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Multivariate Analytic Combinatorics for
Cost Constrained Channels

Andreas Lenz, Stephen Melczer, Cyrus Rashtchian, Paul H. Siegel

Abstract—Analytic combinatorics in several variables is a
branch of mathematics that deals with deriving the asymptotic
behavior of combinatorial quantities by analyzing multivariate
generating functions. We study information-theoretic questions
about sequences in a discrete noiseless channel under cost con-
straints. Our main contributions involve the relationship between
the graph structure of the channel and the singularities of the
bivariate generating function whose coefficients are the number
of sequences satisfying the constraints. We use these new results
to invoke theorems from multivariate analytic combinatorics to
obtain the asymptotic behavior of the number of cost-limited
strings that are admissible by the channel. This builds a new
bridge between analytic combinatorics in several variables and
labeled weighted graphs, bringing a new perspective and a set of
powerful results to the literature of cost-constrained channels.
Along the way, we show that the cost-constrained channel
capacity is determined by a cost-dependent singularity of the
bivariate generating function, generalizing Shannon’s classical
result for unconstrained capacity, and provide a new proof of the
equivalence of the combinatorial and probabilistic definitions of
the cost-constrained capacity.

Index Terms—Channel capacity, costly constrained channels,
noiseless channels, Perron-Frobenius theory, analytic combina-
torics

I. INTRODUCTION

Since their introduction in Part I of Shannon’s landmark
1948 paper, A Mathematical Theory of Communication [1],
discrete noiseless channels have been an important subject of
research for information theorists and coding theorists. They
have also found practical use in the design of transmission
codes for digital communication systems and recording codes
for data storage systems [2].
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Fig. 1: Channel graph for DNA synthesis using the alternating
sequence ACGT ACGT . . ..

In this paper, we consider discrete noiseless channels under
an average cost constraint. Such a constraint can arise from
limitations on the transmission power in an optical fiber [3],
the programming voltage in a non-volatile memory [4]–[6],
or the synthesis time per nucleotide in a DNA-based storage
system [7].

A. Background

We begin with some background on costly constrained
channels and their capacity.

1) Constrained channels with cost: The labeled directed
graph G in Fig. 1 represents an example of a discrete noiseless
channel describing the synthesis of DNA strands using the
alternating synthesis sequence ACGT ACGT . . . (see [7]).
The channel graph generates sequences of symbols over the
alphabet Σ = {A,C,G,T} by following paths through the
directed graph and reading off the symbols σ(e) ∈ Σ labeling
the edges e in the path. Each edge e also has an associated
positive weight or cost τ(e) ∈ N, denoting the synthesis time
of the edge label σ(e). The edge labels and costs are shown
in the figure as σ(e)|τ(e). The cost is assumed to be additive,
so the cost of a sequence generated by a path in the graph is
the sum of its edge costs.

Discrete noiseless channels in which all edges have unit
cost are well studied [2]; here we are interested in the more
general setting of varying edge costs, as in Fig. 1.

2) Cost-constrained capacity: Shannon introduced the con-
cept of (combinatorial) capacity of a discrete noiseless channel
as the asymptotic growth rate of the number of sequences (of
variable length) as a function of the sequence cost. In the
case of Fig. 1, this represents the maximum rate at which
information can be encoded into the synthesized DNA strands
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per unit of synthesis time. Under the assumption of integer
edge costs, Shannon analyzed a system of difference equations
and derived the now classical result that the capacity is equal
to logarithm of the largest root of a determinantal equation
associated with the channel. For a channel represented by a
graph G, we denote this capacity as CG.

Khandekar et al. [8] extended Shannon’s result to non-
integer symbol costs under a mild assumption about the
density of sequence costs, and expressed the capacity CG in
terms of the radius of convergence of a series that can be
interpreted as a generating function for the sequence N(t)
representing the number of sequences with cost equal to t.
Their results were extended to a more general class of channels
by Böcherer et al. [9], who expressed the capacity in terms
of a singularity of a complex generating function F (x) for
N(t). They interpreted this as a generalization of results from
analytic combinatorics in a single variable [10], a connection
that was established by Böcherer [11], who used it to analyze
the sub-exponential asymptotics of N(t). Khandekar et al. [8]
also clarified and extended Shannon’s proof of the equivalence
of the combinatorial capacity and the probabilistic capacity
defined as the maximum entropy rate of a Markov process
generating the sequences of the channel. This relationship was
further addressed in the setting of more general channels in
[12], [13].

In this paper, we consider generalizations of these results
to discrete noiseless channels subject to an average cost
constraint. In the context of Fig. 1, this corresponds to a
constraint on the average synthesis time per nucleotide.

B. Contributions
Our results stem from an integration of contributions within

and across three disparate areas, including (a) new results in
the spectral theory pertaining to eigenvalues and eigenvectors
of graphs and matrices associated with discrete noiseless chan-
nels; (b) a geometric and functional analysis of singularities
of the complex bivariate generating function that encodes
cost and length properties of the channel sequences; and (c)
combining these results with a novel application of methods
from analytic combinatorics in several variables (ACSV) [14],
[15] to precisely evaluate the asymptotic behavior of the
diagonal coefficients of the bivariate generating function. Part
of this work was presented at the 2023 IEEE International
Symposium on Information Theory [16].

As a by-product of our main results, we obtain two inter-
esting contributions to information theory. First, we show that
the cost-constrained capacity (Definition II.10) of the discrete
noiseless channel can be expressed explicitly as a simple func-
tion of a specific two-dimensional singularity of the bivariate
generating function, thereby generalizing Shannon’s classical
formula for the channel capacity without cost constraint. This
determines the exact asymptotics of the number of fixed-
length sequences with limited cost, and fully characterizes the
capacity-cost function. Second, the expression for the cost-
constrained capacity provides a direct proof of the equivalence
of the combinatorial definition of cost-constrained capacity
and the probabilistic definition. This equivalence was first
established in 2006 via converse inequalities [17].

