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Abstract—We design multilevel coding (MLC) and bit-inter-
leaved coded modulation (BICM) schemes based on low-density
parity-check (LDPC) codes. The analysis and optimization of
the LDPC component codes for the MLC and BICM schemes
are complicated because, in general, the equivalent binary-input
component channels are not necessarily symmetric. To overcome
this obstacle, we deploy two different approaches: one based on
independent and identically distributed (i.i.d.) channel adapters
and the other based on coset codes. By incorporating i.i.d.
channel adapters, we can force the symmetry of each binary-input
component channel. By considering coset codes, we extend the
concentration theorem based on previous work by Richardsonet
al. and Kavčić et al. We also discuss the relation between the sys-
tems based on the two approaches and show that they indeed have
the same expected decoder behavior. Next, we jointly optimize the
code rates and degree distribution pairs of the LDPC component
codes for the MLC scheme. The optimized irregular LDPC codes
at each level of MLC with multistage decoding (MSD) are able
to perform well at signal-to-noise ratios (SNR) very close to the
capacity of the additive white Gaussian noise (AWGN) channel.
We also show that the optimized BICM scheme can approach
the parallel independent decoding (PID) capacity as closely as
does the MLC/PID scheme. Simulations with very large codeword
length verify the accuracy of the analytical results. Finally, we
compare the simulated performance of these coded modulation
schemes at finite codeword lengths, and consider the results from
the perspective of a random coding exponent analysis.

Index Terms—Bit-interleaved coded modulation (BICM), coding
exponent analysis, coset codes, density evolution, independent and
identically distributed (i.i.d.) channel adapters, irregular low-den-
sity parity-check (LDPC) codes, LDPC codes, multilevel coding
(MLC).

I. INTRODUCTION

M ULTILEVEL coding (MLC) [3], [4] and bit-interleaved
coded modulation (BICM) [5], [6] are two well-known

coded modulation schemes proposed to achieve both power and
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bandwidth efficiency. However, past research has primarily fo-
cused on the maximization of minimum Euclidean distance and
asymptotic gains [3], [7]. Recently, the application of methods
from information theory has helped to overcome the shortcom-
ings of this traditional coding philosophy. It is proved in [4]
that MLC together with multistage decoding (MSD) suffices
to approach the channel capacity if the component code rates
are properly chosen. Reference [4] also concludes that if we
use Gray mapping and employ parallel independent decoding
(PID) at each level separately, the information loss relative to
the channel capacity is negligible if optimal component codes
are used. Furthermore, it is recognized that Gray-mapped BICM
provides mutual information very close to the channel capacity
[6] and is actually a derivative of the MLC/PID scheme using a
single binary code [4], [8]. Since the invention and refinement
of turbo codes [9], the research community also realized the
change in the paradigm of coding optimality, i.e., not to pay at-
tention to only minimum distances. These discoveries allow us
to draw one important conclusion: Using powerful component
codes with properly designed rates for MLC or BICM enables
us to get very close to channel capacity at a desired bandwidth
efficiency.

On the other hand, low-density parity-check (LDPC) codes
[10] have been shown to achieve low bit-error rates (BERs) at
signal-to-noise ratios (SNR) very close to the Shannon limits
on many interesting binary-input channels [11]–[13], and they
outperform turbo codes when the block length of the code is
large, even though the decoding complexity is less than that of
turbo codes. Therefore, LDPC codes are considered to be among
the most power-efficient binary codes for digital transmission.

In this paper, we explore the use of LDPC codes [10], [11]
as the component codes of both MLC and BICM schemes de-
signed to approach the channel capacity (also cf. [14], [15]). The
BICM scheme we study refers to the scheme which does not it-
erate between the demodulator and the decoder.1 It is shown in
[4], [8] that the concept of an equivalent binary-input component
channel for each individual bit level is an effective tool for the
analysis and design of these coded modulation schemes. Using
this observation, we transform the design of LDPC codes for
these coded modulation schemes into the design of LDPC codes
for the equivalent binary-input component channels. Density
evolution [1] has been proven to be a powerful tool for the anal-

1Some authors have studied iterative demodulation and decoding for the
BICM and MLC schemes, e.g., [16]–[18].
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ysis and design of LDPC codes for various binary-input sym-
metric channels. However, the equivalent binary-input compo-
nent channels of these coded modulation schemes are not neces-
sarily symmetric. To address this problem, we use the idea of an
independent and identically distributed (i.i.d.) channel adapter,
introduced in [15]. We show that the i.i.d. channel adapter and
the equivalent binary-input channel can be considered together
as a new “augmented channel” which is output symmetric, satis-
fying the symmetry condition in [1]. Therefore, the analysis and
design of LDPC codes is greatly simplified. In [2], by consid-
ering LDPC coset codes instead of linear LDPC codes, concen-
tration theorems are proven for LDPC coset code ensembles on
channels with binary inputs and intersymbol interference (ISI)
due to channel memory. In this paper, we apply the concept of
LDPC coset codes to both MLC and BICM cases and provide a
similar concentration theorem over almost all graphs, almost all
input sequences (time-multiplex of coset code codewords), and
almost all channel noise realizations. We also discuss the rela-
tion between the systems based on i.i.d. channel adapters and
coset codes and show that these two systems have the same ex-
pected decoder behavior.

The outline of this paper is as follows. In Section II, we in-
troduce the system model of MLC and BICM, including their
encoder structures, decoding strategies, and related capacity re-
sults. In Section III, we first discuss the concept of an i.i.d.
channel adapter and prove the corresponding properties. Next,
we introduce the coset code scheme and present the coset code
concentration theorem. In Section IV, we extend density evolu-
tion to evaluate the asymptotic performance of the LDPC com-
ponent codes for the MLC and BICM schemes incorporating the
i.i.d. channel adapter. We describe the optimization technique
for both MLC (joint optimization of component code rates and
code parameters) and BICM (only component code parameters)
in this section, as well. In Section V, we present the optimization
results for both Gray-mapped MLC and BICM schemes based
on 4-PAM and 8-PSK modulation.2 We show that the optimized
thresholds are very close to their associated capacities and we
verify the validity of the code designs by very large block-size
simulation results. Finally, we simulate the performance of these
MLC and BICM schemes based on optimized LDPC codes at
moderate block sizes and consider the results from the perspec-
tive of a random coding exponent analysis. Section VI concludes
the paper.

