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Abstract—We design multilevel coding (MLC) and bit-inter- bandwidth efficiency. However, past research has primarily fo-
leaved coded modulation (BICM) schemes based on low-density cused on the maximization of minimum Euclidean distance and
parity-check (LDPC) codes. The analysis and optimization of asymptotic gains [3], [7]. Recently, the application of methods

the LDPC component codes for the MLC and BICM schemes f inf tion th has heloed t the short
are complicated because, in general, the equivalent binary-input _rom Information theory has helped to overcome the shortcom-

component channels are not necessarily symmetric. To overcomeings of this traditional coding philosophy. It is proved in [4]
this obstacle, we deploy two different approaches: one based onthat MLC together with multistage decoding (MSD) suffices
independent and identically distributed (i.i.d.) channel adapters to approach the channel capacity if the component code rates
and the other based on coset codes. By incorporating i.i.d. gre properly chosen. Reference [4] also concludes that if we

channel adapters, we can force the symmetry of each binary-input G . d | lel ind dent d di
component channel. By considering coset codes, we extend thdS€ sray mapping and employ paraliel inaependent decoding

concentration theorem based on previous work by Richardsoret (PID) at each level separately, the information loss relative to
al. and Kavcic et al. We also discuss the relation between the sys-the channel capacity is negligible if optimal component codes
tems based on the two approaches and show that they indeed haveare used. Furthermore, it is recognized that Gray-mapped BICM
the same expected decoder behavior. Next, we jointly optimize the ;.\ /iqes mutual information very close to the channel capacity

code rates and degree distribution pairs of the LDPC component . o .
codes for the MLC scheme. The optimized irregular LDPC codes [6] and is actually a derivative of the MLC/PID scheme using a

at each level of MLC with multistage decoding (MSD) are able Single binary code [4], [8]. Since the invention and refinement
to perform well at signal-to-noise ratios (SNR) very close to the of turbo codes [9], the research community also realized the
capacity of the additive white Gaussian noise (AWGN) channel. change in the paradigm of coding optimality, i.e., not to pay at-
We also show that the optimized BICM scheme can approach ention to only minimum distances. These discoveries allow us

the parallel independent decoding (PID) capacity as closely ast d . tant lusion: Usi ful t
does the MLC/PID scheme. Simulations with very large codeword 0 9raw oneimportant conclusion. Using poweriul componen

length verify the accuracy of the analytical results. Finally, we Co0des with properly designed rates for MLC or BICM enables
compare the simulated performance of these coded modulation us to get very close to channel capacity at a desired bandwidth
schemes at finite codeword lengths, and consider the results from efficiency.
the perspective of a random coding exponent analysis. _ On the other hand, low-density parity-check (LDPC) codes
Index Terms—Bit-interleaved coded modulation (BICM), coding  [10] have been shown to achieve low bit-error rates (BERS) at
exponent analysis, coset codes, density evolution, independent an ignal-to-noise ratios (SNR) very close to the Shannon limits
identically distributed (i.i.d.) channel adapters, irregular low-den- int ting bi : f ch Is [111-[13 d th
sity parity-check (LDPC) codes, LDPC codes, multilevel coding on many interesting binary-input channels [11]-{13], an e_y
MLC). outperform turbo codes when the block length of the code is
( ) tperf turb d hen the block length of th d
large, even though the decoding complexity is less than that of
turbo codes. Therefore, LDPC codes are considered to be among
the most power-efficient binary codes for digital transmission.

ULTILEVEL coding (MLC) [3], [4] and bit-interleaved  In this paper, we explore the use of LDPC codes [10], [11]
coded modulation (BICM) [5], [6] are two well-known as the component codes of both MLC and BICM schemes de-

coded modulation schemes proposed to achieve both power sigihed to approach the channel capacity (also cf. [14], [15]). The
" treceived June 3. 2002: revised Aoril 29. 2003 Thi ) BICM scheme we study refers to the scheme which does not it-
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m:1

ysis and design of LDPC codes for various binary-input sym-
. . . . C
metric channels. However, the equwa_lent binary-input compo- O LDPC o
nent channels of these coded modulation schemes are not neces- N ¢ | Mapping
. . . . X

sarily symmetric. To address this problem, we use the ideaofan "> (O~ LDEC . .
. . . s e Sources : Device
independent and identically distributed (i.i.d.) channel adapter, :
introduced in [15]. We show that the i.i.d. channel adapter and O LDPC m—j 2=
the equivalent binary-input channel can be considered together
as a new “augmented channel” which is output symmetric, sat'i:s—

. . . g. 1.
fying the symmetry condition in [1]. Therefore, the analysis and

design of LDPC codes is greatly simplified. In [2], by consid-

ering LDPC coset codes instead of linear LDPC codes, concéﬁ‘WGN) channel model, and we denote byndy the channel

tration theorems are proven for LDPC coset code ensemblesn(())rllSe and the channel output, respectively. The spectral effi-

channels with binary inputs and intersymbol interference (IS ency Iz (bits per symbol) of .the SCheTﬁfs equal to the sum
. the component code rates, i.&, = )" ;" R;.
due to channel memory. In this paper, we apply the concept of i

LDPC coset codes to both MLC and BICM cases and provide Under the constraint ofi.i.d equ_robable Inputs, Fhe capacity
. . of such a channel with the channel inpuand outputy is given
similar concentration theorem over almost all graphs, almost 8 I ’

AWGN

Encoder structure of the MLC scheme with LDPC component codes.

3
input sequences (time-multiplex of coset code codewords), and [19]
almost all channel noise realizations. We also discuss the rela- C=I1Cy, Cy,...,Cpi1;Y)=I(X;Y)
tion between the systems based on i.i.d. channel adapters and > p(yla)
coset codes and show that these two systems have the same ex- =m — E, , |log, €2 1)
. z,y 2 . .
pected decoder behavior. p(ylz)

The outline of this paper is as follows. In Section II, we in-
troduce the system model_ of MLC apd BICM, including th(_aiE. Multistage Decoding (MSD)
encoder structures, decoding strategies, and related capacity re-
sults. In Section IlI, we first discuss the concept of an i.i.d. APPlying the mutual information chain rule to (1) yields
cha.nnel adapter and prove the corresponding properties. Nextr(Cy, ..., Cou1; V) = I(Co; V) + I(Cy; Y|Co) + - -
we introduce the coset code scheme and present the coset code + I(Crs Y|C Con_s)
concentration theorem. In Section IV, we extend density evolu- me b B0 e m =2 )
tion to evaluate the asymptotic performance of the LDPC corfhis equation implies that the transmission of vecator=
ponent codes for the MLC and BICM schemes incorporating tiiey, ..., ¢—1) can be separated into the parallel transmission
i.i.d. channel adapter. We describe the optimization techniga&c; over m equivalent binary input channels, provided that
for both MLC (joint optimization of component code rates andb. - - ., ¢c;—1 are known [4]. Accordingly, the component
code parameters) and BICM (only component code parametetgjlesC” are successively decoded based on the channel output
in this section, as well. In Section V, we present the optimizatigmnd the decisions from lower levels. This is the well-known
results for both Gray-mapped MLC and BICM schemes basstlltistage decoding (MSD). The probability density function
on 4-PAM and 8-PSK modulatichWe show that the optimized (pdf) p(Y = ylc;, co, ..., c;—1) for the equivalent channél
thresholds are very close to their associated capacities andisvgiven by
verify the validity of the code designs by very large block-size,y, | = oy _ _
simulation results. Finally, we simulate the performance ofthegéy_mc“ €0, -5 €i=1) = Bacateo, . e PV =yl X =a)}
MLC and BICM schemes based on optimized LDPC codes at @)
moderate block sizes and consider the results from the perspghereA(cy, ..., ¢;) denotes the subset of all the symbolsiof
tive of arandom coding exponent analysis. Section VI concludegiose labels have the valagin positions, j = 0, ..., i. The
the paper. equivalent channelis then specified by a set of pdfs [4]

p(Y =y|C; =) = {p(Y = ylci, co, - -+, €iz1),

YV (coy ovvy i) € 0,174’, 3)
A. Multilevel Coding (MLC) (co ) €10, 1}"}

. At the receiver side, for each equivalent binary input channel
The encoder structure of the LDPC coded MLC scheme jsy, 5 nosterioriprobability (APP) module usesand the deci-
shown in Fig. 1. Each bit;, 7 = 0,1, ..., m — 1, is pro-

4 i . sions from lower levels to compute the log-APP-ratio (LAPPR)
tected by a different binary LDPC cod¢ of lengthn and rate ¢, the coded bits¢i, i = 0, 1,..., m — 1. Applying Bayes’
R; = k;/n, wherek; is the information word length in bits. rule, it can be shown that the LAFSPR@fis given by
The mapping device maps a binary veatet (¢, ... ¢m—1) t0 P B B
a signal pointz € A, whereA is the signal set anfd| = 2™. v; = log r(Ci=0Y =y co, ..., ci-1)

Il. SYSTEM MODEL

g
We consider a discrete equivalent additive white Gaussian noise Pr(Ci=1Y =y, co, ..., ci-1)
— log EGGA(Co,...,Ci_l,O){p(Y = y|X = a’)} (4)
2Since 4-PAM modulation represents one quadrature component in a E.caco,.icoo )ip(Y = y|X =a)}

16-QAM modulation scheme, the results discussed here apply to 16-QAM
directly. In general, the code design methods can easily be adapted to othéThroughout the paper, we denote the random variables corresponding to the
high-order constellations. transmitted and received symbols by capital letters.
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Fig. 4. Capacity comparison for a Gray-mapped 4-PAM modulation on an

Fig. 3. Gray-mapped 8-PSK modulation. AWGN channel.

andv; is used as the decoder input of the component code  °
level i.