C. Technical Overview
We next give a brief sketch of the technical underpinnings

of our results. Formal definitions of some of the terms used
are provided in Section II.

a) Spectral analysis of channel graphs: Central to our
analysis is a set of new results about a strongly-connected
graph G. These results illuminate properties of the spectral
radius ρG(x) of the cost-enumerator matrix PG(x), which
reflects the edge connections and edge costs in G. We highlight
two graph properties that play a key role in our analysis, cost
diversity and cost periodicity. A cost-diverse graph has at least
one pair of equal-length paths with different costs that connect
the same pair of vertices. In a cost-periodic graph, for each
pair of vertices the costs of all connecting paths of the same
length are congruent modulo a fixed integer. We show that
cost periodicity is equivalent to a useful formulation of the
edge cost function called a periodic coboundary condition.
Then, we use these definitions to prove structural properties
of the eigenvalues of PG(x) on the complex unit circle and
log-convexity properties of the spectral radius. We also show
that the complement of cost-diverse graphs, namely cost-
uniform graphs, plays a role in our characterization of costly
constrained channels.

b) Generating functions and singularity analysis for cost-
diverse graphs: We define a generating function FG(x, y)
whose coefficients encode information about the number of
paths of given length n and cost t emanating from vertices of
G, denoted N(t, n). For a cost constraint W , we let α = W−1.
To study the asymptotics of N(t, ⌊αt⌋) with the methods of
ACSV, we use the previously derived properties of the spectral
radius of PG(x) to characterize the singularities of FG(x, y).
We first determine the set of minimal singularities. For a
cost-diverse graph, we further identify those singular points
that are smooth, satisfy the critical equation for α, and are
nondegenerate.

c) Asymptotic expansions via ACSV: Our singularity
analysis allows the application of a fundamental result in
ACSV regarding asymptotic properties of coefficients of mul-
tivariate generating functions [14, Cor. 5.2]. This leads to our
main contribution (Theorem III.8), which gives a complete
characterization of the asymptotic behavior of NG(t, ⌊αt⌋) for
cost-diverse graphs in two regions of α. These two regions
provide a characterization of the capacity-cost function CG(α)
in a concise form that elegantly generalizes Shannon’s formula
(Theorem III.1): one corresponds to a linear scaling of CG(α),
and the other to a non-linear concave behavior. We identify
the threshold value of α separating the two regions, as well
as the value α∗ in the concave region corresponding to
the classical combinatorial capacity, CG(α

∗) = CG. The
expression for CG(α) maps directly to the known formula
for the cost-constrained capacity CG(W ) in its probabilistic
interpretation [8], [17]–[19]. From these results, we extract an
asymptotic expansion for the number of paths generated by an
arbitrary strongly connected graph and an exact representation
of the number of the cost-constrained paths (Theorem III.9).

d) Applications: Subsequence enumeration is a problem
that arises in many areas (bioinformatics, information theory,
and coding theory). However, developing tight and explicit
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formulas is an open question in general. Current results are
either unwieldy [20] or only apply to special cases, such as
the alternating sequence [21]. Our motivation comes from
theoretical models of DNA synthesis in DNA-based stor-
age systems, specifically for a parallel array-based synthesis
process.1 In [7], the authors provide a connection between
costly constrained channels, subsequence enumeration, and
efficient DNA synthesis. They show that the capacity of a
suitably defined channel characterizes the information rate of
synthesized sequences.

Remark I.1. The tools of ACSV have found other applications
in coding theory. They have been used to study asymptotic
properties of runlength-limited sequences with bit-shift cor-
recting properties [25] and those with constraints on their
weight and/or number of runs [26]. They have also been used
to determine Gilbert-Varshamov (GV) bounds for the sticky
insertion channel and for the DNA synthesis channel in [27],
as well as for optimal codes in L1 (or Manhattan) metric
in [28].

II. PRELIMINARIES

We start by setting up basic notation on labeled and
weighted graphs, followed by an introduction to generating
functions of general integer sequences and a presentation of
the generating function of the number of paths with limited
cost.

A. Labeled and Weighted Graphs

Consider a labeled directed graph G = (V, E , σ, τ) with
vertices V and edges E . Each edge e ∈ E has an initial vertex
init(e) ∈ V and a terminal vertex term(e) ∈ V . Furthermore,
the edges are labeled via a symbol mapping σ : E 7→ Σ, where
Σ is a finite symbol alphabet, and have positive integer weights
or costs defined by a cost mapping τ : E 7→ N. A path p =
(e1, . . . , en) of length n is a sequence of edges e1, . . . , en ∈ E
such that, for all i ∈ {1, . . . , n−1}, the final vertex term(ei) of
the i-th edge is the same as the initial vertex init(ei+1) of the
next edge. The path starts in init(e1) and ends in term(en). A
path generates a word σ(p) = (σ(e1), . . . , σ(en)) ∈ Σn and
has cost τ(p) = τ(e1) + · · · + τ(en). For convenience, we
sometimes refer to G = (V, E , σ, τ) simply as a graph, when
the context is clear.

Definition II.1. A graph G = (V, E , σ, τ) is strongly con-
nected if for any two vertices vi, vj ∈ V there exists a directed
path that connects vi with vj .

A desirable graph property is that all distinct paths emerging
from a vertex generate distinct words. This is guaranteed by
the following notion of a graph being deterministic [2], also
known as right-resolving [29].

Definition II.2. A graph G = (V, E , σ, τ) is deterministic if
for all vertices v ∈ V the symbol labels σ(e) of all edges
e ∈ E with the same initial vertex init(e) = v are distinct.

1A description of the biochemical synthesis process can be found in [22]–
[24].

We use the terms constrained channel with cost or costly
constrained channel to refer to a graph G = (V, E , σ, τ) that
is strongly connected and deterministic.

Note that confining to deterministic graphs, as we will do
in the sequel, does not restrict the underlying system of con-
strained sequences, as any labeled graph Glab = (V,E, σ) can
be represented by an equivalent deterministic graph G′

lab =
(V ′, E′, σ′) [2, Prop. 2.2]. However, we also note that there
may not be a cost function τ ′ for the equivalent graph such
that G = (V,E, σ, τ) is equivalent to G′ = (V ′, E′, σ′, τ ′) as
a costly constrained channel (see Example 5 in [30]).

Periodicity properties of graphs are essential for the sub-
sequent analysis. We start with the notion of the period of a
graph.

Definition II.3. Let G = (V, E , σ, τ) be a strongly connected
graph. We say that G has period d if d is the largest integer
with the property that for each pair of vertices vi and vj the
lengths of all paths p connecting vi and vj are congruent
modulo d.

Note that our definition differs from that in [2, Section
3.3.2], where the period is defined as the greatest common
divisor of all cycle lengths. However, as proven in Lemma A.1
in Appendix A, any graph that has period d in the sense of
Definition II.3 also has period d in the sense of [2].

We next establish the notions of uniformity and periodicity
of the path costs in a strongly connected graph.

Definition II.4. A strongly connected graph G = (V, E , σ, τ)
is cost-uniform if for each pair of vertices vi and vj , and each
length m, the costs of all length-m paths p connecting vi and
vj are the same. If G is not cost-uniform, then we say that G
is cost-diverse.