II. SYSTEM MODEL

A. Multilevel Coding (MLC)

The encoder structure of the LDPC coded MLC scheme is
shown in Fig. 1. Each bit is pro-
tected by a different binary LDPC code of length and rate

, where is the information word length in bits.
The mapping device maps a binary vector to
a signal point , where is the signal set and .
We consider a discrete equivalent additive white Gaussian noise

2Since 4-PAM modulation represents one quadrature component in a
16-QAM modulation scheme, the results discussed here apply to 16-QAM
directly. In general, the code design methods can easily be adapted to other
high-order constellations.

Fig. 1. Encoder structure of the MLC scheme with LDPC component codes.

(AWGN) channel model, and we denote byand the channel
noise and the channel output, respectively. The spectral effi-
ciency (bits per symbol) of the scheme is equal to the sum
of the component code rates, i.e., .

Under the constraint of i.i.d equiprobable inputs, the capacity
of such a channel with the channel inputand output is given
by3 [19]

(1)

B. Multistage Decoding (MSD)

Applying the mutual information chain rule to (1) yields

This equation implies that the transmission of vector
can be separated into the parallel transmission

of over equivalent binary input channels, provided that
are known [4]. Accordingly, the component

codes are successively decoded based on the channel output
and the decisions from lower levels. This is the well-known
multistage decoding (MSD). The probability density function
(pdf) for the equivalent channel
is given by

(2)

where denotes the subset of all the symbols of
whose labels have the valuein position , . The
equivalent channelis then specified by a set of pdfs [4]

(3)

At the receiver side, for each equivalent binary input channel
, ana posterioriprobability (APP) module usesand the deci-

sions from lower levels to compute the log-APP-ratio (LAPPR)
for the coded bits, , . Applying Bayes’
rule, it can be shown that the LAPPR ofis given by

(4)

3Throughout the paper, we denote the random variables corresponding to the
transmitted and received symbols by capital letters.
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Fig. 2. Gray-mapped 4-PAM modulation.

Fig. 3. Gray-mapped 8-PSK modulation.

and is used as the decoder input of the component code at
level .

C. Parallel Independent Decoding (PID)

Since the , are independent of each
other, it can be shown that

The gap between and
strongly depends on the mapping rule for the signal points. In
particular, [4], [6] showed that this gap is surprisingly small if
Gray mapping is employed. This result leads to a suboptimal
but quite effective decoding strategy, namely, the decoding of
the binary code at each level without using the decisions at
any other level. With this PID strategy, the system can also be
decomposed into an equivalent set ofparallel binary-input
channels. Each equivalent binary-input channelis character-
ized by the pdf

(5)

where denotes the subset of all the symbols ofwhose
labels have the value in position .

At the receiver side, the LAPPR of is calculated as

(6)

With the i.i.d equiprobable inputs constraint, we define the
“PID capacity” [4]

(7)

We consider both Gray-mapped 4-PAM (Fig. 2) and 8-PSK
(Fig. 3) modulations. In Fig. 4, capacity results are plotted for a
Gray-mapped 4-PAM modulation on an AWGN channel. The

Fig. 4. Capacity comparison for a Gray-mapped 4-PAM modulation on an
AWGN channel.

Fig. 5. Capacity comparison for a Gray-mapped 8-PSK modulation on an
AWGN channel.

plot shows that the PID capacity suffers almost no degra-
dation compared to the channel capacity. For example, at
a spectral efficiency of 1 bit/symbol, the reliable transmission
SNRs corresponding to the channel capacityand the PID ca-
pacity are 2.11 and 2.27 dB, respectively. The curves also
suggest the optimal individual code rates at each level: at an

of 1 bit/symbol, if MSD is used, the optimal code rates for
each level are ; however, if PID is em-
ployed, . Fig. 5 shows similar results
for a Gray-mapped 8-PSK modulation on an AWGN channel.
At an of 2 bits/symbol, the performance loss of the PID ca-
pacity (5.84 dB) compared to the channel capacity (5.77 dB) is
only 0.07 dB. Note that since the Gray
labeling for and differs only by a rotation of 90[4]. Fur-
thermore, if is known, the optimal decision region of is
independent of . It can be shown that the equivalent transmis-
sion model of when is known is the same as the equivalent
transmission model of when and are known. Therefore,
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we have4 . According to the
capacity results, the component code rate distribution at
2 bits/symbol is for MSD
and for PID.

D. Bit-Interleaved Coded Modulation (BICM)

A pragmatic but quite effective approach for bandwidth-ef-
ficient transmission is to use BICM which requires only one
encoder. The coded bits are interleaved bit-wise and grouped
into blocks of address bits . The signal point
addressed by is transmitted through the channel.
The decoding metric for each, is computed
the same way as for the MLC/PID scheme. Finally, the decoder
processes the deinterleaved metrics and outputs the decisions.
As pointed out in [4], the equivalent channel models for bits

, are identical for BICM and MLC/PID.
The independence of the different bitsfor the BICM scheme,
which is inherent in the MLC/PID scheme, is based on the as-
sumption of an ideal bit interleaver. Note that the equivalent
channels for in the BICM scheme are used serially rather than
in parallel. Therefore, the MLC/PID capacity is the same as the
performance limit that can be achieved by the BICM scheme,
which is called the “BICM capacity” in [6].

III. A NALYSIS OF LDPC COMPONENTCODES FOR THEMLC
AND BICM SCHEMES

A. LDPC Codes

An LDPC code is a linear block code which is specified by
either its parity-check matrix or its corresponding
generator matrix satisfying . An LDPC code
can be associated with a bipartite graph [1] which consists of
bit nodes, check nodes, and a certain number of edges.
Each bit node represents a bit of the codeword. Each check node
denotes one parity check of the code. An edge exists between
the th check node and theth bit node if the entry is .
An irregular LDPC code can be specified by either a degree dis-
tribution pair [1], [11] or, equivalently, its corresponding
generating functions

and

where (resp., ) is the fraction of edges with bit (resp.,
check) degree and (resp., ) is the maximal bit
(resp., check) degree of any edge. A regular LDPC code
has , . We define an LDPC code ensemble

as the set of all LDPC codes of lengthwhose cor-
responding bipartite graphs satisfy the degree distribution pair

.
In [1], a numerical technique called density evolution is used

to analyze the performance of message-passing decoders on a
binary-input symmetric AWGN channel, enabling the accurate

4Actually, it can be proven that bothI(C ; Y jC ) andI(C ; Y jC ; C ) are
equal to the uniform average of the capacities of two equivalent binary phase-
shift keying (BPSK) modulations.

determination of the noise thresholds [1] of LDPC code ensem-
bles. The interpretation of the thresholds as predictors of actual
decoder behavior and bounds on achievable performance relies
upon a general “concentration theorem”—stating that, asymp-
totically in the block size, the decoder behavior for individual in-
stances (of the code and the channel noise) concentrates around
the average behavior of a cycle-free graph, which can be com-
puted using the density evolution algorithm. The application of
the concentration theorem and density evolution to the determi-
nation of the noise threshold of LDPC code ensembles is sim-
plified by the symmetry of the channel /and decoding algorithm
[1]. Specifically, under appropriate symmetry conditions, it suf-
fices to consider the performance of the all-zeros codeword.