C. Parallel Independent Decoding (PID)

Since thec;, 7 = 0, 1, ..., m — 1, are independent of each
other, it can be shown that
m—1

> I(Ci;Y) < I(Co, ...

=0

The gap betweed "' I(Cy; Y) andI(Cy, ..., Cp_1; Y) R o
v : ) . Ryo=Ron0=0748 | -~ i”
strongly depends on the mapping rule for the signal points. 107210

particular, [4], [6] showed that this gap is surprisingly small i | 2N LT > R,=R,=0.745

Gray mapping is employed. This result leads to a suboptin = AN R,=0.510

5.77dB
5.84dB
) Cmf 13 Y) .

I(C,;YIC,)=
FI(C,YIC,C,)

Spectral Efficiency (bits/symbol)

but quite effective decoding strategy, namely, the decoding S0 S s “R,=0.504

the binary cod&”* at each level without using the decisions at 05— o s 1 e

any other level. With this PID strategy, the system can also Es/NO(dB)

decomposed into an equivalent setrofparallel binary-input , _ _
channels. Each equivalent binary-input channisl character- Fig. 5. Capacity comparison for a Gray-mapped 8-PSK modulation on an
. ) AWGN channel.

ized by the pdf

p(Y =y|C; =b) = E,ca; {p(Y =y|X =a)} (5) plot shows that the PID capacity suffers almost no degra-
dation compared to the channel capadity For example, at
a spectral efficiency of 1 bit/symbol, the reliable transmission
SNRs corresponding to the channel capa€itgnd the PID ca-
pacityé are 2.11 and 2.27 dB, respectively. The curves also
suggest the optimal individual code rates at each level: at an
R, of 1 bit/symbol, if MSD is used, the optimal code rates for
EaeAép(Y =y|X =a) each level ardRy/R; = 0.337/0.663; however, if PID is em-
g E,.p(Y =yX =a) (6) ployed, Ry/R; = 0.349/0.651. Flg._5 shows similar results

] N ) v _ ] for a Gray-mapped 8-PSK modulation on an AWGN channel.

With the i.i.d equiprobable inputs constraint, we define thg; 5 R, of 2 bits/symbol, the performance loss of the PID ca-

“PID capacity” [4] pacity (5.84 dB) compared to the channel capacity (5.77 dB) is

where A} denotes the subset of all the symbols_dfwhose
labels have the valuee {0, 1} in positions.

At the receiver side, the LAPPR of is calculated as
Pr(C; =0]Y =y)
SPr(C; =1]Y = y)

’Ui:10

o omol only 0.07 dB. Note thaf(Cy; Y) = I(C5; Y) since the Gray
C= Z I(Cy; Y). (7) labeling forc; andc; differs only by a rotation of 90[4]. Fur-
i=0 thermore, ifcy is known, the optimal decision region of is

We consider both Gray-mapped 4-PAM (Fig. 2) and 8-PSiKdependent of,. It can be shown that the equivalent transmis-
(Fig. 3) modulations. In Fig. 4, capacity results are plotted forsaon model of:; whenc, is known is the same as the equivalent
Gray-mapped 4-PAM modulation on an AWGN channel. Thgansmission model af, whency ande; are known. Therefore,
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we haveI(Cy; Y|Cy) = I(Cq; Y|C4, Cp). According to the determination of the noise thresholds [1] of LDPC code ensem-
capacity results, the component code rate distributioi;at=  bles. The interpretation of the thresholds as predictors of actual
2 bits/symbol isRy/R1 /Ry = 0.504/0.748/0.748 for MSD  decoder behavior and bounds on achievable performance relies

andRy/R; /R, = 0.510/0.745/0.745 for PID. upon a general “concentration theorem”—stating that, asymp-
totically in the block size, the decoder behavior for individual in-
D. Bit-Interleaved Coded Modulation (BICM) stances (of the code and the channel noise) concentrates around

A pragmatic but quite effective approach for bandwidth-ef—he average behavior_ ofa cyc!e-free gr_aph, which can b? com-
ficient transmission is to use BICM which requires only on uted using the density evolution algorithm. The application of

encoder. The coded bits are interleaved bit-wise and groupt g concentration theorem and density evolution to the determi-
into bloc.ks ofm address bitsg ¢m_1. The signal point nation of the noise threshold of LDPC code ensembles is sim-

addressed by, ..., ¢n_1 IS transmitted through the channel plified by.t'he symmetry of the ghannel fand decodipg algqrithm
The decoding rﬁetricfoream,z’ —0, ..., m—1,is computed [1]. Specifically, under appropriate symmetry conditions, it suf-

the same way as for the MLC/PID scheme. Finally, the decoJiaCreS to consider the performance of the all-zeros codeword.
processes the deinterleaved metrics and outputs the decisions
As pointed out in [4], the equivalent channel models for bil%' 1.D. Channel Adapters
¢,i=0,...,m— 1, are identical for BICM and MLC/PID.  Our objective is to develop a similar algorithmic approach for
The independence of the different bitsfor the BICM scheme, the analysis of LDPC component codes for the MLC and BICM
which is inherent in the MLC/PID scheme, is based on the a3chemes. The application of density evolution and concentration
sumption of an ideal bit interleaver. Note that the equivaletheorem for the MLC and BICM schemes is complicated be-
channels foe; in the BICM scheme are used serially rather thagause, in general, the equivalent binary-input component chan-
in parallel. Therefore, the MLC/PID capacity is the same as tiels are not necessarily symmetric where a binary-input channel
performance limit that can be achieved by the BICM schemig,symmetric if
which is called the “BICM capacity” in [6].
p(Y =ylC=0)=p(Y = —y|C=1) (8)
lll. ANALYSIS OF LDPC COMPONENTCODES FOR THEMLC

with ¢ andy as the input and output of the binary-input channel,
AND BICM SCHEMES

respectively [1]. Therefore, the decoding analysis of the all-
A. LDPC Codes zeros codeword alone may not suffice to predict the average de-
coder behavior; in fact, for the specific Gray-labeled constella-

An LDP is a linear block which i ifi / . . . L .
C code is a linear block code ch is specified bYlon we considered in Section I, it is easy to see that this is the

either its parity-check matris (,,_)x,, Or its corresponding ase
generator matriGy . satisfyingH - GT = 0. An LDPC code .

: : R . ) In the following, we introduce a new analytical tool: i.i.d.
can be associated with a bipartite graph [1.] which consists c)fchannel adapters. We show that we can force the symmetry of
bit nodes;n — k check nodes, and a certain number of edg

Each bit node represents a bit of the codeword. Each check node equivalent binary-input component channels with the use of

denotes one parity check of the code. An edge exists betWéL'l'g' channel adapters. Thus, the analysis and design of binary

} s . S Ubc codes are greatly simplified.
theath check node and thth bit node if the et (i, j) IS 1.~ o' oo the MI?C/PII% schl?eme as an example, and the ex-
A_n |rr.egular. LDPC code can be spgmﬁed by_ either a degre_e d{li,'nsions to the MLC/MSD and BICM schemes are straightfor-
trlbutlon_ pair(), P) [1], [11] or, equivalently, its correspondlngward_ Fig. 6 shows an MLC/PID scheme with an i.i.d. channel
generating functions adapter on each equivalent binary-input component channel.

o, d Each i.i.d. channel adapter has three modules. The first one is
Az) = Z Az~ and pla) = Z pjai! an i.i.d. source which generates binary symhole {0, 1},
j=2

Cmax

1 =0,1,..., m — 1, according to an i.i.d. equiprobable dis-
tribution. The second one isaod-2 adder and performs the
where \; (resp.,p;) is the fraction of edges with bit (resp.,following operationd; = ¢; @ t;, wherec; is the LDPC-coded
check) degreg andd,, . (resp.,d.,...) is the maximal bit bit. The last module is a sign adjuster and functions as follows:
(resp., check) degree of any edge. Aregar d.) LDPCcode v, = u; - (1 — 2 - t;), which meansy; = w; if t; = 0 and
has\;, = 1, pa. = 1. We define an LDPC code ensembley; = —u; if t; = 1, whereu; is the APP module output and
C™(A, p) as the set of all LDPC codes of lengthwhose cor- v, is the LDPC decoder input. We can see that the last module
responding bipartite graphs satisfy the degree distribution paiido-es the effect of the second module. Therefore, each equiva-
(A, p). lent binary-input channéli =0, 1, ..., m—1, is transformed

In [1], a numerical technique called density evolution is uséfto a new binary-input channel with inpeitand output;. We
to analyze the performance of message-passing decoders @& the following theorem.
binary-input symmetric AWGN channel, enabling the accurate

i=2

Theorem 1: All of the new augmented binary-input channels
as previously defined satisfy the symmetry condition. That is,
4Actually, it can be proven thatbof{C';; Y|Co) andI(Cs; Y|Cy, Cy) are Vi=0,1,...,m—1

equal to the uniform average of the capacities of two equivalent binary phase-
shift keying (BPSK) modulations. p(Vi = v;|C; = 0) = p(V; = —v;|C; = 1).
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Fig. 6. The MLC/PID scheme with an i.i.d. channel adapter on each equivalent binary-input channel.
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Fig. 7. The MLC/MSD scheme with an i.i.d. channel adapter on each equivalent binary-input channel.
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Fig. 8. The BICM scheme with an i.i.d. channel adapter.