Definition II.5. For a cost-diverse graph G = (V, E , σ, τ) we
define the cost period c ∈ N to be the largest integer with the
property that for each pair of vertices vi and vj , and each
length m, the costs τ(p) of all length-m paths p connecting
vi and vj are congruent modulo c. For a cost uniform graph
the congruence holds for all positive integers and we refer to
it as a graph with cost period 0.

Fig. 2 illustrates the properties discussed above.

Example II.6. All graphs in Fig. 2 are easily verified to be
deterministic. Fig. 2a is a cost-diverse graph with a single
vertex. Fig. 2b is a graph with constant edge cost equal to
1, thus all paths of length m have cost exactly m and the
graph is cost-uniform. Fig. 2c, on the other hand, is cost-
diverse: there are two paths of length 2 from the left vertex
to itself having costs 2 and 4, respectively. Fig. 2d shows a
cost-uniform graph, since any cycle of length m from the left
vertex to itself has cost 2m, any cycle of length m from the
right vertex to itself has cost 2m, any path of length m from
the left to the right vertex has cost 2m − 1, and any path of
length m from the right to the left vertex has cost 2m + 1.
The graph in Fig. 2e has cost period 2, because the cost of
any cycle in the graph is even, i.e., a multiple of 2, and the
costs of all paths connecting the left and right vertex are odd,
i.e., congruent to 1 modulo 2. Similarly, all length-m cycles
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(f) Graph with period 2 and cost period 3.

Fig. 2: Examples illustrating graph properties

in the graph in Fig. 2f have costs congruent to m modulo 3.
The same is true for length-m paths connecting the left vertex
to the middle vertex, and vice versa. Length-m paths from
these vertices to the rightmost vertex have costs congruent to
m+1 modulo 3 and length-m paths from the rightmost vertex
to either the leftmost or middle vertices have costs congruent
to m + 2 modulo 3. Thus, the graph has cost period 3. In
addition, the graph has period 2. This is because all cycles
have even length, and this includes cycles of length 2; all paths
between adjacent vertices have odd length; and all paths from
the leftmost vertex to the rightmost vertex, and vice versa, have
even length.

We now proceed with a novel property that significantly fa-
cilitates our analysis and which we will prove to be equivalent
to cost periodicity in Lemma VI.2.

Definition II.7. A strongly connected graph G = (V, E , σ, τ)
satisfies the c-periodic coboundary condition if c is the largest
integer such that there exists a function B : V → Q and a
constant b ∈ Q such that if e ∈ E is an edge from vertex vi
to vertex vj then the edge cost satisfies

τ(e) ≡ b+B(vj)−B(vi) (mod c).

We say that a graph satisfies the coboundary condition if the
congruence above holds without the modulo operation.

For many of our results, we analyze the spectrum of an
adjacency matrix associated with the labeled and weighted
graph G. In fact, we consider a family of adjacency matrices
PG(x), parameterized by a value x.

Definition II.8. Given a strongly connected graph G =
(V, E , σ, τ) with vertices V = {v1, . . . , v|V|}, the cost enumer-
ator matrix PG(x) of G is the |V| × |V| matrix with entries

[PG(x)]ij =
∑

e∈E: init(e)=vi,
term(e)=vj

xτ(e).

We also denote the spectral radius of PG(x) by

ρG(x) = max{|λ(x)| : λ(x) is an eigenvalue of PG(x)}.

We treat the parameter x as either real-valued or complex-
valued, depending on the context. Later we will see that ρG(x)

plays a central role in the asymptotic behavior of the number
of limited-weight paths through G. An important quantity is
the number of distinct words that are contained in the language
of a system.

Definition II.9. Given a graph G = (V, E , σ, τ), for an
arbitrary vertex v ∈ V we define LG,v(t) to be the cost-t
follower set of v, i.e., the set of all words that are generated
by some path of cost at most t that starts at v. The size of
the cost-t follower set is denoted by NG,v(t) ≜ |LG,v(t)|.
Accordingly, we define LG,v(t, n) ≜ LG,v(t) ∩ Σn to be the
length-n follower set with size NG,v(t, n) ≜ |LG,v(t, n)|.

The central quantity of interest for a costly constrained
channel is the exponential growth rate of the size of the
follower set. This term is often referred to as its capacity. The
capacity of a channel is independent of the starting vertex, and
we omit this in the definition.

Definition II.10. The variable-length capacity of a costly
constrained channel G is

CG = lim sup
t→∞

log(NG,v(t))

t
,

while the fixed-length capacity is

CG(α) = lim sup
t→∞

log(NG,v(t, ⌊αt⌋))
t

.

Here we use the terms variable-length and fixed-length
capacity to stress their defining nature. In the literature the two
quantities are often referred to as (combinatorial) capacity and
cost-constrained capacity.

Shannon also introduced a natural probabilistic defini-
tion of capacity in terms of the entropy of stationary
Markov chains on the channel graph. A Markov chain P
on the graph G = (V, E , σ, τ) defines an edge probabil-
ity distribution P : E 7→ [0, 1] and a vertex probability
distributionπ : V 7→ [0, 1] where π(v) =

∑
e:init(e)=v P(e).

The Markov chain is stationary if
∑

e:term(e)=v P(e) = π(v).
The conditional edge probabilities q : E 7→ [0, 1] are defined
by

q(e) =

{
P(e)/π(init(e)) if π(init(e)) > 0

0 otherwise.



5

The entropy H(P) of the Markov chain H(P) is defined by

H(P) = −
∑
v∈V

π(v)
∑

e:init(e)=v

q(e).

The Markov chain P also has a associated average edge cost
T(P) defined by

T(P) =
∑
e∈E

P(e)τ(e).

Definition II.11. The probabilistic capacity of a costly con-
strained channel G is

Cprob = sup
P

H(P)

T(P)
,

where the supremum is taken over all stationary Markov
chains on G.

Shannon remarked that Cprob ≤ CG, and then explicitly
identified a Markov chain that achieves a normalized entropy
equal to CG, thus proving the fundamental equivalence CG =
Cprob.

As with combinatorial capacity, there is a natural general-
ization of the probabilistic capacity to the costly constrained
setting in which the supremum is taken over Markov chains
with average cost at most W .

Definition II.12. The cost-constrained probabilistic capacity
of a costly constrained channel G with average symbol cost
constraint W is

Cprob(W ) = sup
P:T(P)≤W

H(P)

T(P)
,

where the supremum is over stationary Markov chains on G
with average cost no more than W .

A concise parametric characterization of Cprob(W ), found
by constrained optimization methods, is stated in [8], [18],
[19].