B. I.I.D. Channel Adapters

Our objective is to develop a similar algorithmic approach for
the analysis of LDPC component codes for the MLC and BICM
schemes. The application of density evolution and concentration
theorem for the MLC and BICM schemes is complicated be-
cause, in general, the equivalent binary-input component chan-
nels are not necessarily symmetric where a binary-input channel
is symmetric if

(8)

with and as the input and output of the binary-input channel,
respectively [1]. Therefore, the decoding analysis of the all-
zeros codeword alone may not suffice to predict the average de-
coder behavior; in fact, for the specific Gray-labeled constella-
tion we considered in Section II, it is easy to see that this is the
case.

In the following, we introduce a new analytical tool: i.i.d.
channel adapters. We show that we can force the symmetry of
the equivalent binary-input component channels with the use of
i.i.d. channel adapters. Thus, the analysis and design of binary
LDPC codes are greatly simplified.

We use the MLC/PID scheme as an example, and the ex-
tensions to the MLC/MSD and BICM schemes are straightfor-
ward. Fig. 6 shows an MLC/PID scheme with an i.i.d. channel
adapter on each equivalent binary-input component channel.
Each i.i.d. channel adapter has three modules. The first one is
an i.i.d. source which generates binary symbol ,

according to an i.i.d. equiprobable dis-
tribution. The second one is a - adder and performs the
following operation: , where is the LDPC-coded
bit. The last module is a sign adjuster and functions as follows:

, which means if and
if , where is the APP module output and

is the LDPC decoder input. We can see that the last module
undo-es the effect of the second module. Therefore, each equiva-
lent binary-input channel, is transformed
into a new binary-input channel with inputand output . We
have the following theorem.

Theorem 1: All of the new augmented binary-input channels
as previously defined satisfy the symmetry condition. That is,
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Fig. 6. The MLC/PID scheme with an i.i.d. channel adapter on each equivalent binary-input channel.

Fig. 7. The MLC/MSD scheme with an i.i.d. channel adapter on each equivalent binary-input channel.

Fig. 8. The BICM scheme with an i.i.d. channel adapter.

Proof: It is easy to see that, , both
and are i.i.d. equiprobable random variables. Noticing that

and are independent, we have

Similarly, we have

Then Theorem 1 follows directly.

We show the MLC/MSD and BICM block diagrams with
i.i.d. channel adapters in Figs. 7 and 8, respectively. By sim-
ilar arguments as in Theorem 1, it can be proven that each of the
new augmented binary-input channels shown in Figs. 7 and 8 is
symmetric, as well.

Therefore, for any of the new augmented binary-input output-
symmetric component channels, if we use an LDPC code for
transmission through this channel, by [1, Lemma 1], the de-
coding (bit or block) error probability is independent of any par-
ticular codeword. Thus, the threshold analysis and code design
of LDPC codes on these kinds of channels are greatly simplified
as we need only consider the all-zeros codeword. Furthermore,
by [1, Theorem 2], the average behavior of individual instances
(of the code and of the noise) concentrate around the expected
behavior when the codeword length gets sufficiently large.
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Theorem 2: The capacity of the new augmented binary-input
channel formed by adding an i.i.d. channel adapter to the orig-
inal equivalent binary-input component channel is equal to the
mutual information of the original binary-input channel with
i.i.d. equiprobable input distribution.

Proof: By Theorem 1, the new augmented channel with
input and output is output symmetric, and, therefore, the ca-
pacity of this new channel can be achieved by an i.i.d. equiprob-
able input distribution [20]. That is, the capacity of the new
channel is equal to the average of the mutual information be-
tween channel input and output , where
[20]. However, no matter which value (or ) the channel input

takes, the original binary-input channel sees i.i.d. equiprob-
able inputs because of the i.i.d. channel adapter, therefore lim-
iting the mutual information between and , where

, to the i.i.d. mutual information of the original binary-
input channel. Therefore, the capacity of the new augmented
binary-input channel equals the i.i.d. mutual information of the
original binary-input channel.

By Theorem 2, if we can approach the capacity of the new
augmented binary-input channel with the i.i.d. channel adapters,
we are able to approach the i.i.d. channel capacity (see (1)) by
the MLC/MSD scheme and approach the PID capacity (see (7))
by the MLC/PID scheme or the BICM scheme.

In a system with i.i.d. channel adapters, on each new
augmented binary-input channel, the expected decoder be-
havior (BER) is effectively averaged over all possible LDPC
graphs and all possible channel realizations. In particular,
each channel realization includes one randomly chosen binary
vector—length- for MLC and length- for BICM—chosen
according to an i.i.d. equiprobable distribution and one channel
noise realization. Therefore, the average of the expected
behavior over the channel is an average with respect to both the
i.i.d. binary vector and the channel noise.

C. LDPC Coset Codes and Concentration Theorem

In Section III-B, by incorporating i.i.d. channel adapters, we
showed that the new binary-input augmented channels are sym-
metric. Therefore, the analysis of LDPC codes is simplified. In
this section, we keep the channel unchanged. Instead, by con-
sidering a slightly broader class of codes—coset codes—we are
able to show that if the input sequencehas an i.i.d. equiprob-
able distribution, for almost all graphs and almost all input se-
quences, the decoder performance over each equivalent binary-
input channel of the MLC and BICM schemes concentrates
around its expected behavior. The outline of the proof is very
similar to [1], [2], which is to form a martingale process by re-
vealing information one step at a time (of the graph ensemble,
the input sequences, and the channel noise realizations). If the
impact of the information revealing at one step is restricted to
a finite value independent of, a tight concentration bound re-
sults from the Azuma inequality [21].

1) LDPC Coset Codes and Decoding:Following the defini-
tion of [20], we specify a coset code by(or ) and a fixed but
arbitrary coset leader . If is an

information vector, the codeword
is generated as

(9)

where represents - addition and is the codeword of
the associated linear code. The codewordof the coset code
satisfies

(10)

where

is the syndrome of the corresponding coset leaderand
. The coset code is linear if and only if .

Since an LDPC code is a linear block code, an LDPC coset code
obeys this definition.