Proof: Itiseasytoseethat,i =0, 1, ..., m—1, bothT;

Serial

We show the MLC/MSD and BICM block diagrams with

and D; are i.i.d. equiprobable random variables. Noticing thai.d. channel adapters in Figs. 7 and 8, respectively. By sim-

T; andC; are independent, we have
p(Vi = i|C; = 0)
=p(V; = v|T; =0, C; = 0)Pr(T; = 0|C; = 0)
+p(Vi=v|T; =1, C; = 0)Pr(T; = 1|C; = 0)
=p(U; = v|T; =0, C; = 0)Pr(T; = 0)
+p(Us = —u;|T; = 1, C; = 0)Pr(1; = 1)
= %p(Ui =v;|D; =0) + %p(Ui = —v;|D; = 1).
Similarly, we have
p(Vi = —ui|C; = 1)
= 1p(U; = —v|D; = 1) + 3p(U; = v;|D; = 0).
Then Theorem 1 follows directly. O

ilar arguments as in Theorem 1, it can be proven that each of the
new augmented binary-input channels shown in Figs. 7 and 8 is
symmetric, as well.

Therefore, for any of the new augmented binary-input output-
symmetric component channels, if we use an LDPC code for
transmission through this channel, by [1, Lemma 1], the de-
coding (bit or block) error probability is independent of any par-
ticular codeword. Thus, the threshold analysis and code design
of LDPC codes on these kinds of channels are greatly simplified
as we need only consider the all-zeros codeword. Furthermore,
by [1, Theorem 2], the average behavior of individual instances
(of the code and of the noise) concentrate around the expected
behavior when the codeword length gets sufficiently large.
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Theorem 2: The capacity of the new augmented binary-inptinformation vector, the codewond,, 1 = [w1, wa, ..., w,]T
channel formed by adding an i.i.d. channel adapter to the orig-generated as
inal equivalent binary-input component channel is equal to the w=GT udo=cho Q)

.”.‘“‘“a' |r.1format|on' of thg or.|g|n'al binary-input channel W'thwhere@ representsnod-2 addition ande is the codeword of
i.i.d. equiprobable input distribution.

Proof: By Theorem 1, the new augmented channel witwe associated linear code. The codewardf the coset code

: . ) satisfies
inputc and outpub is output symmetric, and, therefore, the ca-

pacity of this new channel can be achieved by ani.i.d. equiprob- H-w=r°"=H-0 (10)
able input distribution [20]. That is, the capacity of the new
channel is equal to the average of the mutual information b&here
tween channel input = b and outputv, whereb € {0, 1}

[20]. However, no matter which valué 6r 1) the channel input

c takes, the original binary-input channel sees i.i.d. equiprof-the syndrome of the corresponding coset leadendr; =

able inputs because of the i.i.d. channel adapter, therefore Ii@j-: H(, j=10;. The coset code is linear if and onlysif = 0.

iting the mutual information betweean= b andv, whereb €  Since an LDPC code is a linear block code, an LDPC coset code
{0, 1}, to the i.i.d. mutual information of the original binary-obeys this definition.

input channel. Therefore, the capacity of the new augmentedBy decoder symmetry [1], it can be proven that the following
binary-input channel equals the i.i.d. mutual information of thigvo ways of decoding an LDPC coset code are identical. One
original binary-input channel. 0 way is to include the syndromeof the coset leadar into the
iterative message-passing decoding algorithm as described in

By Theorem 2, 'T we can approgch th_e_capacny of the n bj i.e., the messagg, ;; passed from check nodéo bit node
augmented binary-input channel with the i.i.d. channel adapte s determined by ’

we are able to approach the i.i.d. channel capacity (see (1))jby Qo i . Ge il
the MLC/MSD scheme and approach the PID capacity (see (7)) tanh (%) = (1) ] tanh (%)
by the MLC/PID scheme or the BICM scheme. 1#3

In a system with ii.d. channel adapters, on each nePereq., . is the message passed from bit ndde check
augmented binary-input channel, the expected decoder pede:. When the decoder makes a final decisionwnafter
havior (BER) is effectively averaged over all possible LDp@ubtractir_wgo, the decoder recovers_the_ information sequence
graphs and all possible channel realizations. In particuld,according to (9). The other way is similar to the decoding
each channel realization includes one randomly chosen bingigerithm described in [20] (the example discussed there is
vector—lengthmn for MLC and lengths for BICM—chosen [0 @ binary-symmetric channel (BSC)), where we remove
according to an i.i.d. equiprobable distribution and one chanrfBf Ccoset leader first and then perform the message-passing

noise realization. Therefore, the average of the expec %coding on its associated linear LDPC code. That is, for each

behavior over the channel is an average with respect to both %posmong of a codewordy = 1, ..., 7, assuming that
i.i.d. binary vector and the channel noise. v; I1s the LAPPR value of the corresponding bit position, we

calculateg; = (—1)%v,, whereo; is the jth component of
coset leadep. Then we usey; as the input to the associated

r?n—k)xl =[ri 73, ..., T?n—k)]T

C. LDPC Coset Codes and Concentration Theorem linear LDPC decoder, and the expression
| . o (113 = T s (15
In Section I11-B, by incorporating i.i.d. channel adapters, we 2 1) 2

showed that the new binary-input augmented channels are syMsqq a5 the basis for the message passing from check nodes
metric. Therefore, the analysis of LDPC codes is simplified. I bit nodes. Finally, we recoverfrom the final decision of the
this section, we keep the channel unchanged. Instead, by cg8zoder.

sidering a slightly broader class of codes—coset codes—Wwe arg:qr the MLC scheme. we consider one LDPC coset code at

able to show that if the input sequencaas an i.i.d. equiprob- each level. lfw' = [wi, wi, ..., wi]T, i=0,1,...,m—1,
able distribution, for almost all graphs and almost all input ss a codeword of a coset code at levelve define an input se-

quences, the decoder performance over each equivalent bingfyence of the MLC scheme as the time multiplexsofcode-
input channel of the MLC and BICM schemes concentrat@gordsw?, i = 0,1, ..., m — 1, i.e.,
around its expected behavior. The outline of the proof is ver
similar to [1], [2], which is to form a martingale process by re- ) i
vealing information one step at a time (of the graph ensemb-lré?en' the mapper output is defined as
the input sequences, and the channel noise realizations). If the Tpx1 = [11, T2, -, Tn]"
impact of the information revealing at one step is restricted M]ere[w;)./ wjl e w;.“’l] is assigned ta:;, j =1,...,n,
a finite value independent of, a tight concentration bound re-according to a given mapping rule. We calithe symbol se-
sults from the Azuma inequality [21]. guence, which is the input to the noisy channel.

1) LDPC Coset Codes and Decodingollowing the defini- For the BICM scheme, ifw is a codeword of an LDPC
tion of [20], we specify a coset code I6¥(or H) and a fixed but coset code, we defin@’ = [w}, w}, ..., w,]T to be the

arbitrary coset leadet,, 1 = [01, 02, ..., 0,]T. If upx1 is an interleaver output. Then, the symbol sequence is given by

_ 0 1 m—1 0 1 m—11T
mnxl—[w17w17"'7w1 7"'7wn7wn7"'7wn ] :
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C, (check node)

V , (bit node)

e

Y, (channel node)
(d ,~1) check nodes

(d ,~1)(d ~1) bit nodes wO e oo ym—1

Fig. 9. The madified directed neighborhood of deptbf the directed edgé = (V., C.).