B. Generating Functions

The methods of analytic combinatorics derive asymptotic
properties of a sequence from analytic properties of its generat-
ing function [10], [14]. Throughout this section, the sequences
of interest are the bivariate2 sequences NG,v(t, n), whose
generating functions we denote

FG,v(x, y) =
∑
n≥0

∑
t≥0

NG,v(t, n)x
tyn

for complex variables x and y. As the sequence NG,v(t, n)
admits a linear recursion in the variables t and n, which we
will elaborate on in Section VII-A, the generating function
FG,v(x, y) is a rational function, and we write

FG,v(x, y) =
QG,v(x, y)

HG(x, y)

for some polynomials QG,v(x, y) and HG(x, y). Since
NG,v(t) =

∑
n≥0 NG,v(t, n), for the variable-length case, we

2The term bivariate refers to the fact that the integer sequences NG,v(t, n)
depend on two variables t and n.

will regularly abbreviate the generating function of the integer
series NG,v(t) as FG,v(x) ≜ FG,v(x, 1), with numerator
QG,v(x) ≜ QG,v(x, 1) and denominator HG(x) ≜ HG(x, 1).

Lemma II.13. Let G be a deterministic graph and let v be a
vertex of G. The generating function FG,v(x, y) of NG,v(t, n)
is given by the entry of

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T

corresponding to the vertex v, where 1 = (1, . . . , 1) ∈ R|V|

and I is the |V| × |V| identity matrix.

We will prove Lemma II.13 in Section VII-A. Note that
I − yPG(x) is not always invertible. However, the values of
x and y for which I − yPG(x) is singular are singularities
of the rational function F , which are precisely the objects of
interest that determine the asymptotic behavior of the integer
sequence NG,v(t, n).

We also remark that the deterministic assumption is crucial
to establishing the correspondence between channel sequences
and paths in the channel graph that underlies the derivation
of the generating function in Lemma II.13 (see proof of
Lemma VII.1). The multivariate singularity analysis of this
generating function, in turn, leads to our main results on
channel capacity and precise asymptotics of the number of
channel sequences in Section III.

Example II.14. Consider the graph in Fig. 2a. In this case
PG(x) = x + x2, and thus the generating function of the
single vertex is given by

FG(x, y) =
1

(1− x)(1− y(x+ x2))
.

III. MAIN RESULTS

We are now able to state our main results. We characterize
the fixed-length (i.e., cost-constrained) combinatorial capac-
ity CG(α) of a discrete noiseless channel described by a
strongly connected, deterministic, cost-diverse channel graph
(Theorem III.1). As an immediate corollary, we recover the
equivalence of the combinatorial and probabilistic capacities
in the cost-constrained setting. We also recover Shannon’s
result on the variable-length capacity CG for a strongly
connected, deterministic channel graph (Theorem III.6) .These
results are a consequence of a precise characterization of the
asymptotic behavior of the number of fixed-length followers
NG,v(t, αt) (Theorem III.8) and an approximation for the
number of variable-length followers NG,v(t) (Theorem III.9)
in the channel graph. We illustrate the capacity results by
deriving the fixed-length and variable-length capacities of q-
ary alternating sequences (Proposition III.10).

A. Combinatorial and Probabilistic Capacity

Theorem III.1. Let G be a strongly connected, deterministic,
and cost-diverse graph. Let αlo

G ≜ ρG(1)/ρ
′
G(1) and αup

G ≜
lim

x→0+
ρG(x)/(xρ

′
G(x)). For all α with 0 ≤ α ≤ αlo

G,

CG(α) = α log ρG(1).
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For all α with αlo
G < α < αup

G ,

CG(α) = − log x0 + α log ρG(x0),

where x0 is the unique real solution to αxρ′G(x) = ρG(x) in
the interval 0 < x < 1. For all α > αup

G , CG(α) = 0.

Remark III.2. When G is primitive, meaning strongly
connected with period 1, the delimiting values αlo

G and
αup
G have natural combinatorial interpretations. The in-

verse of αlo
G is the average cost per edge, asymptoti-

cally in n, over all paths of length n in G. The in-
verse of αup

G is the minimum average cost per edge
among the cycles in G. For details, see Proposition VII.14.
The evaluation of the fixed-length capacity at αup

G is compli-
cated, and this is left for future work. Thus far, we have not
found knowledge of the exact value to be relevant in practice.

Theorem III.1 improves over previous work [8], [17]–[19] in
several ways. First, the results of [8], [18], [19] only apply to
the cost-constrained probabilistic capacity. Next, none of them
explicitly recognizes the role of cost diversity. Moreover, they
do not address the full domain of the cost-constrained capacity.
In contrast, our results explicitly determine the fixed-length
capacity, they can be readily evaluated for cost-diverse graphs,
and we consider the entire domain of the capacity function.
Specifically, we identify a region for small α in which the
capacity exhibits a linear scaling; we determine the exact slope
in that region; and we explicitly find the threshold between
the linear and non-linear regions. For examples illustrating
Theorem III.1, we refer to Proposition III.10 in Section III-C.

Remark III.3. Our results extend to the case of counting the
number of followers of cost exactly t instead of at most t. In
that case, the factor (1−x) in the numerator of the generating
function FG(x, y) is not present anymore, which has several
effects on the results. First, the lower threshold αlo

G decreases
to αlo

G = limx→∞ ρG(x)/(xρ
′
G(x)). Next, for all α outside the

two thresholds, CG(α) = 0 and thus the linear region in α
disappears.

Interestingly, our formula for the fixed-length capacity is
identical to the formula for the cost-constrained probabilistic
capacity in [18], [19] (up to differences in notation and a
simple argument to address the linear scaling region). Thus,
an immediate corollary of Theorem III.1 is the equivalence
between fixed-length capacity and cost-constrained probabilis-
tic capacity. This fundamental result was first proved in [17]
using [19] by establishing converse inequalities based on
typical sequence arguments, optimization techniques, and a
variant of Lemma V.9.

Corollary III.4. For any strongly connected and cost-
diverse graph G, the cost-constrained probabilistic capacity
Cprob(α

−1) is equal to the fixed-length capacity CG(α).

Remark III.5. In the context of Corollary III.4, we have a
probabilistic counterpart to Remark III.2. If G is primitive,
(αlo

G)
−1 can be viewed as the minimum average cost for which

maximum entropy can be attained by a Markov chain on G.
This results in the same linear regime for α < αlo

G. Fur-

thermore, (αup
G )−1 can be viewed as the minimum attainable

average cost of any Markov chain on G.

We now present the results for the case of variable-length
sequences. The following theorem is part of Shannon’s famous
results on discrete noiseless channels [1].

