR ASYMMETRIC CHANNELS

Let the asymmetric DMC is characterized by p(y|x) and
p(x) is capacity achieving input distribution. We use same
notions as in section II except for Y instead of Yl since it is
single channel case.

Code construction and encoding:
1. Let I = HX ∩LX|Y where we provide information bits of
message M uniformly distributed on {0, 1}|I| i.e U I = M as
part of the encoding the message M .
2. Let F = HX ∩ LcX|Y . As part of code construction
generate the function fr : F → {0, 1} where fr(i) is
generated independently and uniformly for each i ∈ F . We
share this between encoder and decoder. We provide frozen
bits in F i.e Ui = fr(i) while encoding these channel indices.
3. Let D = LX . We call them as deterministic channels. We
use the following argmax rule for encoding these channel
indices.
Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1)
4. For i ∈ (HX ∪ LX)

c as part of code construction generate
function λi : {0, 1}i−1 → {0, 1} randomly. For every i,
u1:i−1 independently produce
λi(u

1:i−1) = d w.p PUi|U1:i−1(d|u1:i−1) (d ∈ {0, 1})

Let the set of random functions be denoted as λ(HX∪LX)c .
We share it between encoder and deocoder. We assign
Ui = λi(U

1:i−1) while encoding. Transmit X1:N = U1:NGN .

Decoding: (Y 1:N is the received vector)
for i = 1 : N
1. If i ∈ F, Ûi = fr(i)
2. If i ∈ LX ∪ I
Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1, Y 1:N ) ≥

PUi|U1:i−1,Y 1:N (0|Û1:i−1, Y 1:N )}
3. If i ∈ (LX ∪HX)

c
, Ûi = λi(û

1:i−1).
end
Decode M̂ = Û I (Estimate of message M )

Theorem 1. Let M be the message choosen uniformly from
{0, 1}|I|. Then for the above coding scheme avg probability of
error E(λ(HX∪LX )c ,fr)[Pe(λ(HX∪LX)c , fr)] = O(2−N

β′

) for
any β′ < β < 1

2 .

Proof: Refer to appendix
The code generated whose Pe(λ(HX∪LX)c , fr) = O(2−N

β′

)
is capacity achieving by Lemma 1.
PUi|U1:i−1(u|u1:i−1) which has to be computed while encod-
ing, PUi|U1:i−1,Y 1:N (u|û1:i−1, y1:N ) while decoding will be
done in O(N logN) complexity using techniques in [6].

IV. SCHEME BASED ON POLARIZING

Let p(x) be the compound capacity achieving distribu-
tion for compound channel S. The synthetic channel in-
dices formed by polarization for channel l are categorized
as Dl = LX , Fl = HX ∩ LcX|Yl and Il = HX ∩ LX|Yl
for l ∈ S except for a diminishing fraction with respect
to block length as stated in the earlier section. We call
indices in Il as good channels and Fl as bad channels. Let
min{|I1|, |I2|..., |Is|} = L . Clearly, limN→∞

L
N = Cc. If the

inequality |I1 ∩ I2 ∩ ...∩ Is| ≤ L is strict, it means that some
synthetic channels which are good for a channel l ∈ S may
not be good for all channels in S. By providing information
bits in I1 ∩ I2 ∩ ... ∩ Is and randomly chosen frozen bits in
HX − (I1 ∩ I2 ∩ ... ∩ Is) and rest following the same coding
scheme as in section III we can get a reliable code.
Note that Fl ∪ Il = HX for all l ∈ S. This implies that for
any channels l,m ∈ S, a synthetic channel which is good
for channel l and not good for channel m should be a bad
channel for channel m. Now this enables us to adapt universal
coding scheme for symmetric channel from [5] and apply for
asymmetric case.
The following section demonstrates how to construct codes
that achieve rates close to L

N . If limN→∞ = I1∩I2∩...∩Is
N =

C(S) exists as in binary input symmetric channel case, then
we can define the gap to compound capacity Cc as ∆ =
Cc − C(S).
Polar coding scheme to reduce the gap:
Consider the two channel case i.e S = {1, 2}. Let G =



Fig. 1. Universal polarization based on polarizing channel indices

min{|I1 ∩ F2|, |I2 ∩ F1|}. Consider the sets X and Y to
be first G indices in I1 ∩ F2 and I2 ∩ F1 respectively. Let
X = {x1, x2, ....xG} where x1 < x2 < .... < xG and
Y = {y1, y2, .....yG} where y1 < y2 < .... < yG. Consider
two polar blocks 1 and 2 of length N . That is X1:2N is IID
distributed and we will have

U1:N = X1:NGN , V 1:N = XN+1:2NGN (3)

for block 1 and block 2 respectively. Now we polarize by
combining index xj of block 1 with yj of block 2 which
produces two new variables for each j ∈ [G].

U ′xj = Uxj + Vyj , V ′yj = Vyj

For remaining i which is not either xj for block 1 or yj for
block 2, U ′i = Ui and V ′i = Vi respectively.

Lemma 2. For each j ∈ [G], for any β′ < β < 0.5, for large
enough N
1. Z(U ′xj |U

1:xj−1V 1:yj−1) ≥ 1− 2−N
β′

(U ′xi is almost random given U1:xj−1V 1:yj−1 )
2. Z(V ′yj |U

1:xj−1V 1:yj−1U ′xj ) ≥ 1− 2−N
β′

(V ′yi is almost random given U1:xj−1U ′xjV
1:yj−1)

3. Z(U ′xj |U
1:xj−1V 1:yj−1Y 1:2N

l ) ≥ 1− 2−N
β′

(U ′xi is almost random given U1:xj−1V 1:yj−1Y 1:2N
l

for both l = 1, 2)
4. Z(V ′yi |U

1:xi−1V 1:yi−1U ′xiY
1:2N
l ) ≤ 2−N

β′

(V ′yi is almost deterministic given
U1:xj−1U ′xjV

1:N+yj−1Y 1:2N
l for both l = 1, 2

Proof: Refer to appendix
Hence by above lemma with this polarizing step, the indices
in X , become bad for both the channels 1 and 2 in block 1.
The indices in Y , become good for both the channels 1 and
2 in block 2. Hence we have |I1 ∩ I2|+G good indices with

respect to 2N block length which is an improvement. This is
the key idea of the universalization.

Code construction and encoding:
1. Let the message M uniformly distributed on
{0, 1}2|I1∩I2|+|Y|. Partition M into M1 and M2 such
that M1 takes first |I1 ∩ I2| bits of M and M2 takes later
|I1∩I2|+|Y| of M . Set U ′I1∩I2 = M1 and V ′(I1∩I2)∪Y = M2

as part of encoding.
2. As part of code construction, generate function
fr1 : HX − (I1 ∩ I2) → {0, 1} where fr1(i) is generated
independently and uniformly for each i and generate function
fr2 : HX−((I1∩I2)∪Y)→ {0, 1} where fr2(i) is generated
independently and uniformly for each i. So we will have
U ′i = fr1(i) for i ∈ HX − ((I1 ∩ I2)) and V ′i = fr2(i) for
i ∈ HX − ((I1 ∩ I2) ∪ Y) for encoding these channel indices
in block1 and block2 respectively.
3. Now Uxj = U ′xj +V ′yj and Vyj = V ′yj for j ∈ [G]. Ui = U ′i
and Vi = V ′i for other i ∈ HX
4. For i ∈ LX for block 1 and 2, we use the following
argmax rule for encoding these channel indices.