Tn 1= [21, 22, ..., xn]T (we assume that dividesn), wherel is the message-passing iteration number. Similar to [2],
where m we modify the directed neighborhood for the MLC/PID scheme.
The modified directed neighborhood of dethd = 1) N2,
[0 1ymt1> Wi—nyma2 s Wim] shown in Fig. 9, consists of the two nodésandC., the edge

¢, all nodes and edges traversed by paths of length at thost
ending atV,, one channel nodg,, and its associatea. binary
symbols[w®, w!, ..., w™~1]. In the MLC/PID scheme, the
binary symbolgw?, w!, ..., w™~1] are part of the input se-
guences with w? corresponding to the coded bit from the com-
ponent code at level The vector[w®, w, ..., w™~!] maps
to a channel symbal associated with the channel nobethat
contributes to the message passing along €dgemodified di-
Ve&eted neighborhood of dep# can be obtained by branching
out the neighborhood of depth
Since the transmitted binary symbols associated with the
channel nodes influence the statistics of the messages passed
Lemma 1: Let g be the bipartite graph representing a givein the modified directed neighborhood, we must distinguish
binary linear LDPC code at levébf the MLC scheme. Consider between different neighborhoods by different types. We specify
the belief propagation decoding algorithm described in [10], [Ejach type of neighborhood by the transmitted binary symbols
which satisfies the decoder symmetry (including both bit nod# its associated channel nodes. F@ra, d.) regular LDPC
symmetry and check node symmetry) defined in [1].&eand code, the total number of the channel nodes in a modified
¢, be two arbitrary linear codewords gf Assume thas, the directed neighborhood of dep#h is given by
input sequence of the MLC scheme, is the time mult|plex of (dy — D)(d, — 1)' = 1
coset codeworda®, w', ..., w™ L. If ¢l ® o} = ¢} Dol = w', 90(21) = o —1)(d, —1) -1 (11)
the number of decodlng errors is exactly the same, irrespec y
of whetherei or ¢} is the transmitted codeword.

is mapped tar;, j=1,..., .

2) Concentration TheoremFlrst we consider a given graph
g (representing the LDPC code at levgland a given input
sequenc& (s is the time multiplex of coset codewords’,
w!, ..., wm™1). Atleveli, letc’ be an arbitrary codeword gf
The coset- -defining vectar then is given by’ = w' @ ¢'. This
means that different (actually, any) codewordg chn result in
the same coset codeword by using different coset-defining
tors. In the following lemma, we will show that for a given
under the same (thereby, the same?), the number of errors
committed by the decoder is independentiof

‘W% can arrange the binary symbols of the channel nodes in a
modified directed neighborhood into a binary vector
The proof of Lemma 1 is given in Appendix A. From Lem+ — [,,1.0 1.1 pylm=1"
ma 1, we conclude that the number of errors committed by
the decoder is a function of only graphs, input sequences, and
channel noise realizations. and the length of is defined ash(Zl) m - g.(20). Since each
The proof of the concentration theorem is for the MLC/Plype of neighborhood is specified by a vectpthe number of
scheme, but it can be extended to the MLC/MSD and BICIdossible modified directed neighborhood types of delitis
schemes in a very similar manner. For the message-passingdé€2). As in [1], we say that the modified directed neighbor-
coder of each LDPC component code, we consider the first desod is tree-like if all nodes in the neighborhood are distinct;
coding approach described in Section [1I-C1. Similar to [1], totherwise, we say that it is not tree-like. The inequality proved
simplify the subsequent notation, we assume that the numbeirofl] applies directly here
iterations that the decoder performs is denoted &4l subse-
quent notations refer to iteratidnand we frequently omit the
index|. wherev is a constant that may depend @h, d.) andl, butis
Here, we limit our consideration to regular LDPC coées.independent of.
Reference [1] introduced the idea of a directed neighborhoodLet Z; be the number of incorrect messages passed along
2 of depthd = 21 which consists of an edgeé= (V., C.) edgec;. Let T, be the random variable which has a value of
that connects a bit nodé, and a check nod€., and all nodes 0 if N2l is tree-like andl otherwise. Given a modified directed
and edges traversed by paths of length at mbsnding atV,, ne|ghborhood?\721, we define

wgc(21) 0 wgc(Zl),/l ) wgc(2l),nl—1] (12)

Pr(NZ is not tree-likg < % (13)

5The extension of the proof to irregular LDPC codes is straightforward. =E(Z;|t, T, = 0) (14)
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as the expected number of incorrect messages passedéglonifie MLC/PID scheme. Then, for the sameg, v andn as in
with a tree-like neighborhooNg of depth2/ at thelth iteration Theorem 3, we have
whent is the neighborhood type.

We define the probabilitfr(t|s, T;- = 0) as the probability Pr(
that a modified directed nelghborhoﬁtf—j is of typet when the Proof: If U andO" satisfy an i.i.d. equiprobable distribu-

input sequence Of the MLC_schemesjsN%_’ is ree-like, and the _tion, the resulting input sequence of the MLC/PID schehiea
associated bipartite graph is chosen randomly from all poss"%'(?quence of i.i.d. equiprobable random binary symbols. There-
graphs of the code ensemlfl& (d,, d..).

X . fore, Theorem 3 applies directly. O
Therefore, we can define the expected number of incorrect PPl I y

messages passed along edfevith a tree-like neighborhood It follows from the corollary that (for sufficiently large) the
of depth?2[ after thelth iteration when an input sequengés decoding behavior of almost all input sequences converges to

)

i
- poq

. > ) < 2e 8,

transmitted as the expected valup’éq. Therefore, if we can find the maximum
p(s) =E(Z;|s, T, = 0) channel noise standard deviation, namely, the threshold such
2,1(21)1 ’ thatpiml goes to zero, almost all input sequences can transmit
reliably up to the threshold value, but they have an error proba-
= E[Zj|t., s, T, = 0]Pr(t.|s, T, =0 " :
; [Zjltx, 8, [Pr(t|s ) bility bounded away from zero above the threshold value.
9h(20) .
_ Z 70, Pr(te|s, T, = 0) (15) D. Relation Between These Two Systems
k=1 We can see that the LDPC linear code system with i.i.d.
where channel adapters and the LDPC coset code system with the
E[Zi|t., 8, T, =0 = E[Z;|t., T, = 0] = 7, second decoding approach are virtually the same system. The

sinceZ; is independent of if the typet is known critical difference between these two systems is that in the first
J . . . .

If all possible2"(?) modified directed neighborhood type§ystem, we take the i.i.d. binary vector as a channel-adapting

t., kn=1,..., 2" areequally likely, we call this equiprob- vector and, therefore, as part of the new augmented channel,

" \eted 7 ’ however, in the second system, we consider the i.i.d. binary

able expected value of errpg,, i.e., ; - e
vector to be a time multiplex of coset-defining vectors and,

h(21
Dog = 270D QZ(:) - (16) therefore, as part of the LDPC coset codes. .
4 —= In the first system, each codeword belongs to a linear code,
In the following, we present the concentration theorem bas@fd the averaged (over the channel) decoder behavior condi-
on coset codes and the proof is shown in Appendix B. tioned on a particular codeword is the same for each possible
codeword since the new augmented binary-input channels are
Theorem 3: Define anmn x 1 binary random vector symmetric.

S=1[8) st ..., ..., 80 st . sm In the second system, one codeword is a codeword of a coset

where{S;’, j=1,2,...,n,i=0,1,...,m— 1} arei.id. code, which is thenod-2 sum of a codeword of its associated

equiprobable binary random variables. We assumeShsthe linear code and a coset-defining vector, and the averaged (over
input sequence of the MLC scheme. At levelf the MLC/PID the channel) decoder behavior conditioned on a particular code-
scheme, over the probability space of all graphigd: , d:), all word may be different from one codeword to another, since
realizations of, and all channel noise realizations, #tbe the the equivalent binary-input channels are not necessarily sym-
random variable that denotes the number of incorrect messagric. Therefore, a coset code concentration theorem is given
among allnd bit-to-check node messages passed at iteratioffor almost all possible input sequences (or its related coset code-
Then, for any > 0, there exist positive numbefsand~ (they words).

may depend ori‘ , d’, and!, but not onn), such that ifs > QTW Nevertheless, the expected decoder behavior of the two
we have systems is the same, since they have the same configuration
; (encoder and decoder structure) and the expectations are taken
Pr( Z_ —Piq > 6) < 2e~Bn over the same probability space, i.e., over all possible LDPC
nd;, graphs, over all possible i.i.d. binary vectors (referring to

wherepi_ is given by (16) and denotes levei in the MLC channel-adapting vectors in the first system and referring to
eq

scheme. coset-defining vectors in the second system), and over all
. . possible noise realizations.
Corollary: LetU", i = 0,1,..., m — 1, be the informa- ~ Next, we will determine the expected decoder behavior for

tion vector with each binary symbol i.i.d. equiprobable. Lehe system with i.i.d. channel adapters by considering only the
C(G*, O") be an LDPC coset code for whidfi* is a code gj|-zeros codeword.

graph in the LDPC code ensembig’(d’, d) and O’ is a

coset-defining binary vector with each binary symbol satisfying |y DENsITY EVOLUTION AND CODE OPTIMIZATION

an i.i.d. equiprobable distribution. Defir& to be the random , )

variable that denotes the number of incorrect messages ambngP€nsity Evolution

all nd:, bit-to-check node messages passed at iteration Here, we briefly describe the manner in which we extend den-
assumingC(G?, O*) is the component code used at levelf sity evolution to the MLC and BICM schemes based on the
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i.i.d. channel adapters. We consider transmitting the all-zerssrved LAPPRs is the average fjf obtained in the MLC/PID
codeword on each augmented binary-input component chanseheme, i.e.fo = (3°, f3)/m.