Theorem III.6. Let G be a strongly connected and determin-
istic graph and denote by x0 the unique positive solution to
ρG(x) = 1. Then the combinatorial capacity of G satisfies

CG = − log x0.

Note that, in contrast to Theorem III.1 on fixed-length capacity,
Theorem III.6 on variable-length capacity does not impose the
condition that the graph be cost-diverse because here we are
counting limited-cost paths of arbitrary lengths.

Remark III.7. Under the conditions of Theorem III.1 the func-
tion CG(α) is concave as a function of α, and its maximum
is equal to CG(α

∗) = CG where α∗ = 2CG/ρ′G(2
−CG). For

details see Proposition VII.15.

B. Precise Asymptotics

Theorem III.1 is a direct consequence of the following
stronger result, which gives the precise asymptotic behavior
of NG,v(t, αt).

Theorem III.8. Let G be a strongly connected, deterministic,
and cost-diverse graph with period d and cost period c. Denote
by b and B(vj) the quantities from the c-periodic coboundary
condition in Definition II.7. For all α with 0 < α < αlo

G and
for any v ∈ V , there is an asymptotic expansion

NG,v(t, αt) =

d−1∑
j=0

(λj(1))
αt[uT

j (1)vj(1)1
T]v +O

(
δt
)
,

where 0 < δ < (ρG(1))
α and uj(x) and vj(x) are the

right and left eigenvectors of PG(x), with vj(x)u
T
j (x) = 1,

corresponding to the eigenvalues λj(x) = ρG(x)e
2πij/d. For

all α satisfying αlo
G < α < αup

G and t with αt ∈ N,

NG,v(t, αt) =

c−1∑
k=0

d−1∑
j=0

(
(e2πibk/cλj(x0))

α

x0e2πik/c

)t
t−1/2√

2παH(x0)

·

(
[D−1

k uT
j (x0)vj(x0)Dk1

T]v

(1− x0e2πik/c)
+O

(
1

t

))
,

where H(es) = ∂2

∂s2 ln ρG(e
s), x0 is the unique positive

solution to αxρ′G(x) = ρG(x), and the Dk are diagonal
matrices with [Dk]jj = e2πikB(vj)/c. For all α > αup

G ,
NG,v(t, αt) is eventually 0.

In Theorem III.8, for the case where α = αup
G , comments

similar to those in the last part of Remark III.2 apply.
To the best of our knowledge, such a first-order approxi-

mation of the number of limited-cost and fixed-length paths
through arbitrary strongly connected graphs is new. Notably,
disregarding the O(1/t) term, the term following t−1/2 is
independent of t.



7

We also obtain an exact expression for NG,v(t), the size
of the cost-t follower set. This uses a univariate singularity
analysis of the generating function FG,v(x).

Theorem III.9. Let G be a strongly connected and deter-
ministic graph and denote by x1, . . . , xm the solutions to
(1−x) det(I−PG(x)) = 0. Then, for any vertex v ∈ V , there
exist polynomials ΠG,v,i(t) calculable from the generating
function FG,v(x) such that

NG,v(t) =

m∑
i=1

ΠG,v,i(t)x
−t
i .

The degree of the polynomial ΠG,v,i(t) is equal to the multi-
plicity of the root xi minus one, in its defining equation.

The polynomials ΠG,v,i(t) can easily be computed with a
partial fraction decomposition of the generating function [10].

C. Alternating Synthesis Sequences

To illustrate these results, we consider the discrete noiseless
channel that describes the synthesis of sequences using the q-
ary alternating sequence, i.e., the periodic sequence obtained
by repeating the length-q sequence (0, 1, . . . , q−1), for q ≥ 2.
This is a generalization of the case q = 4 with period
(A,C,G,T) represented by the graph in Fig. 1. For the q-
ary case, denote the corresponding channel graph by Gq . It is
known that, over a q-ary alphabet, the alternating sequences
maximize the number of distinct subsequences [21]. This
implies that the variable-length capacity CGq is maximum
among channels corresponding to periodic synthesis sequences
over the same alphabet [7]. The fixed-length capacity CGq

(α)
describes the exponential growth rate of the number of length-
αt subsequences, and we now derive the variable-length
and fixed-length capacities of the channel graphs for q-ary
alternating synthesis sequences.

Proposition III.10. Consider the q-ary alternating sequence.
The variable-length capacity associated with this synthesis
sequence is given by

CGq
= − log2 xq,

where xq is the unique positive solution to
∑q

i=1 x
i = 1. The

fixed-length capacity is

CGq
(α) =

{
α log2 q α < 2

q+1

α log2
(
α
∑q

i=1 ixq(α)
i−1/α

)
2

q+1 < α < 1

where xq(α) is the unique solution to
∑q

i=1(1 − αi)xi = 0,
on the interval 0 < x < 1.

The proof of Proposition III.10 makes use of the following
lemma, which simplifies analytical derivations through an
explicit expression of the generating function without matrix
inversion. Denote by S(v) = {τ(e) : e ∈ E, init(e) = v} the
multiset of costs of all outgoing edges from v ∈ V .

Lemma III.11. Let G be a strongly connected graph with
S(v1) = S(v2) for all v1, v2 ∈ V . Then,

FG,v(x, y) =
1

(1− x) (1− yλG(x))

for all v ∈ V , where λG(x) =
∑

τ∈S xτ .

Proof. Let 1 = (1, . . . , 1) denote the all-ones vector of length
|V |. If S(v1) = S(v2) for all v1, v2 ∈ V , it follows that

PG(x)1
T =

 ∑
τ∈S(v1)

xτ , . . . ,
∑

τ∈S(v|V |)

xτ

T

=

(∑
τ∈S

xτ

)
1T,

and thus 1T is a right eigenvector of PG(x) with eigenvalue
λG(x) =

∑
τ∈S xτ . It follows that

(I − yPG(x))1
T = (1− yλG(x))1

T,

and therefore

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T

=
1

(1− x)(1− yλG(x))
1T.

Proof of Proposition III.10. For the special case of the q-ary
alternating sequence, the synthesis graph Gq is a complete
graph, where each vertex has q outgoing edges. The cost
multiset of the outgoing edges is S(v) = {1, 2, . . . , q} for
all vertices v ∈ VGq . Thus, we can apply Lemma III.11 and
obtain

λGq
(x) =

q∑
i=1

xi.

The results on the fixed-length capacity then directly follow
from applying Theorem III.1. Similarly, the variable-length
capacity follows from Theorem III.6.