By decoder symmetry [1], it can be proven that the following
two ways of decoding an LDPC coset code are identical. One
way is to include the syndromeof the coset leader into the
iterative message-passing decoding algorithm as described in
[2], i.e., the message passed from check nodeto bit node

is determined by

where is the message passed from bit nodeto check
node . When the decoder makes a final decision on, after
subtracting , the decoder recovers the information sequence

according to (9). The other way is similar to the decoding
algorithm described in [20] (the example discussed there is
for a binary-symmetric channel (BSC)), where we remove
the coset leader first and then perform the message-passing
decoding on its associated linear LDPC code. That is, for each
bit position of a codeword, , assuming that

is the LAPPR value of the corresponding bit position, we
calculate , where is the th component of
coset leader . Then we use as the input to the associated
linear LDPC decoder, and the expression

is used as the basis for the message passing from check nodes
to bit nodes. Finally, we recoverfrom the final decision of the
decoder.

For the MLC scheme, we consider one LDPC coset code at
each level. If
is a codeword of a coset code at level, we define an input se-
quence of the MLC scheme as the time multiplex ofcode-
words , i.e.,

Then, the mapper output is defined as

where is assigned to ,
according to a given mapping rule. We callthe symbol se-
quence, which is the input to the noisy channel.

For the BICM scheme, if is a codeword of an LDPC
coset code, we define to be the
interleaver output. Then, the symbol sequence is given by
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Fig. 9. The modified directed neighborhood of depth2 of the directed edge~e = (V ; C ).

(we assume that divides ),
where

is mapped to .
2) Concentration Theorem:First, we consider a given graph
(representing the LDPC code at level) and a given input

sequence ( is the time multiplex of coset codewords
). At level , let be an arbitrary codeword of.

The coset-defining vector then is given by . This
means that different (actually, any) codewords ofcan result in
the same coset codeword by using different coset-defining vec-
tors. In the following lemma, we will show that for a given,
under the same (thereby, the same ), the number of errors
committed by the decoder is independent of.

Lemma 1: Let be the bipartite graph representing a given
binary linear LDPC code at levelof the MLC scheme. Consider
the belief propagation decoding algorithm described in [10], [1]
which satisfies the decoder symmetry (including both bit node
symmetry and check node symmetry) defined in [1]. Letand

be two arbitrary linear codewords of. Assume that , the
input sequence of the MLC scheme, is the time multiplex of
coset codewords , , , . If ,
the number of decoding errors is exactly the same, irrespective
of whether or is the transmitted codeword.

The proof of Lemma 1 is given in Appendix A. From Lem-
ma 1, we conclude that the number of errors committed by
the decoder is a function of only graphs, input sequences, and
channel noise realizations.

The proof of the concentration theorem is for the MLC/PID
scheme, but it can be extended to the MLC/MSD and BICM
schemes in a very similar manner. For the message-passing de-
coder of each LDPC component code, we consider the first de-
coding approach described in Section III-C1. Similar to [1], to
simplify the subsequent notation, we assume that the number of
iterations that the decoder performs is denoted as. All subse-
quent notations refer to iteration, and we frequently omit the
index .

Here, we limit our consideration to regular LDPC codes.5

Reference [1] introduced the idea of a directed neighborhood
of depth which consists of an edge

that connects a bit node and a check node , and all nodes
and edges traversed by paths of length at mostending at ,

5The extension of the proof to irregular LDPC codes is straightforward.

where is the message-passing iteration number. Similar to [2],
we modify the directed neighborhood for the MLC/PID scheme.
The modified directed neighborhood of depth- ,
shown in Fig. 9, consists of the two nodesand , the edge
, all nodes and edges traversed by paths of length at most

ending at , one channel node , and its associated binary
symbols . In the MLC/PID scheme, the
binary symbols are part of the input se-
quence with corresponding to the coded bit from the com-
ponent code at level. The vector maps
to a channel symbol associated with the channel nodethat
contributes to the message passing along edge. A modified di-
rected neighborhood of depth can be obtained by branching
out the neighborhood of depth.

Since the transmitted binary symbols associated with the
channel nodes influence the statistics of the messages passed
in the modified directed neighborhood, we must distinguish
between different neighborhoods by different types. We specify
each type of neighborhood by the transmitted binary symbols
on its associated channel nodes. For a regular LDPC
code, the total number of the channel nodes in a modified
directed neighborhood of depth is given by

(11)

We can arrange the binary symbols of the channel nodes in a
modified directed neighborhood into a binary vector

(12)

and the length of is defined as . Since each
type of neighborhood is specified by a vector, the number of
possible modified directed neighborhood types of depthis

. As in [1], we say that the modified directed neighbor-
hood is tree-like if all nodes in the neighborhood are distinct;
otherwise, we say that it is not tree-like. The inequality proved
in [1] applies directly here

is not tree-like (13)

where is a constant that may depend on and , but is
independent of .

Let be the number of incorrect messages passed along
edge . Let be the random variable which has a value of

if is tree-like and otherwise. Given a modified directed
neighborhood , we define

(14)
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as the expected number of incorrect messages passed along
with a tree-like neighborhood of depth at the th iteration
when is the neighborhood type.

We define the probability as the probability
that a modified directed neighborhood is of type when the
input sequence of the MLC scheme is, is tree-like, and the
associated bipartite graph is chosen randomly from all possible
graphs of the code ensemble .

Therefore, we can define the expected number of incorrect
messages passed along edgewith a tree-like neighborhood
of depth after the th iteration when an input sequenceis
transmitted as

(15)

where

since is independent of if the type is known.
If all possible modified directed neighborhood types

are equally likely, we call this equiprob-
able expected value of error , i.e.,

(16)

In the following, we present the concentration theorem based
on coset codes and the proof is shown in Appendix B.

Theorem 3: Define an binary random vector

where are i.i.d.
equiprobable binary random variables. We assume thatis the
input sequence of the MLC scheme. At levelof the MLC/PID
scheme, over the probability space of all graphs , all
realizations of , and all channel noise realizations, letbe the
random variable that denotes the number of incorrect messages
among all bit-to-check node messages passed at iteration.
Then, for any , there exist positive numbersand (they
may depend on , , and , but not on ), such that if ,
we have

where is given by (16) and denotes level in the MLC
scheme.