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1)

Vi = argmaxx∈{0,1}PVi|V 1:i−1(x|V 1:i−1)
5. As part of code construction for each block b ∈ {1, 2}
independently, for indices i ∈ (HX ∪ LX)

c we construct set
of random functions λb(HX∪LX)c . Each function in the set is
λbi : {0, 1}i−1 → {0, 1} is a random function. For every i,
u1:i−1 independently produce
λbi (u

1:i−1) = d w.p PUi|U1:i−1(d|u1:i−1)(d ∈ {0, 1})
We assign Ui = λ1i (U

1:i−1) and Vi = λ2i (V
1:i−1) for

encoding these indices. For i /∈ HX , take U ′i = Ui
and V ′i = Vi. Transmit X1:N = U1:NGN and
XN+1:2N = V 1:NGN . Let Y 1:2N is received vector.

Decoding when channel l is selected:
1. Set j = 1, Set x0 = 0 and y0 = 0.
2.
for i = xj−1 + 1 : xj − 1 of block 1
if i ∈ HX − (I1 ∩ I2), Û ′i = Ûi = fr1(i)
if i ∈ (I1 ∩ I2) ∪ LX ,
Û ′i = Ûi = 1{PUi|U1:i−1,Y 1:N

l
(1|Û1:i−1, Y 1:N ) ≥

PUi|U1:i−1,Y 1:N
l

(0|Û1:i−1, Y 1:N )}

if i ∈ (HX ∩ LX)c, Û ′i = Ûi = λ1i (Û
1:N−1)

end
for i = yj−1 + 1 : yj − 1 of block 2
if i ∈ HX − (I1 ∩ I2), V̂ ′i = V̂i = fr2(i)
if i ∈ (I1 ∩ I2) ∪ LX ,

V̂ ′i = V̂i = 1{PVi|V 1:i−1,Y 1:N
l

(1|Û1:i−1, Y N+1:2N ) ≥
PVi|V 1:i−1,Y 1:N

l
(0|V̂ 1:i−1, Y N+1:2N )}

if i ∈ (HX ∩ LX)c, V̂ ′i = V̂i = λ2i (V̂
1:N−1)

end
3.
(a)Û ′xj = fr1(xj)

(b)V̂ ′yj =



1{P
V ′yj
|U1:xj−1

U′xj
V

1:yj−1
Y 1:2N
l

(1|Û1:xj−1U ′xj
V̂ 1:yj−1Y 1:2N )

≥ P
V ′yj
|U1:xj−1

U′xj
V

1:yj−1
Y 1:2N
l

(0|Û1:xj−1Û ′xj
V̂ 1:yj−1Y 1:2N )}

(c)Ûxj = Û ′xj + V̂ ′yj and V̂yj = V̂ ′yj
4. Repeat step 2 and 3 for j = {2, 3, ...., G}
5. Set M̂1 = Û ′I1∩I2 and M̂2 =
V̂ ′(I1∩I2)∪Y . Combine M̂1, M̂2 to get M̂ .

Theorem 2. The above construction for sufficiently large
block length N , encoding and decoding rule achieves average
probability of error E[Pe(λ1, λ2, fr1 , fr2)] = O(2−N

β′

) for
any β′ < β < 0.5.

Proof: Refer to appendix
Remarks::
1. For large enough N , we can recurse the above construction
k times which takes 2k blocks as mentioned in [5]. In kth
step we take two hybrid polar blocks produced after k − 1
steps and perform the above polarizing idea. After k steps,
we will have 2kL−G good indices, the gap between fraction
of number of good indices for both the channels with respect
to blocklength and L

N becomes G
2kN

and average probability
of error can be proved to E[Pe] = 2kO(2−N

β′

) using similar
ideas in the proof of theorem 2.
2. We can generalize to case when S = {1, 2, ...s} by similar
arguments used in [5]. To recall, we first universalize by con-
sidering channels 1 and 2 in S like mentioned above step and
produce a universalized polar block for these two channels.
Next we consider the universalized polar block produced for
channel 1 and 2 and perform similar universalization with
channel 3. We repeat this until we finish all channels in S.
The analysis for relationship between blocklength and rate is
same as in [5].

V. SCHEME BASED ON STAIR CASING BLOCKS

For large enough N blocklength we assume that,
|I1 ∩ I2 ∩ .... ∩ Is| ≥ |(HX ∪ LX)

c|. This property is used in
the coding scheme and using this we avoid sharing psuedo
random boolean functions and also avoids side channel
techniques mentioned in [4].
Take I ′ to be subset of I1 ∩ I2 ∩ .... ∩ Is such that
|I ′| = |(HX ∪ LX)

c|. Let us have one to one correspondence
between the set of indices I ′ and (HX ∪ LX)

c by defining
an arbitrary bijection from g : I ′ → (HX ∪ LX)

c. Let
L′ = min{|I1|, |I2|, ....|Is|} − |I ′|.
Code construction:

Fig. 2. Extended stair cases with k=3, N=6 and q =2

Generate random frozen vector W 1:N such that W 1:N = u1:N

with probability
2−|HX |Πi∈LX q(ui|u1:i−1)Πi∈(HX∪LX )cPUi|U1:i−1(ui|u1:i−1)

W 1:N is shared between encoder and decoder

Fig. 3. Full column structure where X is parity of the information bits of
the column and U is encoded bit of block with index g(i)

We place polar blocks of size N large enough in a stair
case manner. The height of the stair case is kept as N . We
keep k such stair cases side by side shown as below. Let us
assume that there is linear MDS code M with block length
|HX | − |{(HX ∪ LX)}c| over field GF (2q) for some natural
number q. Now we repeat the above stair case structure q
times one above other and label each stair case from 1 : q.
This is shown in figure 2. We fill such polar blocks column
by column from left to right of the stair case structure while
encoding and we follow the same for decoding. The total no.
of columns are (k + 1)N − 1.

Encoding:
Input: qL′ information bits for each full column.
Output: U1:N of each polar block in the staircase.
• To encode non full columns on the left from t = 1 : N−1,

we assign Ui = Wi for block with channel index i in that
column. Repeat this for all q stair cases.

• To encode full columns from t = N ≤ i ≤ kN
– First, encode the blocks with index i ∈ (HX ∪ LX)

c

in column t with randomized rounding rule i.e Ui =
d w.p PUi|U1:i−1(d|U1:i−1) for d ∈ {0, 1}. Repeat
this for all q stair cases.

– Second, encode the blocks with index i ∈ LX in
column t with argmax rule. Repeat this for all q stair
cases.