For q = 2 and q = 3, an explicit computation of the deter-
mining equations followed by some algebraic reformulations
yields CG2

≈ 0.694, CG3
≈ 0.879, and

CG2(α) = αh

(
1− α

α

)
,

CG3
(α) = αh

(γ
α

)
+ γh

(
1− α− γ

γ

)
,

where γ = − 2
3α + 1

6

√
−8α2 + 12α− 3 + 1

2 and h(p) is the
binary entropy function, defined as h(p) = −p log p − (1 −
p) log(1− p) for 0 ≤ p ≤ 1.

Fig. 3 provides a visualization of the capacity-cost curves
for q-ary alternating sequences, for a selection of alphabet
sizes q. The q = 4 case relevant to DNA synthesis is
highlighted with a solid line.

IV. PROOF OUTLINE

Before going further into details we provide an overview of
the ingredients required to prove Theorems III.1, III.8, III.6,
and III.9. To begin with, we concisely highlight the main steps
of a multivariate singularity analysis that connects properties
of specific singularities of FG(x, y) to the asymptotic expan-
sion of the diagonal coefficients NG(t, αt). Afterwards, we
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Fig. 3: Synthesis capacity of the alternating sequences over different alphabet sizes. The maxima are highlighted for q ∈ {2, 3, 4}
together with their maximizing α. Notice that these plots confirm the concavity of the fixed-length capacity in α and its maximum
at the variable-length capacity, which is derived in Proposition VII.15.

discuss how we use the theory on irreducible matrices [31] to
show the implications of strong connectivity and cost-diversity
on the spectral properties of cost-enumerator matrices and thus
on the singularities of the generating functions.

A. Analytic Combinatorics in Several Variables

Analytic combinatorics [10] is a branch of mathematics that
uses complex analysis to deduce the asymptotics of an integer
sequence N(t) from its generating function F (x). Similarly,
analytic combinatorics in several variables (ACSV) [14], [15]
treats multivariate integer sequences N(t1, t2) (this discussion
is specialized to the bivariate rational case we consider) and
their generating functions F (x, y). The multivariate analysis
resembles the univariate case, translating properties of the gen-
erating function near singularities to an asymptotic expansion
of the integer series.

Due to the multivariate nature of the series, there are
several ways in which the coefficients (t1, t2) can grow to
infinity. Typically, one sets (t1, t2) = (tα1, tα2), for a fixed
diagonal direction (α1, α2), and lets t → ∞. Similar to the
univariate case, the singularities closest to the origin determine
the asymptotic behavior on the diagonal. In the multivariate
case, however, not all of those singularities are relevant for
asymptotics. Two properties of singularities – minimality and
criticality – thus come into play.

Minimal points are those singularities for which H(x, y) has
no other root with strictly smaller coordinate-wise modulus3.
A minimal point is strictly minimal if no other singularity
has the same coordinate-wise modulus, and finitely minimal
if only a finite number of other singularities have the same
coordinate-wise modulus. For the rational generating functions

3We use the terms modulus, absolute value, and magnitude of a complex
variable interchangeably.

F (x, y) = Q(x, y)/H(x, y) that we treat in our analysis,
there are two types of critical points. First, the smooth
critical points are the solutions to the polynomial equations
H(x, y) = α2xHx(x, y) − α1yHy(x, y) = 0 where at least
one of the partial derivatives of H does not vanish. Among
the smooth critical points, we will be further interested in
the nondegenerate critical points for which a certain function
characterizing the local singularity structure has a nonzero
second derivative. Second, the non-smooth critical points,
which for us lie in the family of multiple points, are any
points where the singularity set is the union of two smooth
surfaces that intersect, meaning that both partial derivatives
of H vanish (in general the characterization of critical points
is more complicated). A more detailed discussion of critical
points can be found in Chapters 5 and 9 of [14].

Under a few additional conditions, the existence of minimal
critical points means asymptotics of N(tα1, tα2) can be
determined from local properties of the generating function
F (x, y) near these points. For more details, see Section VII-B.

B. From Cost-Diverse Graphs to Multivariate Analytical
Combinatorics via Spectral Analysis

The starting point of our ACSV analysis is the generating
function derived in Lemma II.13. Before we can invoke the
general results of ACSV, however, we need to establish a
comprehensive theory about costly constrained channels and
their associated cost-enumerator matrices to gather the nec-
essary understanding of the associated singularities. To start
with, through the restriction to cost-diverse graphs (Definition
II.4), we avoid certain degenerate cases. Previous work [8]
observed that graphs with constant edge cost have the property
that the cost of any path is a linear function of its length,
meaning that the capacity is simply determined by the number
of paths through the graph of a given length. Generalizing
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this observation, we introduced the notion of cost-uniform and
cost-diverse graphs in Definition II.4. We show that if a graph
is not cost-diverse, i.e., it is cost-uniform, then the cost of any
path is an affine linear function of the path length and thus the
average cost of any path approaches a constant. Specifically,
all paths of length n have a cost of γn + β, for some γ and
β. This means that N(t, αt) counts all paths if α < 1

γ and no
paths if α > 1

γ . Therefore, CG(α) wil be a linear ramp from
zero to the combinatorial capacity on the interval 0 ≤ α < 1

γ
beyond which it drops to zero.

Focusing on cost-diverse and strongly connected graphs,
we derive a variety of interesting properties. Referring to the
fact that the cost-enumerator matrix PG(x) of a strongly-
connected graph is irreducible (see Definition V.1) for positive
x ∈ R+, we start in Section V by deriving general properties
of irreducible matrices. To this end, we use the famous
Perron-Frobenius Theorem (Theorem V.2) and a refinement
[2, Thm. 3.18] (see Theorem V.3) to deduce properties of
the parametrized cost-enumerator matrix. These results will
serve us in Section VI where we derive spectral properties
of the cost-enumerator matrix of a cost-diverse graph. A key
milestone for our results is Lemma VI.2, which provides
an equivalence between cost diversity and the coboundary
condition (Definition II.7) and establishes the implication of
these properties for the cost-enumerator matrix, namely a nice
behavior of the spectral radius under rotations, and the log-
log-linearity or log-log-convexity of the spectral radius along
the real axis.