Corollary: Let be the informa-
tion vector with each binary symbol i.i.d. equiprobable. Let

be an LDPC coset code for which is a code
graph in the LDPC code ensemble and is a
coset-defining binary vector with each binary symbol satisfying
an i.i.d. equiprobable distribution. Define to be the random
variable that denotes the number of incorrect messages among
all bit-to-check node messages passed at iteration,
assuming is the component code used at levelof

the MLC/PID scheme. Then, for the same and as in
Theorem 3, we have

Proof: If and satisfy an i.i.d. equiprobable distribu-
tion, the resulting input sequence of the MLC/PID schemeis a
sequence of i.i.d. equiprobable random binary symbols. There-
fore, Theorem 3 applies directly.

It follows from the corollary that (for sufficiently large) the
decoding behavior of almost all input sequences converges to
the expected value . Therefore, if we can find the maximum
channel noise standard deviation, namely, the threshold such
that goes to zero, almost all input sequences can transmit
reliably up to the threshold value, but they have an error proba-
bility bounded away from zero above the threshold value.

D. Relation Between These Two Systems

We can see that the LDPC linear code system with i.i.d.
channel adapters and the LDPC coset code system with the
second decoding approach are virtually the same system. The
critical difference between these two systems is that in the first
system, we take the i.i.d. binary vector as a channel-adapting
vector and, therefore, as part of the new augmented channel;
however, in the second system, we consider the i.i.d. binary
vector to be a time multiplex of coset-defining vectors and,
therefore, as part of the LDPC coset codes.

In the first system, each codeword belongs to a linear code,
and the averaged (over the channel) decoder behavior condi-
tioned on a particular codeword is the same for each possible
codeword since the new augmented binary-input channels are
symmetric.

In the second system, one codeword is a codeword of a coset
code, which is the - sum of a codeword of its associated
linear code and a coset-defining vector, and the averaged (over
the channel) decoder behavior conditioned on a particular code-
word may be different from one codeword to another, since
the equivalent binary-input channels are not necessarily sym-
metric. Therefore, a coset code concentration theorem is given
for almost all possible input sequences (or its related coset code-
words).

Nevertheless, the expected decoder behavior of the two
systems is the same, since they have the same configuration
(encoder and decoder structure) and the expectations are taken
over the same probability space, i.e., over all possible LDPC
graphs, over all possible i.i.d. binary vectors (referring to
channel-adapting vectors in the first system and referring to
coset-defining vectors in the second system), and over all
possible noise realizations.

Next, we will determine the expected decoder behavior for
the system with i.i.d. channel adapters by considering only the
all-zeros codeword.

IV. DENSITY EVOLUTION AND CODE OPTIMIZATION

A. Density Evolution

Here, we briefly describe the manner in which we extend den-
sity evolution to the MLC and BICM schemes based on the
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i.i.d. channel adapters. We consider transmitting the all-zeros
codeword on each augmented binary-input component channel.
First, we consider the Gray-mapped MLC/MSD scheme on an
AWGN channel. The conditional pdf is the
Gaussian density function

if is real-valued

if is complex-valued
(17)

where is the variance of the channel noise and .
Note that are the inputs to the mapping de-

vice. At level , assuming we know , for any given
, from the relation between and

is LAPPR value of , given and , we can cal-
culate the conditional pdf . Since

are variables satisfying i.i.d. equiprobable dis-
tributions, all the signal points in the constellation are equally
likely to be transmitted. Therefore,

(18)

Then, is used as the initial density of the observed LAPPRs
of the augmented binary-input component channels in the den-
sity evolution program. Following [11], for a specified noise
standard deviation, at each level of the MLC/MSD scheme,

, we use density evolution to track the frac-
tion of incorrect messages after decoding iterations on
a cycle-free graph corresponding to a specified degree distribu-
tion pair . We let denote the density of the messages
passed from the bit nodes to the check nodes afteriterations.
The density evolution can be described by

where

denotes convolution, andand are operators defined in
[11, eqs. (5) and (6)], respectively. For each level, we define
the corresponding noise threshold to be the supremum of
the for which .

Similarly, for the MLC/PID scheme, we have

(19)

Recall that the MLC/PID scheme and the BICM scheme have
the same equivalent channel models for each level. Therefore,
for the BICM scheme, the initial density function of the ob-

served LAPPRs is the average ofobtained in the MLC/PID
scheme, i.e., .

B. Code Optimization

In general, we need to optimize the LDPC component codes
so that the MLC scheme can approach the channel capacity. If
we know that the LDPC codes can achieve capacity for each
equivalent component channel, we can fix the component code
rates to the required rates computed based on mutual informa-
tion chain rule and simply optimize the thresholds of the com-
ponent code rates. However, for a fixed maximal bit (or check)
degree, no one had proved that LDPC codes can get arbitrarily
close to the capacity of these equivalent channels. Therefore,
in this work, to design an optimal MLC coding scheme with
LDPC codes as component codes, we perform joint optimiza-
tion of both the code rates and the degree distributions of the
LDPC component codes for all the levels. If the target system
spectral efficiency is and the code rate of the LDPC code
is , we have . Since
the optimal design of MLC schemes requires that the component
codes at each level have equal performance [4], under the con-
straint imposed by , we should optimize both the code rates
and the degree distributions of the LDPC component codes in
such a way that all the LDPC component codes have the same
noise thresholds.

For a 4-PAM modulation, the joint optimization is as follows.
Under the constraint of 1 bit/symbol, we randomly pick a
combination of . For this combination of

we use a nonlinear optimization technique, called differen-
tial evolution [22], to search for the optimal degree distribution
pair and its corresponding noise threshold for the
LDPC code at each level. If the optimized LDPC codes at
both levels have different noise thresholds, we make the code
rate adjustments continuously to minimize the difference of the
noise thresholds of the LDPC codes at both levels. If the LDPC
codes at both levels have the same threshold value, we stop the
search algorithm and claim that we have found both the optimal
code rates and the degree distribution pairs of the LDPC codes at
both levels for the MLC scheme. This optimization method ap-
plies to both the MLC/MSD scheme and the MLC/PID scheme.

For the BICM scheme, the rate of the LDPC code is pre-
determined by the system spectral efficiency. In the case of
4-PAM modulation, if is 1 bit/symbol, the LDPC code rate

. Then, we just need to combine the differen-
tial evolution and density evolution to find a degree distribution
pair which has the best threshold.

V. NUMERICAL RESULTS

A. Thresholds and Very Large Block-Size Simulation Results

By applying the optimization technique discussed above, we
optimize both the code rates and degree distributions of the
LDPC component codes for the MLC and BICM schemes. In
the following, we primarily focus on the discussion of the opti-
mization results for the 4-PAM modulation case, but show some
optimization results for the 8-PSK modulation as well.