– Third, encode the blocks with indices in HX − I ′

∗ Encode qL′ information bits which is equivalent to
L′ symbols over GF (2q) into codeword m (binary
format) inM. Replace the zero bits of m in those
positions which have zeros in all codewords ofM
with parity (X) of qL′ information bits. This is to
maintain the distribution in high entropy indices.

∗ Fill blocks whose indices in HX − I ′ in all q
staircases with the modified codeword m in binary



format as shown in the figure 3.
– Fourth, we encode the blocks with index i in I ′ by

assigning Ui = X⊕U ′g(i) where U ′g(i) is already en-
coded bit(first step) in the same column correspond-
ing to the block with index g(i) ∈ (HX ∪ LX)

c. We
do the same for all q staircases. This is to maintain
the distribution of the high entropy indices and also
ensures the independence of previously encoded bits
in the block and key step for the construction to
work.

• To encode non full columns t = kN + 1 : (k + 1)N − 1
on the right, we generate everything randomly to satisfy
the distribution of polarblock.

– For blocks with index i ∈ HX generate Ui indepen-
dently and uniformly

– For blocks with index i ∈ (HX ∪ LX)
c. Generate

Ui = d w.p PUi|U1:i−1(d|U1:i−1) d ∈ {0, 1}
– For blocks with index i ∈ LX use argmax rule.

Transmit X1:N = U1:NGN for each polar block.

Decoding:
Input: Received vector Y 1:N for each block.
Output: Estimates of encoded information bits.
• To decode non full columns on the left from t = 1 : N−1,

we estimate Ûi = Wi for the block with channel index i
in that column. Repeat this for all q stair cases.

• To decode full columns from t = N ≤ i ≤ kN
– First, decode the blocks with index i ∈ LX ∪ I ′

in column using standard SC decoding step. It is
possible since these indices are either good for all
channels or deterministic.

– Second, decode the blocks with index in HX − I ′
∗ Decode the L′ symbols from the good indices

based on the channel that is selected from all the
q staircases. Let partially recovered codeword be
c

∗ Replace by zero in those positions which have
zeros in all codewords ofM in partially recovered
codeword c. Now modified c is codeword of M
with erasures.

∗ The codeword m̂ can be recovered from c since it
is MDS codeword. This estimates qL′ information
bits corresponding to the column. Let X̂ be parity
of decoded information bits of the column.

∗ Replace the zero bits of m̂ in those positions
which have zeros in all codewords of M with
X̂ . Modified m̂ estimates Ûi for these indices.

– Last, decode blocks with index i ∈ (HX ∪ LX)
c

by estimating Ûi = X̂ ⊕ Û ′g−1(i) where Û ′g−1(i) is
already decoded bit corresponding to block of index
g−1(i) ∈ I ′ of the same column.

• Ignore and do not decode non full columns t = kN + 1 :
(k + 1)N − 1 on the right.

Now we get an upper bound on q to upper bound on

block length. If we consider RS code for linear MDS
code over GF (2q), block length should divide 2q − 1. If
(|HX | − |(HX ∪ LX)

c|) is odd, by euler theorem, q can take
value φ(|HX | − |(HX ∪ LX)

c|) where φ is Euler’s number.
φ(|HX | − |(HX ∪ LX)

c|) ≤ |HX | − |(HX ∪ LX)
c| ≤ N . We

can consider (|HX | − |(HX ∪ LX)
c|) − 1 as block length of

RS code if (|HX | − |(HX ∪ LX)
c|) is even and we can code

with parity of information bits in the other position.

Theorem 3. 1. For every block in the stair case
EW 1:N [P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )]

= 2−(|HX |)Πi∈(HX∪LX)cPUi|U1:i−1(ui|u1:i−1)
Πi∈LX q(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N ).

2. The avg probability of error:
EW 1:N [Pe(W

1:N )] ≤ (N3.k.O(2−N
β

)) for β < 0.5
3. Encoding and decoding take O(log(N)qlog2 3−1) and
O((log(N))

2
qlog2 3−1) binary operations per bit respectively.

Proof: Refer to appendix
Remarks:
1. We used linear MDS code to satisfy the distribution for
each block. In symmetric case, linearity is not required.
2. Relation between rate R and k is same as in [5].
3. If the assumption |I1 ∩ I2 ∩ ....∩ Is| ≥ |(HX ∪ LX)

c| does
not hold, we can use the universalizing technique of section
IV with fewer recursions to produce partially universalized
block to get the desired condition and use this scheme on the
partially universalized block.

VI. CONCLUSION

We proved that argmax rule can be used for encoding
deterministic channels. We adapted two universal polar coding
schemes to binary input asymmetric case using integrated
scheme. We gave rigorous proof for asymptotic probability
of error analysis for each scheme. We exploited stair case
structure for scheme in section V and avoids side-channel for
transmitting bits corresponding to synthetic channels which
are not polarized to required level. Drawback of such schemes
is large block-length. So open question is to design schemes
which take short blocklength.
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APPENDIX A
PROOF OF THEOREM 1

For the decoder mentioned in section III, let Ei is the error
event for i th bit channel. The codeword u1:N and received
vector y1:N belongs to Ei then we have

PUi|U1:i−1Y 1:N (ui + 1|u1:i−1y1:N )

≥ PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N )
(4)

For every u1:i−1 define q(y|u1:i−1) = 1 and q(y+1|u1:i−1) =
0 where

y = argmaxx∈{0,1}PUi|U1:i−1(x|u1:i−1) (5)

Let E be the error event. Hence E = ∪i∈LX|Y Ei. The the
probability of the error for given code that is for a particular
random function set λ(HX∪LX)c and randomly generated
frozen bit function fr.
Pe(λ(HX∪LX)c , fr)

=
∑

(u1:N ,y1:N )

2−|I|1[∩i∈(HX∪LX)c(λi(u
1:i−1) = ui)]

Πi∈LX q(ui|u1:i−1)1[∩i∈F (ui = fr(i))]PY 1:N |U1:N

(y1:N |u1:N )1[(u1:N , y1:N ) ∈ E ]

(6)

By independence of λi(u1:i−1) and frozen bit function fr(i)
for each i, we get
E(λ(HX∪LX )c ,fr)[Pe(λ(HX∪LX)c , fr)]

=
∑

(u1:N ,y1:N )

2−(|I|+|F |)Πi∈(HX∪LX)cPUi|U1:i−1(ui|

u1:i−1)Πi∈LX q(ui|u1:i−1)PY 1:N |U1:N (y1:N

|u1:N )1[(u1:N , y1:N ) ∈ E ]

(7)

Let us define the probability distribution QU1:N ,Y 1:N as fol-
lows
QU1:N ,Y 1:N (u1:N , y1:N )

= 2−(|I|+|F |)Πi∈(HX∪LX)cPUi|U1:i−1(ui|u1:i−1)

Πi∈LX q(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )
(8)

This implies that
E(λ(HX∪LX )c ,fr)[Pe(λ(HX∪LX)c , fr)]

= QU1:N ,Y 1:N (E)

≤ ||QU1:N ,Y 1:N − PU1:N ,Y 1:N ||+ PU1:N ,Y 1:N (E)

≤ ||QU1:N ,Y 1:N − PU1:N ,Y 1:N ||+
N∑
i=1

PU1:N ,Y 1:N (Ei)
(9)

From equation (60) of [6] we have PU1:N ,Y 1:N (E) ≤
O(2−N

β

). Following lemma proves the total variation
distance between the measure QU1:N ,Y 1:N and PU1:N ,Y 1:N is
O(2−N

β′

) which completes the proof of theorem.