Our equivalence result in Lemma VI.2 establishes key
properties of the cost-enumerator matrix PG(x) and is the
basis for a derivation of the attributes of the generating
function. This appears in Section VII. At a high level, we need
to find the minimal singularities of our generating functions
FG(x, y) and characterize their critical points in order to
apply the ACSV theorems in Section VII-B. More concretely,
in Lemma VII.9 we identify the minimal singularities of
FG(x, y) and express them as a function of the graph period
d, the cost period c, and the spectral radius ρG(x). Due
to the Perron-Frobenius Theorem, ρG(x) is the single real
eigenvalue of maximum modulus of PG(x), which we use to
show that the points (x, 1/ρG(x)) are minimal singularities
for 0 < x < 1. Next, we prove in Lemma VII.10 that
the minimal points that we have found in Lemma VII.9 are
smooth points. We further derive a condition based on α, the
spectral radius ρG(x), and its derivative ρ′G(x) that determines
criticality of the minimal singularities. A key component of the
proof is Lemma VI.5, which shows that the rotation of x by
multiples of 2π/c along the complex circle results in similar
cost-enumerator matrices. Diving deeper into the critical point
condition, Lemma VII.11 guarantees a unique smooth critical
point when α is in a certain interval. The proof uses the
strict log-log convexity of ρG(x) proven in Lemma VI.12.
The final component of our multivariate singularity analysis
is Lemma VII.12, which proves that the singular set near the
smooth critical points has nondegenerate geometry. For an
overview of this roadmap, see Fig. 4.

To establish Theorem III.8, we then apply results from

[14] and use the spectral properties of PG that we have
derived from the graph properties. When (x0, 1/ρG(x0)) is
a smooth point of the singular set of the generating function,
the asymptotic behaviour is determined using Theorem VII.7,
while in the non-smooth case it follows from an application
of Theorem VII.8.

V. PERRON-FROBENIUS THEORY

In this section, we briefly revisit the central statements of
the powerful Perron-Frobenius theorem and derive associated
results on irreducible matrices parametrized by a variable x.
These results are key ingredients to prove our main statements.

A. Known Results from Perron-Frobenius Theory

The Perron-Frobenius Theorem is a well-known result about
the spectral properties of irreducible matrices. For the fol-
lowing definition of irreducible matrices, recall the notion of
strong connectivity of a graph from Definition II.1.

Definition V.1. Let P ∈ RM×M be a square real matrix with
nonnegative entries. Associate with P the directed graph G
with M vertices which is constructed by connecting state i
to j if and only if [P ]ij > 0. We call P irreducible if G is
strongly connected.

Perron [32] and Frobenius [33] revealed important proper-
ties of the eigenvalues of irreducible matrices. Among those
spectral properties is the existence of a positive real eigenvalue
which is equal to the spectral radius of the matrix, i.e., the
largest magnitude of any eigenvalue. In the following state-
ments, which are an excerpt of the original Perron-Frobenius
theorem, we collect those properties of irreducible matrices
that are most relevant for our purposes.

Theorem V.2 ( [32], [33]). Let P be an irreducible matrix
with spectral radius ρ. Then,

1) ρ is an eigenvalue with multiplicity one.
2) There exist positive right and left eigenvectors u > 0

and v > 0 corresponding to the eigenvalue ρ such that
PuT = ρuT and vP = ρv.

By the Perron-Frobenius theorem, for an irreducible matrix
with spectral radius ρ there is a unique eigenvalue λ which is
equal to the spectral radius. We will refer to this eigenvalue
as the Perron root in the sequel. In fact, the structure of
the eigenvalues on the spectral circle are precisely known for
irreducible matrices. To characterize these eigenvalues, recall
the definition of periodicity of a graph from Definition II.3; we
say a matrix P has period d if the associated directed graph
from Definition V.1 has period d. If the period of an irreducible
matrix P is d then P has precisely d simple eigenvalues
of maximum modulus. More precisely, those eigenvalues pre-
cisely divide the complex circle into d equally sized segments.
The following theorem summarizes this property.

Theorem V.3 ( [2, Thm. 3.18]). Let P be an irreducible
matrix with period d. Then P has precisely d simple eigen-
values of maximum modulus. Denoting ρ as the spectral
radius of P , those eigenvalues have the form ρe2πij/d, where
j ∈ {0, 1, . . . , d− 1}.
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This theorem holds since, as proven in Lemma A.1 in
Appendix A, any graph that is periodic in the sense of
Definition II.3 is also periodic as defined in [2]. Another very
useful result for irreducible matrices is Wielandt’s theorem
[34], which we now describe.

Theorem V.4 ( [34]). Let P ∈ RM×M be an irreducible
matrix and Q ∈ CM×M be a matrix with |[Q]ij | ≤ [P ]ij for
all 1 ≤ i, j ≤ M . Then ρ(Q) ≤ ρ(P ). Furthermore, equality
holds (i.e., ρ(P )eiϕ is an eigenvalue of Q for some ϕ) if and
only if there exist θ1, . . . , θM such that

Q = eiϕD−1PD,

where D is a diagonal matrix with entries [D]jj = eiθj .

The power of this theorem lies in the exact characterization
of the conditions under which the spectral radii of two ma-
trices, where one matrix is component-wise smaller than the
other, agree. For a detailed proof of this theorem and for more
details on irreducible matrices, including a comprehensive
section on the Perron-Frobenius Theorem, we refer the reader
to the textbooks [35, Section 8.3] and [31, Section 8.4].

B. Essentials on Irreducible Matrices

We proceed with establishing basic results on irreducible
matrices, which will be used in the derivation of our main
statements. Assume that P is an irreducible matrix with period
d. We start with a simple result on the rank of the adjoint
matrix ρe2πij/dI − P , where ρ is the spectral radius of the
irreducible matrix P .

Lemma V.5. Let P be an irreducible matrix with period d and
spectral radius ρ. Then the adjoint matrix adj(ρe2πij/dI−P )
has rank one for all j ∈ {0, 1, . . . , d− 1}.

Proof. Note that the result can be deduced from, e.g., [35,
Prob. 6.2.11] but we provide a short proof for the reader’s
convenience. Denote by M the number of rows (and columns)
of P and abbreviate θj ≜ 2πj/d. We first show that rank(ρI−
P ) = M − 1. The eigenvalues of ρeiθjI − P are given by
(ρeiθj − λi) for i ∈ {1, . . . ,M}, where the λi are the (not
necessarily distinct) eigenvalues of P . Since P is irreducible
and has period d, by the Perron-Frobenius Theorem (Theo-
rem V.2) and Theorem V.3, the ρeiθj for j ∈ {0, 1, . . . , d−1}
are eigenvalues of multiplicity one and thus exactly one of
the eigenvalues ρeiθj − λi will be zero and all other nonzero.
Therefore rank(ρeiθjI −P ) = M − 1. Next, we observe that
adj(ρeiθjI − P )(ρeiθjI − P ) = det(ρeiθjI − P )I = 0 and
thus adj(ρeiθjI−P ) spans a subspace of the left nullspace of
(ρeiθjI−P ). Since ρeiθjI−P has rank M−1, it follows that
rank(adj(ρeiθjI − P )) ≤ 1. On the other hand, ρeiθjI − P
has rank M − 1 and thus there exists an (M − 1)× (M − 1)
submatrix of ρeiθjI −P which is non-singular [35, Ch. 4.5],
and it follows that at least one entry of adj(ρeiθjI − P ) is
nonzero. Therefore adj(ρeiθjI − P ) cannot have rank zero
and thus has rank one.