First, we consider the Gray-mapped MLC/MSD scheme on an

AWGN channel. The conditional pgf(Y = y|X = a) is the B. Code Optimization

Gaussian density function In general, we need to optimize the LDPC component codes

p(Y =y|X =a) so that the MLC scheme can approach the channel capacity. If

1 oy (_ (y,q)z) if v is real-valued we know that the LDPC codes can achieve capacity for each
Varoz P 202 )7 Yy (17) equivalent component channel, we can fix the component code
L exp (_%)7 if y is complex-valued rates to _the required.rates cor_nputed based on mutual informa-
tion chain rule and simply optimize the thresholds of the com-
whereo? is the variance of the channel noise and A. ponent code rates. However, for a fixed maximal bit (or check)
Note thatdy, ..., d.,,—1 are the inputs to the mapping de-degree, no one had proved that LDPC codes can get arbitrarily
vice. At leveli, assuming we know, ..., d;—1, for any given close to the capacity of these equivalent channels. Therefore,
a € A(dy, ..., d;—1), from the relation between andu; (u; in this work, to design an optimal MLC coding scheme with
is LAPPR value ofd;, giveny anddy, ..., d;_1), we can cal- LDPC codes as component codes, we perform joint optimiza-
culate the conditional pdi(U; = w;|X = a). Since{d;, i« = tion of both the code rates and the degree distributions of the
0, ..., m — 1} are variables satisfying i.i.d. equiprobable distDPC component codes for all the levels. If the target system
tributions, all the signal points in the constellation are equalgpectral efficiency is?, and the code rate of the LDPC codé
likely to be transmitted. Therefore, isR;, i=0,1,...,m—1,we haveR, = Zﬁgl R;. Since
i - the optimal design of MLC schemes requires that the component
fO _p(‘/L - /U’L)
codes at each level have equal performance [4], under the con-
1 _ _ straint imposed by, we should optimize both the code rates
T om Z , Z p(Ui = vil X = a) and the degree distributions of the LDPC component codes in
dor izt \@€AWdo, - dica, 0) such a way that all the LDPC component codes have the same
noise thresholds.
+ Z p(Ui = —vilX =a) ||. (18) For a 4-PAM modulation, the joint optimization is as follows.
a€A(do, .., di—1,1) Under the constraint ak, = 1 bit/symbol, we randomly pick a

Then,f¢ is used as the initial density of the observed LAPPR®mbination ofR;, i = 0, 1. For this combination oR?;, i =
of the augmented binary-input component channels in the dén-1, we use a nonlinear optimization technique, called differen-
sity evolution program. Following [11], for a specified noisdial evolution [22], to search for the optimal degree distribution
standard deviatios, at each level of the MLC/MSD scheme, pair()\, p’) and its corresponding noise thresh@id )‘ for the
i=0,1,..., m—1,we use density evolution to track the fracLDPC codeC" at each level. If the optimized LDPC codes at
tion of incorrect messagas (/) after/ decoding iterations on both levels have different noise thresholds, we make the code
a cycle-free graph corresponding to a specified degree distrilvate adjustments continuously to minimize the difference of the
tion pair (\’, p*). We letf; denote the density of the messagesoise thresholds of the LDPC codes at both levels. If the LDPC
passed from the bit nodes to the check nodes &fterations. codes at both levels have the same threshold value, we stop the

The density evolution can be described by search algorithm and claim that we have found both the optimal
fi= fio XY (D) code rates and the degree distribution pairs of the LDPC codes at
both levels for the MLC scheme. This optimization method ap-
where plies to both the MLC/MSD scheme and the MLC/PID scheme.
XN(f) =Y Nifel=n For the BICM scheme, the rate of the LDPC code is pre-
i i @(i—1) determined by the system spectral efficiency. In the case of
p'(f) = ijf 4-PAM modulation, ifR, is 1 bit/'symbol, the LDPC code rate

® denotes convolution, addandI’~! are operators defined in 7. = R;/m = 1/2. Then, we just need to combine the differen-
[11, egs. (5) and (6)], respectively. For each leiyake define tial evolution and density evolution to find a degree distribution
the corresponding noise threshdtet )¢ to be the supremum of pair which has the best threshold.
the o for whichlim;_, ., p’(l) = 0.

Similarly, for the MLC/PID scheme, we have V. NUMERICAL RESULTS

. 1 A. Thresholds and Very Large Block-Size Simulation Results
fo=pVi=v) = 5| 3 p(Ui = vl X = a)

= By applying the optimization technique discussed above, we

optimize both the code rates and degree distributions of the
LDPC component codes for the MLC and BICM schemes. In
+Y pUi=—ulX =a)|. (19) the following, we primarily focus on the discussion of the opti-
a€A] mization results for the 4-PAM modulation case, but show some
Recall that the MLC/PID scheme and the BICM scheme haweptimization results for the 8-PSK modulation as well.
the same equivalent channel models for each level. Thereforel) Gray-Mapped 4-PAM:In the case of 4-PAM modu-
for the BICM scheme, the initial density function of the oblation, the targetR, is 1 bit/symbol. For the MLC scheme,
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TABLE | TABLE I
OPTIMIZED RESULTS FOR THEEQUIVALENT CHANNEL ¢ = 0, 1 OF THE OPTIMIZED RESULTS FOR THEEQUIVALENT CHANNEL ¢ = 0, 1 OF THE
GRAY-MAPPED MLC/MSD SCHEME (4-PAM MODULATION), R, = 1 GRAY-MAPPED MLC/PID SCHEME (4-PAM MODULATION), R, = 1
BIT/SymMBOL, AND THE CHANNEL CAPACITY 1S2.11 dB BIT/SymBOL, AND THE PID CAPACITY 1S 2.27 dB
[ dw.. | 10 | 20 | 50 | [ dn.. | 10 | 156 | 30 | 50 |
| (2:)7 B), i=0 | 2.353 | 2.267 | 2.181 | [(Z:) @B),i=0 | 2.534 [ 2.454 | 2.388 [ 2.352 |
[(Z:) @B), i=1 | 2.353 | 2.267 | 2.181 | [(Z:) @B), =1 | 2.542 | 2.454 | 2.396 | 2.324
the optimized code rates of the two component LDPC cod 10 7 R e |
are very close to the capacity results shown in Section B R SO % o ke |
For the MLC/MSD scheme, the joint optimization produce  pigreser | | 88 g & § 2 3 |||\ [L0rccece
slightly different code rate distributions for differesy___: for 1k ol 2'3' RS ?%—%%@ | BERe
dy,... = 10, the code rates of’® andC* are0.339 and0.661 z [ 7| = eS8 2 ool | Teee
and ford,,,,, = 20, ands0, the code rates afe338 and0.662. & WRwedc || oS &% 3338 / BER,o;
Similarly, for the MLC/PID scheme, the optimized code ratg ||| §5 28 - SSSSHb
combinations ofC® andC"* are0.350 and0.650, respectively. £ 107} .. g2. 282 335311 | uopocode.
For the BICM scheme, we simply set the LDPC compone B2 g5 L géré: o BEREY
code rate td /2. & G EQ segese
Table | lists the optimized results for the MLC/MSD schem £ A A R R T
with constraints off,, = 10, 20, and50. For eachd, 107 ges (& Ee 8898 ) BRI
the threshold(E,/Ny)* (decibels) of the optimized degree R I S I OGN R |
distribution pair is given. Note that the channel capacity \\W o N I
2.11 dB. The degree distribution pairs of cod8 and C! . ; ]
with d,_.. = 50 both have threshold of 2.18 dB, which is 2 3 35 4
only 0.07 dB away from the channel capacity. By compariso.., Es/NO(dB)

i = 0
the quasi-regular [13] rat@338 (3, 4/‘;) LDPC code(C?) Fig. 10. Simulation of Gray-mapped MLC/MSD and MLC/PID schemes with
and raten.662 (3, 8/9) LDPC code(C") have much worse 4-pam modulation on an AWGN channel. The codeword lengtHis.

thresholds of 3.29 and 3.32 dB, which are 1.18 and 1.21 dB
away from the channel capacity, respectively. LC/PID scheme withd, — 50 on C° and ¢! in one