Lemma 3. For any β′ < β < 0.5 for large enough polar
block N ,

||PU1:N ,Y 1:N −QU1:N ,Y 1:N || = O(2−N
β′

) (10)

Proof:

BN1 −AN1 =

N∑
i=1

Ai−11 BNi −
N∑
i=1

Ai1B
N
i+1 (11)

=

N∑
i=1

(Bi −Ai)Ai−11 BNi+1 (12)

where Akj and Bkj denotes the product
∏k
i=j Ai and

∏k
i=j Bi

respectively. For convenience, we omit the symbols of
random variables in suffix for expressing probability of
events in their respective measures. For example we express
P (ui|u1:i−1) and Q(u1:N , y1:N ) for PUi|U1:i−1(ui|u1:i−1) and
QU1:N ,Y 1:N (u1:N , y1:N ) respectively.
2||PU1:N ,Y 1:N −QU1:N ,Y 1:N ||

=
∑

u1:N ,y1:N

|Q(u1:N , y1:N )− P (u1:N , y1:N )|

(a)
=

∑
u1:N ,y1:N

|Q(u1:N )− P (u1:N )||P (y1:N |u1:N )|

(b)
=
∑
u1:N

|Q(u1:N )− P (u1:N )|

(c)
=
∑
u1:N

|
n∏
i=1

Q(ui|u1:i−1)−
N∏
i=1

P (ui|u1:i−1)|

(d)
=
∑
u1:N

|
N∑
i=1

((Q(ui|u1:i−1)− P (ui|u1:i−1))

i−1∏
j=1

P (uj |uj−11 )

N∏
j=i+1

Q(uj |uj−11 ))|

(e)

≤
∑
u1:N

N∑
i=1

(|Q(ui|u1:i−1)− P (ui|u1:i−1)|P (u1:i−1)

N∏
j=i+1

Q(uj |uj−11 ))



(f)
=

N∑
i=1

∑
u1:N

(|Q(ui|u1:i−1)− P (ui|u1:i−1)|P (u1:i−1)

N∏
j=i+1

Q(uj |u1:j−1))

=

N∑
i=1

∑
u1:i−1

∑
ui

(|Q(ui|u1:i−1)− P (ui|u1:i−1)|P (u1:i−1)

∑
uNi+1

N∏
j=i+1

Q(uj |uj−11 ))

=

N∑
i=1

∑
u1:i−1

∑
ui

(|Q(ui|u1:i−1)− P (ui|u1:i−1)|

P (u1:i−1)
∑
uNi+1

Q(uNi+1|ui1))

=

N∑
i=1

∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||
(g)
=

∑
i∈F∪I

∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

+
∑
i∈D

∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

(a) is true since P (y1:N |u1:N ) = Q(y1:N |u1:N ), (b) by sum-
ming over y1:N , (c) by conditional probability law.(d) by equa-
tion (11). (e) by triangle inequality law, (f) exchanging order of
summation, (g) is true because Q(ui|u1:i−1) = P (ui|u1:i−1)
for i ∈ (F ∪D ∪ I)c.
Hence we get∑

u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

≤
∑

i∈F∪I∪D

∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||
(13)

For i ∈ F ∪ I evaluate∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||
(a)

≤
∑
U1:i−1

P (u1:i−1)√
(2 ln 2)D(PUi|U1:i−1=u1:i−1 ||QUi|U1:i−1=u1:i−1)

(b)

≤
[
(2 ln 2)

∑
u1:i−1

P (u1:i−1)

D(PUi|U1:i−1=u1:i−1 ||QUi|U1:i−1=u1:i−1)
]0.5

(c)

≤
√

(2 ln 2)(1−H(Ui|U1:i−1))

(d)

≤
√

(2 ln 2)(1− Z(Ui|U1:i−1)2)

(e)

≤
√

(2 ln 2)(1− (1− 2−Nβ )2)

= O(2−N
β′

)

(a) by pinsker inequality , (b) by jensen’s inequality, (c)
Q(ui|u1:i−1) = 0.5 and by the formula of conditional entropy.
(d) from equation (2). (e) for large enough N by polarization
for i ∈ F ∪ I , Z(Ui|U1:i−1) ≥ 1− 2−N

β

Hence we have for i ∈ F ∪ I∑
u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

≤ O(2−N
β′

)

(14)

For i ∈ D,
let pu1:i−1 = max{P (0|u1:i−1), P (1|u1:i−1)}∑

u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||
(a)

≤
∑
u1:i−1

P (u1:i−1)√
(2 ln 2)D(QUi|U1:i−1=u1:i−1 ||PUi|U1:i−1=u1:i−1)

(b)

≤
[
(2 ln 2)

∑
u1:i−1

P (u1:i−1)

D(QUi|U1:i−1=u1:i−1 ||PUi|U1:i−1=u1:i−1)
]0.5

(c)

≤
√

(2 ln 2)
∑
u1:i−1

P (u1:i−1)(− log(pu1:i−1))

(d)

≤
√

(2 ln 2)
∑
u1:i−1

P (u1:i−1)(H(Ui|U1:i−1 = u1:i−1))

=
√

(2 ln 2)(H(Ui|U1:i−1))

(e)

≤
√

(2 ln 2)(Z(Ui|U1:i−1))

(f)

≤
√

(2 ln 2)2−Nβ = O(2−N
β′

)

(a) by pinsker inequality, (b) jensen’s inequality
for concave functions. (c) Q(ui|u1:i−1) = 1 when
ui = argmax{P (0|u1:i−1), P (1|u1:i−1)}. (d) is true since
log(

pu1:i−1

1−pu1:i−1
) > 0. (e) by equation (2), (f) is true since for



large enough N when i ∈ D, Z(Ui|U1:i−1) ≤ 2−N
β

Hence
we have for i ∈ D∑

u1:i−1

2P (u1:i−1)

||QUi|U1:i−1=u1:i−1 − PUi|U1:i−1=u1:i−1 ||

≤ O(2−N
β′

) (15)

For equations (13), (14) and (15) we complete the derivation
of the lemma.