1) Gray-Mapped 4-PAM:In the case of 4-PAM modu-
lation, the target is 1 bit/symbol. For the MLC scheme,
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TABLE I
OPTIMIZED RESULTS FOR THEEQUIVALENT CHANNEL i = 0, 1 OF THE

GRAY-MAPPEDMLC/MSD SCHEME (4-PAM MODULATION), R = 1

BIT/SYMBOL, AND THE CHANNEL CAPACITY IS 2.11 dB

the optimized code rates of the two component LDPC codes
are very close to the capacity results shown in Section II.
For the MLC/MSD scheme, the joint optimization produces
slightly different code rate distributions for different : for

, the code rates of and are and
and for , and , the code rates are and .
Similarly, for the MLC/PID scheme, the optimized code rate
combinations of and are and , respectively.
For the BICM scheme, we simply set the LDPC component
code rate to .

Table I lists the optimized results for the MLC/MSD scheme
with constraints of and . For each ,
the threshold (decibels) of the optimized degree
distribution pair is given. Note that the channel capacity is
2.11 dB. The degree distribution pairs of code and
with both have threshold of 2.18 dB, which is
only 0.07 dB away from the channel capacity. By comparison,
the quasi-regular [13] rate- LDPC code
and rate- LDPC code have much worse
thresholds of 3.29 and 3.32 dB, which are 1.18 and 1.21 dB
away from the channel capacity, respectively.

For the MLC/PID scheme, we list in Table II the optimized
results for and with and . Note
that the PID capacity is 2.27 dB. The thresholds of the optimized
degree distribution pairs are very close to the PID capacity. The
degree distribution pairs of code and with
have thresholds of 2.35 and 2.32 dB,6 which are only 0.082 and
0.054 dB away from the PID capacity, respectively. By compar-
ison, the quasi-regular rate- LDPC code and
rate- LDPC code have thresholds of 3.44 and
3.35 dB, respectively.

Fig. 10 compares the simulation results for the Gray-mapped
4-PAM MLC/MSD scheme and the MLC/PID scheme on an
AWGN channel. The simulation refers to the i.i.d. channel
adapter system. In the implementation of the i.i.d. channel
adapters, for each binary-input component channel, we used
two identical random number generators (RNG) yielding
an i.i.d. equiprobable distribution at both the transmitter
and receiver sides. We set the same initial seed to each
pair of the RNGs. Therefore, each pair of RNGs generate
the same random sequence.7 The codeword length of each
component code is . For the MLC/MSD scheme, we
use the irregular LDPC codes optimized for the MLC/MSD
scheme with on and in one case, and the
quasi-regular LDPC codes in another case. For the MLC/PID
scheme, we use the irregular LDPC codes optimized for the

6The slight difference between the thresholds is due to the step size used for
the code rate adjustment.

7This method makes the scheme realizable in practical systems.

TABLE II
OPTIMIZED RESULTS FOR THEEQUIVALENT CHANNEL i = 0, 1 OF THE

GRAY-MAPPED MLC/PID SCHEME (4-PAM MODULATION), R = 1

BIT/SYMBOL, AND THE PID CAPACITY IS 2.27 dB

Fig. 10. Simulation of Gray-mapped MLC/MSD and MLC/PID schemes with
4-PAM modulation on an AWGN channel. The codeword length is10 .

MLC/PID scheme with on and in one
case, and the quasi-regular LDPC codes in another case.
However, the component code rates of the MLC/MSD scheme

are slightly different from the
MLC/PID scheme . Each BER curve
represents one component code. The calculated thresholds for
all the component codes are shown, as well as the channel
capacity and the PID capacity. We observe that the calculated
thresholds accurately predict the performance of both the
MLC/MSD and the MLC/PID schemes with long LDPC com-
ponent codes: for the quasi-regular (resp., optimized irregular)
LDPC codes, the values at which the BERs are below

are within 0.04 dB (resp., 0.06 dB) of their respective
thresholds. The simulation curves of the optimized irregular
LDPC codes for the MLC/MSD scheme are better than the PID
capacity and very close to the channel capacity as predicted by
the threshold results: both codes achieve BERs of less
than 0.14 dB away from the channel capacity. The optimized
irregular LDPC codes have a substantial gain (1 dB) over the
quasi-regular LDPC codes in both the threshold and simulation
results. Also, the MLC/MSD scheme performs slightly better
than the MLC/PID scheme for both regular and irregular codes,
which is consistent with the threshold results as well.

The optimized results for the BICM scheme are shown in
Table III. The thresholds of these degree distribution pairs are
very close to the PID capacity (about 0.07 dB gap at

). The threshold of the regular rate- LDPC code is
3.41 dB, more than 1 dB worse than the PID capacity. In Fig. 11,
we compare the simulation results for the Gray-mapped BICM
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TABLE III
OPTIMIZED RESULTS FOR THEGRAY-MAPPED BICM SCHEME

(4-PAM MODULATION), R = 1 BIT/SYMBOL, r = 1=2, AND THE

PID CAPACITY IS 2.27 dB

Fig. 11. Simulation of Gray-mapped MLC/PID and BICM schemes with
4-PAM modulation on an AWGN channel. The codeword length is10 .

scheme and the MLC/PID scheme with i.i.d. channel adapters
on an AWGN channel. The codeword length of each component
code is as well. For the BICM scheme, we use both the
irregular LDPC code from Table III with and the
regular LDPC code. For the MLC/PID scheme, we use the
codes from Fig. 10. Similar to the case of the MLC/MSD and the
MLC/PID schemes, for the BICM scheme, the simulated BER
curves are very close to the threshold results. It is interesting that
in both the regular and irregular cases, the BICM scheme can
perform as well as the MLC/PID scheme; however, the decoding
complexity and delay are only roughly half that of the MLC/PID
scheme.

2) Gray-Mapped 8-PSK:For the Gray-mapped 8-PSK
modulation, the target is 2 bits/symbol. First, we consider
the MLC/MSD scheme. As we mentioned in Section II, the
equivalent transmission model of if is known is the same
as the equivalent transmission model of if and are
known, therefore, , where is given by (18). Hence,
we only need to optimize the degree distribution pairs for
the equivalent binary-input channelsand . The optimized
component code rates are
for , in agreement with the results predicted by the
capacity calculation. The gap between the thresholds of the
optimized degree distribution pairs for leveland and the
minimum SNR for reliable transmission corresponding to the
PID capacity is only about 0.07 dB.

Similarly, the optimized degree distribution pairs for the
MLC/PID scheme and the BICM scheme have thresholds very
close to the PID capacity, as well.