Fci: trf1e gOLC/ZIgISChtEr;e’ we_llsltomll'agl(()e ! tz%;plﬂnl'ze ase, and the quasi-regular LDPC codes in another case.
:ﬁsfths ger an it .W'2 ZYUSESX T_h tr71 ‘)’h Iéianft%. ct).e_ Hpwever, the component code rates of the MLC/MSD scheme
atthe F1L capacity1s <. - thethresnolds otine opumizeR .~ 0.338/0.662) are slightly different from the

degree distribution pairs are very close to the PID capacity. T C/PID scheme Ro/R: = 0.350/0.650). Each BER curve

i i H H 0 1\ —
Eegret(ra] dls;[]”?(;jt'o?nggs o:‘jczogg @j?;#(’;] with dl'”ngxogz‘r)o d represents one component code. The calculated thresholds for
ave tresholds of 2.5 and <. ihich are only ©. and ai the component codes are shown, as well as the channel

.0'054th away fromlthe P(Lgrc aga:ny, rl_e;gecctlvzly. gg’ Corgpaéépacity and the PID capacity. We observe that the calculated
ison, the quasi-regular rates5 (3, 4/5) code(C”) an thresholds accurately predict the performance of both the

|4 1
rate9.65 (3, 8/9) LDPC codg C*') have thresholds of 3.44 andMLC/MSD and the MLC/PID schemes with long LDPC com-

3.35 dB, respectively. ) ; S )
: : . nent codes: for the quasi-regular (resp., optimized irregular
Fig. 10 compares the simulation results for the Gray—mappE PC codes, theEs/N(? valuesgat wh(ich ?he BpERs are be?ow )

ivsgm MrI]_C/M?DTzcherne Ia?d the fMLCt/PItIﬂ sgh((ajmehon al)-6 are within 0.04 dB (resp., 0.06 dB) of their respective
channel.-the simulation Teters 1o the 1.1.d. Channgh o qhoids. The simulation curves of the optimized irregular

Zggg:g:ssﬁztre;néc:]n bﬁ:;;?ﬁ&?igﬁg%rr‘le%ft t(i‘r?arlw.:{gl. 3&?1}% %PC codes for the MLC/MSD scheme are better than the PID
o ) P ity and lose to the ch | it dicted b
two identical random number generators (RNG) y|eId|nC acity and very ¢/ose o the channel capacily as precicied by

. . N . fhe threshold results: both codes achieve BER$(0f less
an i.i.d. equiprobable distribution at both the transmitt

and receiver sides. We set the same initial seed to egh n 0.14 dB away from the channel capacity. The optimized
pair of the RNGs. Therefore, each pair of RNGs generaliigmar LDPC codes have a substantial gail @B) over the

th d eerh d d lenath of h %asi-regular LDPC codes in both the threshold and simulation
coem:?)?:ntra:ogerzn i;e(]%uelzgre ch CI?/ILeCV}/:\)/IrSDeZgherEe e%\‘/:e results. Also, the MLC/MSD scheme performs slightly better
use the irregular LDPC codes optimized for the MLC/MS han the MLC/PID scheme for both regular and irregular codes,

h ithi _ s00onC0 andCl i dth hich is consistent with the threshold results as well.
scheme wi = ouon an In one case, and the 1o optimized results for the BICM scheme are shown in

quasi-regular LDPC cpdes in another case. For'th.e MLC/PLI%bIe lll. The thresholds of these degree distribution pairs are
scheme, we use the irregular LDPC codes optimized for t()gry close to the PID capacity (about 0.07 dB gag.at . —

6The slight difference between the thresholds is due to the step size useaf)fg)‘ The threshold of the regular ratg2 (3, 6) LDP(_: COde_iS
the code rate adjustment. 3.41dB, more than 1 dB worse than the PID capacity. In Fig. 11,

"This method makes the scheme realizable in practical systems. we compare the simulation results for the Gray-mapped BICM

Umax
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TABLE I
OPTIMIZED RESULTS FOR THEGRAY-MAPPED BICM SCHEME
(4-PAM MODULATION), R, = 1 BIT/SymBOL, 1. = 1/2, AND THE
PID CaPACITY IS 2.27 dB

[ domee. | 10 | 15 | 30 | 50 |
[ (22)"(@B) | 2.527 [ 2.469 [ 2.381 [ 2.345 |

Codeword Length n

10 R e e
L ETBiom: ; ‘ '
PR | rLDPC code s L MLG/PID
S8l RCBER o gl TN Mepp :
-3 N85 it LDPC BER 6 3 BER. ©
-t \ —_—— o
e .gig—s L MLGPID, o :%,% %o t LDPC code
[ GRS SN =Rl | B SR SEE S MuePID:
W §%9 g3 g | e
Y ) SaSl
k. z88| =32 r LDPC code
~ 10 gy 22 2888 || BIEM .
g RS C2erRnl L BER
w GNEEE SRR R TR B EES
i = g 2 -§ § ££ ﬁ Fig. 12. Random coding exponent analysis for coded Gray-mapped 4-PAM
: § § § o0 '§ § g transmission of 1 bit/symbol.
5 8 «© o a o o ©
107E S8 E G a0 b SRR SIS
i g_::';_ = ‘.-. ) : . s s e R T B IR - . . X
: A B SRR : B. Coding Exponent Analysis and Moderate Blocksize
\ W \\ﬁ 01 simulations
; | i i L ) . ]
2 25 3 3.5 4 As shown in Figs. 10 and 11, the thresholds predict the
Es/NO(dB) asymptotic performance as the block length of the component

LDPC codes approaches infinity. We would also like to analyt-
Fig. 11. Simulation of Gray-mapped MLC/PID and BICM schemes withca|ly compare these power- and bandwidth-efficient schemes
4-PAM modulation on an AWGN channel. The codeword lengthis. . . .

based on LDPC codes with a finite block size. However, there

are very few accurate analytical tools for analyzing LDPC code
scheme and the MLC/PID scheme with i.i.d. channel adaptexsrformance at finite length. Therefore, we first compare these
on an AWGN channel. The codeword length of each componesthemes by the well-known random coding bound technique
code is10° as well. For the BICM scheme, we use both th§t], [20] which could provide a relation between the codeword
irregular LDPC code from Table Il witld,,, = 50 and the length» and the required SNR (decibels) for a given word
regulan(3, 6) LDPC code. For the MLC/PID scheme, we use therror probabilityp,,. For the MLC scheme, the analysis can
codes from Fig. 10. Similar to the case of the MLC/MSD and theven give the relation between and component code rate
MLC/PID schemes, for the BICM scheme, the simulated BE&stributions{R;, ¢ = 0, 1, ..., m — 1}. Even though the
curves are very close to the threshold results. It is interesting tikatmparison is based on the average performance of a random
in both the regular and irregular cases, the BICM scheme dalock code ensemble, the analysis is still a basis for us to inter-
perform as well as the MLC/PID scheme; however, the decodipget the simulation results based on specific LDPC codes. By
complexity and delay are only roughly half that of the MLC/PIDhe method described in [4], we carry out the coding exponent
scheme. analysis for the Gray-mapped 4-PAM transmissiomRgf= 1

2) Gray-Mapped 8-PSKiFor the Gray-mapped 8-PSKbit/symbol on an AWGN channel. The allowable word error
modulation, the targeR, is 2 bits/symbol. First, we considerprobability isp,, = 10~2. For all these schemes, the required
the MLC/MSD scheme. As we mentioned in Section I, th&, /N, (decibels) versus codeword lengih is calculated,
equivalent transmission model of if ¢ is known is the same and the results are shown in Fig. 12. Note that for both the
as the equivalent transmission model ®fif ¢y andc¢; are MLC/MSD and the MLC/PID schemes, the codeword lengths
known, thereforef} = f2, wheref; is given by (18). Hence, n of binary component codes and of the Euclidean space signal
we only need to optimize the degree distribution pairs fgroints are equal. For the BICM scheme, BICKkfers to the
the equivalent binary-input channelsand 1. The optimized case where the codeword lengtimeans the length of binary
component code rates afg)/R,/R, = 0.504/0.748/0.748 component code, and BICMefers to the case wheremeans
for d,,... = 50, in agreement with the results predicted by ththe length of Euclidean space signal points. Note that for the
capacity calculation. The gap between the thresholds of tk@men, it is fair to compare the BICMand the MLC schemes
optimized degree distribution pairs for levgéland 1 and the since they have the same (number of information bits) delay.
minimum SNR for reliable transmission corresponding to tHRICM has only half of the delay of MLC and we also show its
PID capacityC is only about 0.07 dB. curve for reference purposes. The plot shows that as codeword
Similarly, the optimized degree distribution pairs for théength goes to infinity, BICM, BICM,, and MLC/PID all