Lemma 4. For any random variables X,Y and Z defined over
alphabets X = {0, 1}, Y and Z respectively
1. Z(X|Y ) ≤ Z(X)
2. More generally Z(X|Y Z) ≤ Z(X|Y )

Proof:

Z(X|Y ) = 2
∑
y∈Y

PY (y)
√
PX|Y (0|y)PX|Y (1|y)

(a)

≤ 2

√∑
y∈Y

PY (y)PX|Y (0|y)PX|Y (1|y)

= 2
√

EY [PX|Y (0|Y )PX|Y (1|Y )]

(b)
= 2

√
EY [PX|Y (0|Y )]− EY [P 2

X|Y (0|Y )]

(c)

≤ 2

√
EY [PX|Y (0|Y )]− (EY [PX|Y (0|Y )])

2

= 2
√
PX(0)− P 2

X(0)

= 2
√
PX(0)PX(1) = Z(X)

(16)

(a) by concavity of
√
x and (b) by linearity of expectation. (c)

by convexity of x2. Therefore part 1 is proved.

Z(X|Y,Z)

= 2
∑

(y,z)∈Y×Z

PY,Z(y, z)

√
PX|Y,Z(0|y, z)PX|Y,Z(1|y, z)

= 2
∑
y∈Y

PY (y)
∑
z∈Z

PZ|Y (z|y)√
PX|Y,Z(0|y, z)PX|Y,Z(1|y, z)

=
∑
y∈Y

PY (y)Z(X|Z, Y = y)

(a)

≤
∑
y∈Y

PY (y)Z(X|Y = y)

= 2
∑
y∈Y

PY (y)
√
PX|Y (0|y)PX|Y (1|y)

(17)

(a) by part 1. Hence part 2 is proved.

Lemma 5. Let P jX,Y (x, y) be a joint distribution on (X,Y )
supported on X × Y for each j ∈ J . Let Q(j) be the dis-
tribution on j. Define PX,Y (x, y) =

∑
j∈J Q(j)P jX,Y (x, y).

Then Z(X|Y ) ≥
∑
j∈J Q(j)Zj(X|Y ) where Zj(X|Y ) =

2
∑
y∈Y

√
P jX,Y (0, y)P jX,Y (1, y)

Proof:

Z(X|Y ) = 2
∑
y∈Y

√
PX,Y (0, y)PX,Y (1, y)

= −1 +
∑
y∈Y

[∑
x∈X

√
PX,Y (x, y)

]2
(a)

≥ −1 +
∑
y∈Y

∑
j∈J

Q(j)
[∑
x∈X

√
P jX,Y (x, y)

]2
=
∑
j∈J

Q(j)Zj(X|Y )

(18)

(a) by Minkowsky’s inequality, when r < 1 and ajk is non-

negative. Here r = 0.5 and ajk =
√
P jX,Y (x, y)∑

k∈K

(
∑
j∈J

Q(j)ajk
1
r )
r
≥
[∑
j∈J

Q(j)(
∑
k∈K

ajk)
1
r ]r

Hence proved.

Lemma 6. Let (X1, Y1) and (X2, Y2) independent random
variable tuples may not be identically distributed. X1 and X2

are defined over X = {0, 1}. Y1 and Y2 are distributed over
alphabets Y1 and Y2. Let U1 = X1 +X2 and U2 = X2. Then
1. Z(U1|Y1Y2) ≥ max{Z(X1|Y1), Z(X2|Y2)}
2. Z(U2|U1Y1Y2) = Z(X1|Y1)Z(X2|Y2)

Proof:

PU1|Y1Y2
(u1|y1y2)

=
∑
u2∈X

PU1,U2|Y1Y2
(u1, u2|y1y2)

=
∑
u2∈X

PX1X2|Y1Y2
(u1 + u2, u2|y1y2)

=
∑
u2∈X

PX1|Y1
(u1 + u2|y1)PX2|Y2

(u2|y2)

PU2|Y1Y2U1
(u2|y1y2u1)

=
PU1,U2|Y1Y2

(u1, u2|y1y2)

PU1|Y1Y2
(u1|y1y2)

=
PX1|Y1

(u1 + u2|y1)PX2|Y2
(u2|y2)∑

u2∈X PX1|Y1
(u1 + u2|y1)PX2|Y2

(u2|y2)

PU1Y1Y2(u1, y1, y2)

=
∑
u2∈X

PU1U2Y1Y2
(u1, u2, y1, y2)

= PU1U2Y1Y2
(u1, 0, y1, y2) + PU1U2Y1Y2

(u1, 1, y1, y2)

= PU2
(0)PU1Y1Y2|U2

(u1, y1, y2|0)

+ PU2
(1)PU1Y1Y2|U2

(u1, y1, y2|1)



Let

P 1
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2
(u1, y1, y2|0)

P 2
U1Y1Y2

(u1, y1, y2) = PU1Y1Y2|U2
(u1, y1, y2|1)

Z1(U1|Y1Y2)

= 2
∑
y1y2

P 1
Y1Y2

(y1y2)√
P 1
U1|Y1Y2

(0|y1y2)P 1
U1|Y1Y2

(1|y1y2)

= 2
∑
y1y2

PY1Y2|U2
(y1y2|0)√

PU1|Y1Y2U2
(0|y1y20)PU1|Y1Y2U2

(1|y1y20)

(a)
= 2

∑
y1y2

PY1(y1)PY2|U2
(y2|0)√

PX1|Y1Y2U2
(0|y1y20)PX1|Y1Y2U2

(1|y1y20)

(b)
= 2

∑
y1y2

PY1
(y1)PY2|U2

(y2|0)√
PX1|Y1

(0|y1)PX1|Y1
(1|y1)

= 2
∑
y1

PY1
(y1)

√
PX1|Y1

(0|y1)PX1|Y1
(1|y1)

= Z(X1|Y1)

(a) is because Y1 is independent of U2, Y2 is independent of
Y1 given U2. (b) is true X1 is independent of Y2U2 given Y1.
Similarly we can easily prove that Z2(U1|Y1Y2) = Z(X1|Y1).
Now Lemma 5 implies that Z(U1|Y1Y2) ≥ Z(X1|Y1)
exchanging the roles of (X1, Y1) and (X2, Y2). We also
get Z(U1|Y1Y2) ≥ Z(X2|Y2). Therefore Z(U1|Y1Y2) ≥
max{Z(X2|Y2), Z(X1|Y1)}.
Z(U2|Y1Y2U1)

= 2
∑

y1y2u1∈Y1×Y2×X
PU1Y1Y2

(u1y1y2)

.
√
PU2|U1Y1Y2

(0|u1y1y2)PU2|U1Y1Y2
(1|u1y1y2)

= 2
∑

y1y2u1∈Y1×Y2×X

PU1Y1Y2(u1y1y2)

PU1|Y1Y2
(u1|y1y2)[

PX1|Y1
(u1|y1)PX2|Y2

(0|y2)

PX1|Y1
(u1 + 1|y1)PX2|Y2

(1|y2)
]0.5

= 2
∑

y1y2u1∈Y1×Y2×X
PY1Y2(y1y2)[

PX1|Y1
(u1|y1)PX1|Y1

(u1 + 1|y1)

PX2|Y2
(0|y2)PX2|Y2

(1|y2)
]0.5

= 2
∑
u1∈X

∑
y1∈Y1

∑
y2∈Y2

PY1(y1)PY2(y2)[
PX1|Y1

(u1|y1)PX2|Y2
(0|y2)

PX1|Y1
(u1 + 1|y1)PX2|Y2

(1|y2)
]0.5

= Z(X1|Y1)Z(X2|Y2)

Proof of Lemma 1:

lim
n→∞

1

N
|HX ∩ LX|Yl | = lim

N→∞

1

N
|HX − LcX|Yl |

(a)
= lim

N→∞

1

N
|HX −HX|Yl |

(b)
= lim

N→∞

1

N
(|HX | − |HX|Yl |)

= H(X)−H(X|Yl)
= I(X;Yl)

(a) is true since we know that limN→∞
1
N |HX|Yl | =

limN→∞
1
N |L

c
X|Yl |. (b) is true since we know that HX|Yl ⊂

HX , by Lemma 4 (conditioning reduces the bhattacharya
parameter).
Proof of Lemma 2:

Z(U ′xj |U
1:xj−1V 1:yj−1)

(a)

≥ max{Z(Uxj |U1:xj−1)

, Z(Vyj |V 1:yj−1)}

≥ 1− 2−N
β

(a) by Lemma 6.