Fig. 12. Random coding exponent analysis for coded Gray-mapped 4-PAM
transmission of 1 bit/symbol.

B. Coding Exponent Analysis and Moderate Blocksize
Simulations

As shown in Figs. 10 and 11, the thresholds predict the
asymptotic performance as the block length of the component
LDPC codes approaches infinity. We would also like to analyt-
ically compare these power- and bandwidth-efficient schemes
based on LDPC codes with a finite block size. However, there
are very few accurate analytical tools for analyzing LDPC code
performance at finite length. Therefore, we first compare these
schemes by the well-known random coding bound technique
[4], [20] which could provide a relation between the codeword
length and the required SNR (decibels) for a given word
error probability . For the MLC scheme, the analysis can
even give the relation between and component code rate
distributions . Even though the
comparison is based on the average performance of a random
block code ensemble, the analysis is still a basis for us to inter-
pret the simulation results based on specific LDPC codes. By
the method described in [4], we carry out the coding exponent
analysis for the Gray-mapped 4-PAM transmission of 1
bit/symbol on an AWGN channel. The allowable word error
probability is . For all these schemes, the required

(decibels) versus codeword length is calculated,
and the results are shown in Fig. 12. Note that for both the
MLC/MSD and the MLC/PID schemes, the codeword lengths

of binary component codes and of the Euclidean space signal
points are equal. For the BICM scheme, BICMrefers to the
case where the codeword lengthmeans the length of binary
component code, and BICMrefers to the case wheremeans
the length of Euclidean space signal points. Note that for the
same , it is fair to compare the BICMand the MLC schemes
since they have the same (number of information bits) delay.
BICM has only half of the delay of MLC and we also show its
curve for reference purposes. The plot shows that as codeword
length goes to infinity, BICM, BICM , and MLC/PID all
approach the PID capacity, and the MLC/MSD gets very close
to the channel capacity. For the MLC/MSD and MLC/PID
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Fig. 13. Random coding exponent analysis for the MLC/MSD and MLC/PID
schemes: component code rate distribution versus codeword lengthn.

schemes, we plot in Fig. 13 the relation betweenand .
The coding exponent analysis shows that the component code
rate distributions for very large block size are virtually the same
as those derived by the capacity calculation and those optimized
using LDPC component codes. However, the analysis also sug-
gests that for small to moderate block size, the component-
code rate distributions are slightly different. Next, we will use
Figs. 12 and 13 to explain some finite block-size simulation re-
sults based on LDPC component codes.

We construct optimized irregular LDPC codes with
for both the MLC/MSD and MLC/PID schemes. The com-

ponent codeword length is . Fig. 14 compares the simulation
performance of these two schemes. For comparison, we also plot
the simulation results based on quasi-regular LDPC component
codes. The results show that the optimized LDPC codes have ex-
cellent performance. In general, for each equivalent component
channel, the irregular LDPC codes outperform the quasi-regular
LDPC codes by about 0.7 at a BER of . As shown in the
threshold results, the simulation performance of the MLC/MSD
scheme is better than that of the MLC/PID scheme. For the
MLC/MSD scheme, the component code on level per-
forms slightly worse than the code on level , which sug-
gests that the code rates optimized by density evolution need to
be adjusted for a more balanced performance at finite block size
and is consistent with the conclusion drawn from the coding ex-
ponent analysis. The component code rates of the MLC/MSD
scheme used in the simulation are , as
derived from the joint optimization results based on LDPC com-
ponent codes. However, the coding exponent analysis (Fig. 13)
shows that at a block size of , a better choice of code rates is

.
In Fig. 15, we compare the MLC/PID scheme and the BICM

scheme based on optimized irregular LDPC codes with
. For the MLC/PID scheme, the component codeword length

is . For the BICM scheme, the component codeword lengths
are and . The simulated curves based on regular

Fig. 14. Simulation of the Gray-mapped 4-PAM modulated MLC/MSD and
MLC/PID schemes on an AWGN channel. The codeword length is10 .

Fig. 15. Simulation of the Gray-mapped 4-PAM modulated MLC/PID and
BICM schemes on an AWGN channel.

LDPC codes are shown as well. By the coding exponent anal-
ysis, the performance of BICMand MLC/PID is essentially
the same. The simulation results shows a very similar trend: the
length- BICM scheme has virtually the same performance
as the MLC/PID scheme while having only about half the delay
and decoding complexity. On the other hand, the length-
BICM scheme, which has roughly the same delay and decoding
complexity as the MLC/PID scheme, performs better than the
MLC/PID scheme (about 0.1-dB gain at a BER of ). A
similar conclusion can also be reached from the coding expo-
nent analysis plot (see Fig. 12).

Another interesting phenomenon reflected in Fig. 12 is that
the BICM curve and the MLC/MSD curve cross around code-
word length , which suggests that for codeword
length larger than , MLC/MSD should be better than BICM;
while, for smaller codeword length, BICMshould be more fa-
vorable. At , these two schemes should be comparable
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as was found in the simulation of MLC/MSD and BICMper-
formance, shown in Figs. 14 and 15.

In the moderate block size simulation discussed here, we
simulate the MLC and BICM schemes in two ways: only
using linear LDPC codes and using linear LDPC codes with
i.i.d. channel adapters. In the first approach, we construct the
generator matrix and encode the information bits with an i.i.d.
equiprobable distribution. In the second approach, it suffices
to just transmit the all-zeros codeword. The results show that
within the precision of the Monte Carlo simulation, these two
approaches have virtually the same performance. For a very
large block size simulation, it is difficult to construct the gen-
erator matrix, therefore, we do not have simulation results for
the first scheme in this situation. However, we conjecture that
as the block size goes to infinity, these two approaches should
have the same asymptotic performance as well. Therefore, at
least for large block size, we can consider the thresholds of
the LDPC codes in the MLC and BICM schemes with i.i.d.
channel adapters as good approximations to the thresholds of
the linear LDPC codes in the MLC and BICM schemes without
i.i.d. channel adapters.