MLC/PID scheme and the BICM scheme have thresholds veapproach the PID capacity, and the MLC/MSD gets very close
close to the PID capacity, as well. to the channel capacity. For the MLC/MSD and MLC/PID
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Fig. 13. Random coding exponent analysis for the MLC/MSD and MLC/PI[SI:
schemes: component code rate distribution versus codeword length

schemes, we plot in Fig. 13 the relation betweeand {R;}.
The coding exponent analysis shows that the component cc

rate distributions for very large block size are virtually the sam  10?f..

as those derived by the capacity calculation and those optimiz
using LDPC component codes. However, the analysis also st
gests that for small to moderate block size, the componermw'a
code rate distributions are slightly different. Next, we will uses
Figs. 12 and 13 to explain some finite block-size simulation re

sults based on LDPC component codes. o
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F:| - MLC/MSD,C!, 13 |::::

—— MLC/MSD,Cir15

Fi| = MLC/MSD,C,ir15 |::i:::

‘| = MLCPID, Cirts |
-~ MLC/PID, C',ir15 |+
-+ MLC/MSD,C’, 13

S| = MLCPID, C°, /3 [
-0~ MLC/PID, C', 13 |-

25 3
Es/NO(dB)

g. 14. Simulation of the Gray-mapped 4-PAM modulated MLC/MSD and
LC/PID schemes on an AWGN channel. The codeword lengtis

. | MLePID,CR 1e4,ir15 |

{1~ MLC/PID,C',1e4,ir15 i}

We construct optimized irregular LDPC codes with =

max

~¥- BICM,
| —e~ BICM,

S = BICM,

15 for both the MLC/MSD and MLC/PID schemes. The com- ¢ |+ mtgg:g:g;:t i

ponent codeword lengthi$)*. Fig. 14 compares the simulation

1e4,irt5 |-
2e4,ir15

1e4, 13

| -o- BICM, 2e4, 13

performance of these two schemes. For comparison, we also o S
the simulation results based on quasi-regular LDPC compone 10 . , ' ’ Y
. 2 25 3 4

codes. The results show that the optimized LDPC codes have ¢ Es/NO(dB)
cellent performance. In general, for each equivalent component
channel, the irregular LDPC codes outperform the quasi-regufég- 15. Simulation of the Gray-mapped 4-PAM modulated MLC/PID and
LDPC codes by about 0.7 at a BER 1if~>. As shown in the B/CM schemes onan AWGN channel.
threshold results, the simulation performance of the MLC/MSD
scheme is better than that of the MLC/PID scheme. For th®PC codes are shown as well. By the coding exponent anal-
MLC/MSD scheme, the component code on leiet 1 per- ysis, the performance of BICMand MLC/PID is essentially
forms slightly worse than the code on levek 0, which sug- the same. The simulation results shows a very similar trend: the
gests that the code rates optimized by density evolution needdagth10* BICM scheme has virtually the same performance
be adjusted for a more balanced performance at finite block sizethe MLC/PID scheme while having only about half the delay
and is consistent with the conclusion drawn from the coding exnd decoding complexity. On the other hand, the leragthi0*
ponent analysis. The component code rates of the MLC/MSBICM scheme, which has roughly the same delay and decoding
scheme used in the simulation allg/R: = 0.338/0.662, as complexity as the MLC/PID scheme, performs better than the
derived from the joint optimization results based on LDPC comALC/PID scheme (about 0.1-dB gain at a BER16f °). A
ponent codes. However, the coding exponent analysis (Fig. ¥&hilar conclusion can also be reached from the coding expo-
shows that at a block size 06, a better choice of code rates isnent analysis plot (see Fig. 12).
Ro/R; = 0.340/0.660. Another interesting phenomenon reflected in Fig. 12 is that

In Fig. 15, we compare the MLC/PID scheme and the BICthe BICM, curve and the MLC/MSD curve cross around code-
scheme based on optimized irregular LDPC codesaith, = word lengthn* = 6 x 10%, which suggests that for codeword
15. For the MLC/PID scheme, the component codeword lengtingth larger than*, MLC/MSD should be better than BICM
is 104, For the BICM scheme, the component codeword lengtiaghile, for smaller codeword length, BICMshould be more fa-
are10* and2 x 10*. The simulated curves based on regularorable. Atn = 10%, these two schemes should be comparable
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as was found in the simulation of MLC/MSD and BIGNer- distributions and the degree distribution pairs of the MLC/MSD
formance, shown in Figs. 14 and 15. scheme, we showed that both the thresholds and simulation re-

In the moderate block size simulation discussed here, welts of the optimized LDPC coded system are very close to
simulate the MLC and BICM schemes in two ways: onlyhe i.i.d. channel capacity. We also showed that the optimized
using linear LDPC codes and using linear LDPC codes wiBICM scheme can perform as well as the optimized MLC/PID
i.i.d. channel adapters. In the first approach, we construct tbeheme and that both approach the PID capacity. We compared
generator matrix and encode the information bits with an i.i.the simulated performance of these schemes at moderate block
equiprobable distribution. In the second approach, it sufficeizes, and some conclusions drawn from the simulation were
to just transmit the all-zeros codeword. The results show thatpported by a random coding exponent analysis. At small to
within the precision of the Monte Carlo simulation, these twmoderate block size, BICM seems to be the more attractive al-
approaches have virtually the same performance. For a végynative, achieving a better balance among complexity, delay,
large block size simulation, it is difficult to construct the genand performance.
erator matrix, therefore, we do not have simulation results for
the first scheme in this situation. However, we conjecture that APPENDIX A
as the block size goes to infinity, these two approaches should PROOF OELEMMA 1
have the same asymptotic performance as well. Therefore, a]t_ _ . o
least for large block size, we can consider the thresholds of ety=[y.,... ’y”]. bean0|§y channel output reallzatlpn and

’ = [uj, ..., uy] be its associated LAPPR vector, whereis

the LDPC codes in the MLC and BICM schemes with i.i.d% — :
channel adapters as good approximations to the threshold§h§f LAPPR value computed based:pn Consider the second

the linear LDPC codes in the MLC and BICM schemes withom&ewdmg approach described in Section IlI-AL. If we assume

i : .. i i B,1
i.i.d. channel adapters. atoj is the coset-defining vector, we have; = u' - 07"".

Similarly, we haveyl, =u’ - 05**. We define

VI. CONCLUSION ox =] D, = 0] d 0.

We designed power- and bandwidth-efficient MLC andherefore, we have
BICM schemes for the AWGN channel with binary LDPC , , ‘
component codes. For the decoding of the MLC scheme, we 4 =4q. -o?’z -oZB’Z =q- oi”.
considered both MSD and PID strategies. The design of LDPC , . 4
codes for these coded modulation schemes essentially VAsdefinition, because; ande; are two codewords of, o, is

transformed into the design of LDPC codes for the equivaleattodeword ofy as well. Thus[];. 5._,, ..) 02:3 = 1, where

pmary—mput component ch_annels. One difficulty gncounterq;]:l denotes a bit node ang denotes a check node. ngtfj]) q]

in applying the concentration theorem and density evolutiqfynote the message sent froftto c,. at iteratiorl, assuming’

technique_in the p_erformance analysis _of LDPC codes OMEM o decoder input, and Iqt’(l).[qi] denote the message sent

these equivalent binary-input channels is that these chanr}?cl)sm . 1o v. at iterationt aégijjmingqi is the decoder input

are not necessarily output symmetric. To solve this problerEr m t'%e bitj node s mmétr At 0 '

we took two different approaches: one based on i.i.d. channeP y Y.

adapters and the other based on coset codes. We proved that the ¢ © gi] = 0B - g (0) 4] -

augmented binary-input channel obtained by incorporating an e rg L1 A5 Herg 2

i.i.d. channel adapter is output symmetric. Thus, the analygissume at iteratiof that we have

and design of LDPC codes is greatly simplified in this case

since it suffices to carry out the analysis for only the all-zeros qi Ef]) [¢7] = Oi’ij . q,f Efj) (q5]. (20)

codeword. Alternatively, by considering LDPC coset codes, ’ ’ ’

we proved that the decoder behavior concentrates aroundStsce]] . Se=(v;, cx) Oi’.ij = 1, from the check node symmetry,

expected behavior, which corresponds to the average perfge have i

mance of a cycle-free graph with an i.i.d. equiprobable channel ' 4

input distribution. After discussing the relation between these qf,’,(,i}[qﬁ] = 02’3 : qZ’;,il,} (q5]- (21)

two approaches, we showed that these two systems indeed have ’

the same expected behavior. Furthermore, based on simulafitiithermore, from the bit node symmetry, it follows that at it-

results, we conjecture that the original system, without eitheration/ + 1

coset codes or i.i.d. channel adapters, has the same expected i (1)

decoder behavior as the block size goes to infinity as does De, rj

either of the alternative approaches. ) ) ) )
We extended the density evolution technique to determiﬁ_gusxby'nducnof’ at anylA';eratldQ(ZO) and (21) h°|d_' There-

the noise thresholds of LDPC component codes for both MLIEre: €1 = 0 @ ¢;, wheree; ande; are decoder decisions on

and BICM schemes incorporating i.i.d. channel adapters. It wais@nd¢s, respectively. That is, both decoders commit exactly

shown that the computed thresholds accurately predicted tH& Same number of errors. O]

simulation performance of the associated LDPC codes for large,s.: — (_1)°i in the sequel of the proof, we will use the same notation

block sizes. By joint optimization of the component code rater the other variables.