Z(V ′yj |U
1:xj−1V 1:yj−1U ′xj )

(a)
= Z(Uxj |U1:xj−1)Z(Vyj |V 1:yj−1)

≥ (1− 2−N
β

)(1− 2−N
β

)

(b)

≥ 1− 2−N
β′

(a) by Lemma 6. (b) can be verified true for any β′ < β for
large enough N .

Z(U ′xj |U
1:xj−1V 1:yj−1Y 1:2N

1 )

(a)

≥ max{Z(Uxj |U1:xj−1Y 1:N
1 ),

Z(Vyj |U1:yj−1Y N+1:2N
1 )}

≥ 1− 2−N
β

(a) by Lemma 6..

Z(V ′yj |U
1:xj−1V 1:yj−1U ′xjY

1:2N
1 )

(a)
= Z(Uxj |U1:xj−1Y 1:N

1 )

Z(Vyj |V 1:yj−1Y N+1:2N
1 )

≤ Z(Uxj |U1:xj−1Y 1:N
1 )

≤ 2−N
β

(a) by Lemma 6.

Z(U ′xj |U
1:xj−1V 1:N+yj−1Y 1:2N

2 )

(a)

≥ max{Z(Uxj |U1:xj−1Y 1:N
2 ),

Z(Uyj |V 1:N+yj−1Y N+1:2N
2 )}

≥ 1− 2−N
β



(a) by Lemma 6..

Z(V ′yi |U
1:xi−1V 1:yi−1U ′xiY

1:2N
2 )

(a)
= Z(Uxi |U1:xi−1Y 1:N

2 )

Z(Vyi |V 1:yi−1Y N+1:2N
2 )

≤ Z(Uyi |V 1:yi−1Y N+1:2N
2 )

≤ 2−N
β

Lemma 6.

APPENDIX B
PROOF OF THEOREM 2

Let (U ′1:N , V ′1:N ) be a codeword corresponding to message
M . In our code construction we have one to one linear relation
from (U ′HX V ′HX ) to (UHX V HX ) let it be H2|HX |. For i /∈
HX we have U ′i = Ui and V ′i = Vi. Let the transform which
maps ((U ′1:N V ′1:N )) to ((U1:N V 1:N )) be H2N . For word
(u′1:N v′1:N ) the corresponding word with H2N transform
be (u1:N v1:N ). The probability for this word to be selected
as codeword and received vector becomes y1:2N is

2−(2|I1∪I2|+|Y|)1[∩i∈(HX−(I1∩I2)){fr1(i) = u′i}]
1[∩i∈(HX−((I1∩I2)∪Y)){fr2(i) = v′i}]1[∩i∈(HX∩LX)c

{λ1(u1:i−1) = ui}]1[∩i∈(HX∪LX)c{λ2(v1:i−1) = vi}
]Πi∈LX (q(ui|u1:i−1)q(vi|v1:i−1))PY 1:N |U1:N (y1:N |
u1:N )PY 1:N |U1:N (yN+1:2N |v1:N )

(19)

This is true because we have PU1:NY 1:N = PV 1:NY N+1:2N from
equation 3. Then the probability of error for the ith bit channel
of block b be Ebi for b ∈ {1, 2}. If (u′1:N , v′1:N , y1:2N ) belongs
to E1i and i ∈ I1 ∩ I2 then

PUi|U1:i−1Y 1:N (ui + 1|u1:i−1y1:N )

≥ PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N )
(20)

and similarly belongs to E2i and i ∈ I1 ∩ I2 then

PUi|U1:i−1Y 1:N (vi + 1|v1:i−1y1:N )

≥ PUi|U1:i−1Y 1:N (vi|v1:i−1y1:N )
(21)

and belongs to E2i for i ∈ Y , for such i, i is equal to yj for
some j in [G] then

PV ′yj |U
1:xj−1U ′xj

V 1:yj−1Y 1:2N
l

(ui + 1|u1:xj−1u′xjv
1:yj−1

y1:2N ) ≥ PV ′yj |U
1:xj−1U ′xj

V 1:yj−1Y 1:2N
l

(ui|u1:xj−1u′xj
v1:yj−1y1:2N )

(22)

Let E = {∪i∈I1∩I2E1i } ∪ {∪i∈(I1∩I2)∪YE2i }.
Now the probability of error for a given code is that for a
given fr1 , fr2 , λ

1
(HX∪LX)cλ

2
(HX∪LX)c

Pe(λ
1
(HX∪LX)c , λ

2
(HX∪LX)c , fr1 , fr2)

=
∑

(u′1:N ,v′1:N ,y1:2N )

2−(2|I1∪I2|+|Y|)1[∩i∈(HX−(I1∩I2))

{fr1(i) = u′i}]1[∩i∈(HX−((I1∩I2)∪Y)){fr2(i) = v′i}]
1[∩i∈(HX∪LX)c ]{λ1(u1:i−1) = ui}]1[∩i∈(HX∪LX)c

{λ2(v1:i−1) = vi}]Πi∈LX (q(ui|u1:i−1)q(vi|v1:i−1)

)PY 1:N |U1:N (y1:N |u1:N )PY 1:N |U1:N (yN+1:2N |v1:N )

1[(u′1:N , v′1:N , y1:2N ) ∈ E ]

(23)

By taking expectation with respect to
fr1 , fr2 , λ

1
(HX∪LX)cλ

2
(HX∪LX)c

E[Pe(λ
1
(HX∪LX)c , λ

2
(HX∪LX)c , fr1 , fr2)] =∑

(u′1:N ,v′1:N ,y1:2N )

2−2|HX |Πi∈LX (q(ui|u1:i−1)q(vi|

v1:i−1))Πi∈(HX∪LX)cPUi|U1:i−1(ui|u1:i−1)

PUi|U1:i−1(vi|v1:i−1)PY 1:N |U1:N (y1:N |u1:N )

PY 1:N |U1:N (yN+1:2N |v1:N )

(24)

Let us introduce measure of QU ′1:NV ′1:NY 1:2N equivalently
QU1:NV 1:NY 1:2N .