VI. CONCLUSION

We designed power- and bandwidth-efficient MLC and
BICM schemes for the AWGN channel with binary LDPC
component codes. For the decoding of the MLC scheme, we
considered both MSD and PID strategies. The design of LDPC
codes for these coded modulation schemes essentially was
transformed into the design of LDPC codes for the equivalent
binary-input component channels. One difficulty encountered
in applying the concentration theorem and density evolution
technique in the performance analysis of LDPC codes over
these equivalent binary-input channels is that these channels
are not necessarily output symmetric. To solve this problem,
we took two different approaches: one based on i.i.d. channel
adapters and the other based on coset codes. We proved that the
augmented binary-input channel obtained by incorporating an
i.i.d. channel adapter is output symmetric. Thus, the analysis
and design of LDPC codes is greatly simplified in this case
since it suffices to carry out the analysis for only the all-zeros
codeword. Alternatively, by considering LDPC coset codes,
we proved that the decoder behavior concentrates around its
expected behavior, which corresponds to the average perfor-
mance of a cycle-free graph with an i.i.d. equiprobable channel
input distribution. After discussing the relation between these
two approaches, we showed that these two systems indeed have
the same expected behavior. Furthermore, based on simulation
results, we conjecture that the original system, without either
coset codes or i.i.d. channel adapters, has the same expected
decoder behavior as the block size goes to infinity as does
either of the alternative approaches.

We extended the density evolution technique to determine
the noise thresholds of LDPC component codes for both MLC
and BICM schemes incorporating i.i.d. channel adapters. It was
shown that the computed thresholds accurately predicted the
simulation performance of the associated LDPC codes for large
block sizes. By joint optimization of the component code rate

distributions and the degree distribution pairs of the MLC/MSD
scheme, we showed that both the thresholds and simulation re-
sults of the optimized LDPC coded system are very close to
the i.i.d. channel capacity. We also showed that the optimized
BICM scheme can perform as well as the optimized MLC/PID
scheme and that both approach the PID capacity. We compared
the simulated performance of these schemes at moderate block
sizes, and some conclusions drawn from the simulation were
supported by a random coding exponent analysis. At small to
moderate block size, BICM seems to be the more attractive al-
ternative, achieving a better balance among complexity, delay,
and performance.

APPENDIX A
PROOF OFLEMMA 1

Let be a noisy channel output realization and
be its associated LAPPR vector, whereis

the LAPPR value computed based on. Consider the second
decoding approach described in Section III-A1. If we assume
that is the coset-defining vector, we have8 .
Similarly, we have . We define

Therefore, we have

By definition, because and are two codewords of, is
a codeword of as well. Thus, , where

denotes a bit node and denotes a check node. Let
denote the message sent fromto at iteration , assuming
is the decoder input, and let denote the message sent
from to at iteration , assuming is the decoder input.
From the bit node symmetry, at

Assume at iteration that we have

(20)

Since , from the check node symmetry,
we have

(21)

Furthermore, from the bit node symmetry, it follows that at it-
eration

Thus, by induction, at any iteration, (20) and (21) hold. There-
fore, , where and are decoder decisions on

and , respectively. That is, both decoders commit exactly
the same number of errors.

8
ooo = (�1) . In the sequel of the proof, we will use the same notation

for the other variables.
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APPENDIX B
PROOF OFTHEOREM 3

We can write

(22)

where is averaged over all graphs, all input sequences,
and all channel realizations. This inequality means that we
can separate the proof into two parts. First, we show that the
random variable is concentrated around its expected
value , and, second, we prove the convergence of

to .
We start with the second term on the right-hand side of (22).

Let , denote the expected number of incor-
rect messages passed along edge; then by linearity of expec-
tation

We have

where9

where is the expectation over all input sequences. Note
that if is a sequence of i.i.d. equiprobable binary random
variables, each binary symbol in the type-defining vector
specified by (12) is equally likely to be zero or one. Thus, all
tree-like modified directed neighborhood types are equally
probable, i.e., ,

. Next, is
just as defined by (14), therefore,

where the last equality comes from (16). Since
for some positive number, and , we have

9HerePrPrPr(sssjT = 0) = PrPrPr(sss) since the input sequence is independent of
whether or not the neighborhood is tree-like. Also,

EEE[Z jttt ; sss; T = 0] = EEE[Z jttt ; T = 0]

sinceZ is independent of input sequencesss if the typettt is known.

Since , we have

(23)

Therefore, we get . If , we have

(24)

Now we consider the first term on the right-hand side of
(22). Recall that denotes the number of incorrect messages
among all bit-to-check node messages passed in theth it-
eration for a , where is a graph in the ensemble

, is an input sequence, and is a channel noise
vector. Similar to [1], we define partial equalities on
based on information revealing. Define .
Let , be a sequence of equivalence relations,
where the first steps of partial equivalence correspond to
edge revealing on the graph as specified in [1], the next
steps correspond to symbol revealing of the input sequence, and
the last steps correspond to the revealing of the channel re-
alizations which is also described in [1]. More specifically, we
have if and only if the infor-
mation revealed in the first steps for both and

is the same. By the definition,
means .

Next, we define a Doob’s martingale process, , ,
by

(25)

where represents the expected number of incorrect messages
conditioned on the information revealed in the firststeps,
assuming that the information revealed is consistent with

, which implies10 and .
Applying Azuma’s inequality as in [1], [21] we have

(26)

if we can prove that

(27)

where may depend on , , and , but not on .
The first steps are edge revealing steps. Therefore, as in

[1], for , we conclude that (27) holds with
. The last steps correspond to the revealing of the

channel realizations, so, again referring to [1], for
, we can use .

Now, we consider the steps of symbol revealing on the i.i.d.
input sequence, i.e., . Let .
For a given length- binary sequence , we define sequence

as follows: , , and
. In other words, differs from

only at position . From this definition, we have
but . Referring to the modified directed neighbor-
hood definition, we recall that each binary symbol belongs to

10EEE[Z ] is averaged over all graphs, all input sequences, and all noise real-
izations as we described before.
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a channel node. Therefore, if differs from only at posi-
tion , this binary symbol affects only two kinds of mes-
sage flow: the first kind is the message flow within the modi-
fied directed neighborhoods to which this binary symbol’s cor-
responding channel node belongs. As to the second kind of mes-
sage flow, note that this binary symbol is involved inchecks
of the parity-check matrix if this binary symbol belongs to the
component code at level. Therefore, complementing this bi-
nary symbol also affects the message flow within the modified
directed neighborhoods to which those involved checks con-
nect. By (11), the number of channel nodes in a modified di-
rected neighborhood is upper-bounded by . By the node
symmetry property [1], the number of neighborhoods to which
a channel node belongs is upper-bounded by . By sim-
ilar reasoning, the number of neighborhoods to which those in-
volved checks connect is upper-bounded by . There-
fore, in total, complementing one binary symbol in a sequence

, the number of neighborhoods within which message flow is
affected is upper-bounded by , i.e., for any given
, , and

(28)

From the definition of , for , we have

Using (28), along with the fact that for any random variable

we can conclude that for any

That is,

for

Therefore, for any , if we set

and choose

then Theorem 3 follows from (22) and (26).
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