i B, i, (I+1)1 4
lg7] = on,j 4, sqj )[Q2]~
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APPENDIX B SinceE[Z] = Z"di E[Z’Li] we have
PROOF OFTHEOREM 3 5
We can write ( ) Peg < — dl S Peqt o (23)
i ‘ VAR VA [Z] 2y
Pr —pl|>€e)<Pr — — —|>¢€/2 Therefore, we ge|tE L < L. 1fn> 22 we have
d‘ e nd?, ndl, [Z
E|Z fand Sl —
+Pr< % R 6/2> 22) Pr( il o> e/2> 0. (24)
n v

Now we consider the first term on the right-hand side of
where E[Z’] is averaged over all graphs, all input sequence®?). Recall thatZz’ denotes the number of incorrect messages
and all channel realizations. This inequality means that V¥nong allnd’, bit-to-check node messages passed intinét-
can separate the proof into two parts. First, we show that tBgstion for a(G S, R), whereG is a graph in the ensemble
random varlabIeZZ/ndL is concentrated around its expecte@n(dz di), S is an input sequence, afélis a channel noise
value E[Z] /ndj, and, second, we prove the convergence Qbctor. Similar to [1], we define partial equalities (@, S, R)
E[Z%)/nd}, t0 Deq- based on information revealing. Defilé = din + mn + n.
We start with the second term on the right-hand side of (23)et —,, 0 < + < M be a sequence of equwalence relations,
Let E[Z}], j € [1, nd}], denote the expected number of i '”COVWhere the firstd! n steps of partial equivalence correspond to
rect messages passed along edgéhen by linearity of expec- edge revealing on the graph as specified in [1], the mext

tation steps correspond to symbol revealing of the input sequence, and
nd’, the lastn steps correspond to the revealing of the channel re-
E[Z] = Z E[ij:]‘ alizations which is also described in [1]. More specifically, we

have(G’, 8', R') =; (G", 8", R") if and only if the infor-
mation revealed in the first steps for botn(G’, §’, R") and

We have (G”, 8", R") is the same. By the definitiori’, §', R) =,
E[Z!] = E[Z}|T, = 0]Px(T, = 0)+E[Z}|T, = 1]Px(T, = 1) (G". 8", R") meangG’, §', R) =, (G", 8", R").
Next, we define a Doob’s martingale procés P, . . ., Py
wheré by
E[Z;|T, = 0] P, =E[Z'(¢', 8, R)|c. 8. R)= (G, 8 R),
:ZEZ"Z|3 T, = 0]Pr(s|T} = 0) t=0,1,...,M (25)
whereP; represents the expected number of incorrect messages
= Z Z E[Z7|t’ . = 0]Pr(t |s, T, = 0)Pr(s) conditioned on the information revealed in the fitssteps,
s assuming that the information revealed is consistent with
' (G, 8, R), which impliese P, = E[Z‘] and Pyy = Z°.
=> (Z Pr(s)Pr(ti|s, T, = 0)) [Zi|ti, T, =0]  Applying Azuma’s inequality as in [1], [21] we have
o g Pr<Z E[Z]>/z)
=Y Es[Pr(t.|S, T, = 0)|E[Z]|t.,, T\ = 0] ndi,  ndi

& __(naje/2)?

where Eg is the expectation over all input sequences. Note = Pr([Pa — Pol 2 ndye/2) < 2¢ Do (26)
that if S is a sequence of i.i.d. equiprobable binary randoifiwe can prove that

variables, each binary symbol in the type-defining vedtor |Pr1 — Pi| < 64, t=0,1,...,M—1 27)
specified by (12) is equally likely to be zero or one. Thus, all

tree-like modified directed neighborhood types are equawt}eggiirgzy dzfeensda?z od e?ggéalﬁlét ns(igognTherefore asin
probable, i.eyt., k=1,...,2"C) i=0,1,...,m—1, " Step g g step

BP9 1, = 0) =2 0 N B, 7, Cojid LIOrT € 0t we conlude tat 2 hok wih
Justry; as defined by (14), therefore, chr;nr?el realizations, so, again referring to [1], foF [nd: +
, 2D mn, M), we can usé, = 2(d’ d’)".
E[Z}|T. =0] = Z 2" D7y = =p; eq Now, we consider the steps of symbol revealing on the i.i.d.
. input sequence, i.et,€ [nd’, nd: + mn). Lettpn =t — nd:.
where the last equality comes fromi(16). Sit¢T,. = 1] < I For a given lengthnn binary sequence;, we define sequence
for some positive number, andE[Z}[T,. = 1] < 1, we have g, 55 follows: (5;)' = (s1)°, (31)7" 5 = (81)7",, and
(1 _ 1)qu < E[Zi] <pi, + T (81)es+1 @ (81)r,41 = L. In other words3, differs froms,
n n only at positiort o + 1. From this definition, we have, =, s;
SHerePr(s|T. = 0) = Pr(s) since the input sequence is independent dbut s; #;, 11 81. Referring to the modified directed neighbor-
whether or not the neighborhood is tree-like. Also, hood definition, we recall that each binary symbol belongs to

E[ij‘|t:-7's7 TrZO]IE[Z_”ti*TY‘:O] o . .
10E[Z¢] is averaged over all graphs, all input sequences, and all noise real-
sinceZ; is independent of input sequened the typet is known. izations as we described before.
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a channel node. Therefore,df differs froms; only at posi- and choose

tionta + 1, this binary symbol affects only two kinds of mes-
sage flow: the first kind is the message flow within the modi-
fied directed neighborhoods to which this binary symbol’s cor-

responding channel node belongs. As to the second kind of mggsn Theorem 3 follows from (22) and (26).

sage flow, note that this binary symbol is involvedfinchecks

of the parity-check matrix if this binary symbol belongs to the
component code at level Therefore, complementing this bi-
nary symbol also affects the message flow within the modified
directed neighborhoods to which those involved checks con-
nect. By (11), the number of channel nodes in a modified di- [2]
rected neighborhood is upper-bounded yd: ). By the node
symmetry property [1], the number of neighborhoods to which

=

(1]

a channel node belongs is upper-boundeddiyl’)!. By sim-  [3]
ilar reasoning, the number of neighborhoods to which those in-
volved checks connect is upper-boundeddid d)!. There-  [4]

fore, in total, complementing one binary symbol in a sequence
81, the number of neighborhoods within which message flow is [5]
affected is upper-bounded By+ d:)(di d:)', i.e., for any given

g, 81, andr [6]
1Zi(g, 81,7) = Z'(9. 80, 1) < (L + d)(dydl)'. (28) ]
From the definition of?;, for ¢ € [nd’, nd: + mn), we have 8
|Prr1 — P (]
< max
by#ba, by, b2€{0,1}
|E[ZL(G7 Slv Rl)|G/ Sl =ta S7 (Sl)tA-I-l = bl] (10]
~ E[Z'(G, 82, R)|G, 82 =1, 8. (82)1,+1 = b2]]. [11]
Using (28), along with the fact that for any random variable
[12]
|[E[W]| < E[IW]]
we can conclude that for arby # bs, by, by € {0, 1} [13]
|E[Z1(G Sl; RI)|G7 Sl “ta 37 (Sl)tA‘f'l = bl]
[14]

— E[Zi(G, Sy, RN|G, 8y =, S, (82)¢,41 = by]]

— |E[Z(G, 81, B)|G, S1 =1, S, (S1)1, 11 = bi]
—E[Z'(G, 82, R))|G, 83 =1, 8, (82)1, 41 = b3 [15]
+ E[Z(G, Sy, R)|G, 82 =1, S, (82)¢,.41 = bo]

- E[Zl(Gv S?v Rl)|G/ SZ =ta S7 (32)15A+1 = b2]|
= |E[ZL(G S_Q; R,)|G> SQ “ta S7 (SQ)tA‘Fl = b2]
~ E(Z'(G, 85, R)[G, 8> =.,. 8, (82)u, 11 = b

< E[|ZYG, S+, R) - Z'(G, 82, R)||G,
82 =t, 8, (S2)tn+1=bo] < (1+di)(d,d.)".

[16]

[17]

(18]

[19]
That is,

b= (1+ dp)(dyde)’,

[20]
for t € [ndl, nd. +mn). 1]

Therefore, for any € [0, M — 1), if we set [22]

8 = (max(8, 1+d;)) - (dydp)’

go (@)
8(di +m + 1)6?
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