QU ′1:NV ′1:NY 1:2N (u′1:N , v′1:N , y1:2N )

= QU1:NV 1:NY 1:2N (u1:N , v1:N , y1:2N )

= 2−2|HX |Πi∈LX (q(ui|u1:i−1)q(vi|v1:i−1))

Πi∈(HX∪LX)cPUi|U1:i−1(ui|u1:i−1)

PUi|U1:i−1(vi|v1:i−1)PY 1:N |U1:N (y1:N |u1:N )

PY 1:N |U1:N (yN+1:2N |v1:N )

(25)

This implies that

QU ′1:NV ′1:NY 1:2N (E)

= E[Pe(λ
1
(HX∪LX)c , λ

2
(HX∪LX)c , fr1 , fr2)]

(26)

By marginalization, we can get

QU1:NY 1:N (u1:N , y1:N )

= 2−|HX |Πi∈LX q(ui|u1:i−1)Πi∈(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(27)

QV 1:NY N+1:2N (v1:N , yN+1:2N )

= 2−|HX |Πi∈LX q(vi|v1:i−1)Πi∈(HX∪LX)c

PUi|U1:i−1(vi|v1:i−1)PY 1:N |U1:N (yN+1:2N |v1:N )
(28)

This implies

QU1:NV 1:NY 1:2N (u1:N , v1:N , y1:N )

= QU1:NY 1:N (u1:N , y1:N )QV 1:NY N+1:2N (v1:N , yN+1:2N )
(29)



This implies that, U1:N , Y 1:N and V 1:NY N+1:2N are inde-
pendent and identically distributed with respect to measure Q.
So we have from equation QU1:NY 1:N = QV 1:NY N+1:2N and
also fromm equation 3 we get

||QU1:NY 1:N − PU1:NY 1:N ||
= ||QV 1:NY N+1:2N − PV 1:NY N+1:2N ||

(30)

QU ′1:NV ′1:NY 1:2N (E)

≤ ||QU ′1:NV ′1:NY 1:2N − PU ′1:NV ′1:NY 1:2N ||
+ PU ′1:NV ′1:NY 1:2N (E)

≤ ||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||
+ PU1:NV 1:NY 1:2N (E)

≤ ||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||

+
∑

i∈I1∩I2

PU ′1:NV ′1:NY 1:2N (E1i )

+
∑

i∈(I1∩I2)∪Y

PU ′1:NV ′1:NY 1:2N (E2i )

(31)

Now we bound each term in the last inequality of the sum-
mation. Consider

||QU1:NV 1:NY 1:2N − PU1:NV 1:NY 1:2N ||

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NV 1:NY 1:2N (u1:N , v1:N ,

y1:2N )− PU1:NV 1:NY 1:2N (u1:N , v1:N , y1:2N )|

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NY 1:N (u1:N , y1:N )

QV 1:NY N+1:2N (v1:N , yN+1:2N )

− PU1:NY 1:N (u1:N , y1:N )

PV 1:NY N+1:2N (v1:N , yN+1:2N )|

=
1

2

∑
(u1:N ,v1:N ,y1:2N )

|QU1:NY 1:N (u1:N , y1:N )

QV 1:NY N+1:2N (v1:N , yN+1:2N )

−QU1:NY 1:N (u1:N , y1:N )

PV 1:NY N+1:2N (v1:N , yN+1:2N )

+QU1:NY 1:N (u1:N , y1:N )

PV 1:NY N+1:2N (v1:N , yN+1:2N )

− PU1:NY 1:N (u1:N , y1:N )

PV 1:NY N+1:2N (v1:N , yN+1:2N )|

(a)

≤ 1

2

∑
(u1:N ,v1:N ,y1:2N )

QU1:NY 1:N (u1:N , y1:N )|

(QV 1:NY N+1:2N (v1:N , yN+1:2N )−
PV 1:NY N+1:2N (v1:N , yN+1:2N ))|

+ |(QU1:NY 1:N (u1:N , y1:N )−
PU1:NY 1:N (u1:N , y1:N ))|
PV 1:NY N+1:2N (v1:N , yN+1:2N )

=
1

2

∑
(v1:N ,yN+1:2N )

|QV 1:NY N+1:2N (v1:N , yN+1:2N )−

PV 1:NY N+1:2N (v1:N , yN+1:2N )|

+
1

2

∑
(u1:N ,y1:N )

|QU1:NY 1:N (u1:N , y1:N )−

PU1:NY 1:N (u1:N , y1:N )|
= ||QV 1:NY N+1:2N − PV 1:NY N+1:2N ||+

||QU1:NY 1:N − PU1:NY 1:N ||
(b)
= 2||QU1:NY 1:N − PU1:NY 1:N || = O(2−N

β′

)

(32)

(a) is true by triangular inequality. (b) from equation 30. For
i ∈ I1 ∩ I2, P (Ebi ) can be bound as equation (60) in [6].
Hence

P (Ebi ) ≤ 2−N
β

. (33)

For block 2 and i ∈ Y there exists a j ∈ [G] such that i = yj .

PU ′1:N ,V ′1:NY 1:2N (E1i )

≤
∑

u′1:xj v′1:yi−1y1:N

P (u′1:xjv′1:yj−1, y1:2N )

P (v′yj |u
′1:xjv′1:yj−1, y1:2N )1[P (v′yj |u

′1:xjv′1:yj−1,

y1:2N ) ≤ P (v′yj + 1|u′1:xjv′1:yj−1, y1:2N )]

≤
∑

u′1:xj v′1:yi−1y1:N

P (u′1:xjv′1:yj−1, y1:2N )

P (v′yj |u
′1:xjv′1:yj−1, y1:2N )√

P (v′yj + 1|u′1:xjv′1:yj−1, y1:2N )

P (v′yj |u′1:xjv′1:yj−1, y1:2N )

≤ Z(V ′yj |U
′1:xj−1V ′1:yj−1Y 1:2N )

(a)

≤ 2−N
β′

(34)

(a) by Lemma 2.
Equations 31, 32, 33 and 34 conclude that

E[Pe(λ
1
(HX∪LX)c , λ

2
(HX∪LX)c , fr1 , fr2)] = O(2−N

β′

)

APPENDIX C
PROOF OF THEOREM 3

Step1:
Consider any polar block in the stair case structure which
is completely in full column regime. This polar block cor-
responds to N different full columns. To get distribution
on encoded codeword U1:N for this polar block, first we
compute the conditional distribution of P(Ui = ui|U1:i−1 =
u1:i−1,W 1:N ) for all i in the block.
If i ∈ LX we have by encoding rule
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = q(ui|u1:i−1)



If i ∈ (HX ∪ LX)
c by encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = PUi|U1:i−1(ui|u1:i−1)
If i ∈ HX − I ′
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = 0.5.
This is true because in these indices we place bits of codeword
m of linear MDS code corresponding to that column. We
replaced the zero bits in those positions which have zeros
in all codewords of M with parity (X) of information bits
of the column to get modified codeword m. Hence for such
code, at a given position, there are equal no. of zeros and ones
in all codewords. Hence Ui is Ber(0.5) random variable and is
only dependent on the information bits corresponding to that
column of linear MDS codeword and independent to U1:i−1

of that block (previous columns).
If i ∈ I ′
P(Ui = ui|U1:i−1 = u1:i−1,W 1:N ) = 0.5
Here we assign Ui as binary sum of parity of information
bits corresponding to that column, let it be X and already
encoded bit in the block corresponding to the g(i) in that
column, let it be Y . Ui = X ⊕ Y . X is Ber(0.5) and Y is
Ber(p) for some p and both X and Y are independent clearly
X is parity sum which is independently generated with respect
to Y . Observe that Ui is independent of Y , because for a given
Y , the distribution of X is again Ber(0.5), when constant is
added to Ber(0.5) random variable we get Ber(0.5) random
variable. Hence distribution of Ui is Ber(0.5) given random
variable Y . It is noteworthy that Ui is independent of all the
previously encoded bits of previous columns which implies
that it is independent of U1:i−1 of that block. To see this let
us denote P̄i be random vector denoting the encoded bits of
previous columns.

P(Ui = ui|P̄i,W 1:N )

=
∑

y∈{0,1}

P(Ui = ui, Y = y|P̄i,W 1:N )

=
∑

y∈{0,1}

P(Y = y|P̄i,W 1:N )

.P(Ui = ui|Y = y, P̄i,W
1:N )

(a)
=

∑
y∈{0,1}

P(Y = y|P̄i,W 1:N )P(Ui = ui|Y = y)

(b)
=

∑
y∈{0,1}

P(Y = y|P̄i,W 1:N )P(Ui = ui)

= P(Ui = ui)

(35)

(a) is true by Markovity, given Y , Ui is independent of
encoded bits of previous columns. (b) by independence of
Ui with respect to Y . By combining everything for a block
encoding in full column regime U1:N is distributed as

P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )

= Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N )

PY 1:N |U1:N (y1:N |u1:N )

= 2−|HX |Πi∈LX q(ui|u1:i−1)Π(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(36)

This implies that,

EW 1:N [P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )]

= 2−|HX |Πi∈LX q(ui|u1:i−1)Π(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(37)

Step2:
Consider a block which is partly in right side of non full col-
umn side. For Ui in full column regime, the same conditional
probability rule like above follows. For Ui in non full column
regime, by encoding rule.
if i ∈ HX
P(Ui = ui|U1:i−1 = u1:i−1) = 0.5
if i ∈ LX
P(Ui = ui|U1:i−1 = u1:i−1) = q(ui|u1:i−1)
if i ∈ (HX ∪ LX)

c

P(Ui = ui|U1:i−1 = u1:i−1) = PUi|U1:i−1(ui|u1:i−1)
This implies again that,

P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )

= Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N )

PY 1:N |U1:N (y1:N |u1:N )

= 2−|HX |Πi∈LX q(ui|u1:i−1)Π(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(38)

This implies that,

EW 1:N [P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )]

= 2−|HX |Πi∈LX q(ui|u1:i−1)Π(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(39)

Step3:
Now if we consider a block which is partly in the left of stair
case structure which is in non-full column regime and some
part lies in the full-column regime. Assume that h encoded
bits of the block are in left side of non full column regime, let
those indices be the set H and encoded as Wi corresponding
to index i.

EW 1:N [Πi∈H1(ui = Wi)]

= EW 1:N [1(∩i∈H(ui = Wi))]

(a)
= 2−|H∩HX |Πi∈LX∩Hq(ui|u1:i−1)Πi∈(HX∪LX)c∩H

PUi|U1:i−1(ui|u1:i−1)

(40)

We get step (a) by marginalizing
EW 1:N [1(∩i∈[N ](ui = Wi))] = 2−|HX |Πi∈LX q(ui|

u1:i−1)Πi∈(HX∪LX)cPUi|U1:i−1(ui|u1:i−1) Now con-
sider,

P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )

= Πi∈[N ]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N )

PY 1:N |U1:N (y1:N |u1:N )

= Πi∈H1(ui = Wi)2
−|HX−H|Πi∈LX−Hq(ui|u1:i−1)

Πi∈(HX∪LX)c−HPUi|U1:i−1(ui|u1:i−1)

PY 1:N |U1:N (y1:N |u1:N )

(41)



This implies

EW 1:N [P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )]

= EW 1:N [Πi∈H1(ui = Wi)2
−(|HX−H|Πi∈LX−H

q(ui|u1:i−1)Π(HX∪LX)c−HPUi|U1:i−1(ui|u1:i−1)]

PY 1:N |U1:N (y1:N |u1:N )

= EW 1:N [Πi∈H1(ui = Wi)2
−(|HX−H|Πi∈LX−H

q(ui|u1:i−1)Π(HX∪LX)c−HPUi|U1:i−1(ui|u1:i−1)]

PY 1:N |U1:N (y1:N |u1:N )

(a)
= 2−|HX |Πi∈LX q(ui|u1:i−1)Πi∈(HX∪LX)cPUi|U1:i−1

(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

(42)

(a) by equation 40. Hence proved the part 1. For any block, we
use the same decoding rule in section III to decode information
bits. Let Eb be the error event for the block in a stair case. Let
Pb be a block error probability for the block.

Pb(W
1:N )

=
∑

(u1:N ,y1:N )

P(U1:N = u1:N , Y 1:N = y1:N |W 1:N )

1((u1:N , y1:N )) ∈ Eb)

(43)

Taking expectation on both sides and by linearity of expecation
we get,

EW 1:N [Pb(W
1:N )]

=
∑

(u1:N ,y1:N )

EW 1:N [P(U1:N = u1:N , Y 1:N = y1:N |

W 1:N )1((u1:N , y1:N )) ∈ Eb)

=
∑

(u1:N ,y1:N )

2−|HX |Πi∈LX q(ui|u1:i−1)Πi∈(HX∪LX)c

PUi|U1:i−1(ui|u1:i−1)PY 1:N |U1:N (y1:N |u1:N )

1((u1:N , y1:N )) ∈ Eb)
= Q(Eb)

(44)

Q(Eb) is bounded exactly similarly to the proof of Theorem
1. Hence we get part 2 by using union bound.
Encoding Complexity:
Encoding complexity consists of two factors, encoding
polar block which takes O(N log2N) real operations and
encoding RS codeword. Encoding RS codeword can done
in O(N log2(N)) binary operations over GF(2q). Addition
and multiplication over this field takes q and qlog2(3) binary
operations respectively. One RS codeword contains Nq bits.
Hence the claim follows.
Decoding Complexity:
Decoding complexity consists of two factors, decoding
polar block which takes O(N log2N) real operations and
decoding RS codeword. Decoding RS codeword can be done
in O(N(log2(N))

2
) operations over GF(2q). Addition and

multiplication over this field takes q and qlog2(3) binary
operations respectively. One codeword contains Nq bits.
Hence the claim follows. This concludes part 3.