Next, we establish a useful characterization of the adjoint
matrix adj(ρI − P ). In particular, we will show that we can

represent this adjoint matrix as the outer product of the right
and left eigenvectors associated with the Perron root ρ.

Lemma V.6. Let P be an irreducible matrix with period
d. Then there are d eigenvalues λj = ρe2πij/d for j ∈
{0, 1, . . . , d − 1} of maximum modulus with corresponding
right and left eigenvectors uj and vj , normalized such that
vj(x)u

T
j (x) = 1. The adjoint matrix adj(ρe2πij/dI − P ) is

given by
adj(ρe2πij/dI − P ) = cj · uT

j vj ,

where cj ̸= 0 is a linear scaling factor. Thus, adj(ρI −P ) is
either all-positive or all-negative.

Proof. Again abbreviate for convenience θj ≜ 2πj/d. By
Lemma V.5, the adjoint matrix has rank one. It follows that
adj(ρeiθjI − P ) can be written as the product uT

j vj of
two vectors uj and vj , i.e., adj(ρeiθjI − P ) = uT

j vj . The
properties of the adjoint matrix [31, p. 20] imply that

adj(ρeiθjI − P )(ρeiθjI − P ) = (ρeiθjI − P )adj(ρeiθjI − P )

= det(ρeiθjI − P )I.

By Theorem V.3, ρeiθj is an eigenvalue of P , which implies
that ρeiθjI − P is singular, so det(ρeiθjI − P ) = 0. Hence,

adj(ρeiθjI−P )(ρeiθjI−P ) = (ρeiθjI−P )adj(ρeiθjI−P ) = 0.

Therefore, the columns of adj(ρeiθjI − P ) are right eigen-
vectors of P associated to ρeiθj . Similarly, the rows of
adj(ρeiθjI−P ) are left eigenvectors of P associated to ρeiθj ,
and therefore adj(ρeiθjI − P ) = uT

j vj , where uj and vj are
right and left eigenvectors corresponding to ρeiθj . It is not
possible that cj = 0, since rank(adj(ρeiθjI − P )) = 1 by
Lemma V.5.

We proceed with proving the second statement. By the
Perron-Frobenius Theorem, u0 is either all-zero, all-positive,
or an all-negative vector, and the same applies to v0. If we
now assume that B ≜ adj(ρI − P ) satisfies [B]11 > 0,
the observations above imply that every entry of B must be
positive. Similarly, if [B]11 < 0, we can conclude that every
entry of B must be negative.

The cost-enumerator matrix PG(x) is a matrix that is
parametrized by a complex-valued variable x ∈ C. In our
analysis, due to the strong connectivity of the graph G,
the matrix PG(x) is irreducible for all positive and real-
valued x ∈ R+. By Definition II.8, the entries of PG(x)
are polynomials in x and thus analytic4 functions in x. This
analyticity then implies, by the implicit function theorem for
algebraic functions, that the eigenvalue λ(x) that is equal to
ρG(x) on the real axis, is analytic in a neighborhood around
the positive real axis.

Lemma V.7. Let P (x) be a matrix with spectral radius ρ(x),
whose entries are analytic functions in x ∈ C. Also assume
that P (x) is irreducible with period d for all x ∈ R+.
Then, for each j ∈ {0, 1, . . . , d − 1} and all real-valued

4A function is analytic at a point x if it can locally be represented by a
power series. A function is analytic in a domain if and only if it is complex
differentiable in the same domain; see, e.g., [10, Thm. IV.1]
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x ∈ R+, there exists a unique eigenvalue λj(x) of P (x)
with λj(x) = ρ(x)e2πij/d, which is analytic in a complex
neighborhood around the positive real axis. Furthermore,
the associated right and left eigenvectors uj(x) and vj(x),
normalized to vj(x)u

T
j (x) = 1, are analytic on the same

domain.

Proof. By the Perron-Frobenius Theorem (Theorem V.2) and
the extension in Theorem V.3, for every j ∈ {0, 1, . . . , d− 1}
and x0 ∈ R+, the value λj(x0) = ρ(x0)e

i2πij/d is a simple
root of the characteristic polynomial ϕ(λ) = det(λI−P (x0)).
The coefficients of this polynomial ϕ(λ) are polynomials
in analytic functions, as the entries of P (x) are analytic
by assumption. The implicit function theorem for algebraic
functions [36, pp. 66-67] then implies that for each x0 > 0
there exists an ϵ > 0 such that λj(x) is an eigenvalue of
P (x) and λj(x) is an analytic function for all x ∈ C with
|x − x0| < ϵ. As proven in [36, pp. 66-67], the associated
eigenvectors are also analytic functions in x in a neighborhood
around the positive real axis.

Note that a continuous continuation of the Perron root to the
whole complex plane does not in general have to be unique.
This is because the Perron-Frobenius theorem only guarantees
the uniqueness of the Perron root P (x) for positive x. For
all other x ∈ C \ R+ the eigenvalues λj(x) might intersect,
meaning that the implicit function theorem does not hold, and
thus a unique analytic extension of the root is not possible
anymore. The following example illustrates the generic case,
showing that the eigenvalues intersect at the origin x = 0.

Example V.8. Consider the graph G with cost-enumerator
matrix

PG(x) =

(
x2 x
x x2

)
.

The two eigenvalues of this matrix are given by λ1(x) = x+x2

and λ2(x) = −x+x2. We directly see that λ1(0) = λ2(0) = 0,
and thus the two eigenvalues intersect at the origin x = 0. In
fact, all eigenvalues of any cost-enumerator matrix intersect
at x = 0, since PG(0) = 0.

Besides the spectral radius ρ(x) of the cost enumerator
matrix, we are also interested in its derivative. This is because
the derivative appears as a component of the critical point
equations (see, e.g., Theorem III.1) and it can be further used
to analyze the convexity of ρ(x).

Lemma V.9. Let P (x) be a matrix with spectral radius ρ(x),
whose entries are analytic functions in x ∈ C. Furthermore,
let P (x) be irreducible with period d for all x ∈ R+.
Then the eigenvalues λj(x) of P (x) of maximum modulus,
and the associated right and left eigenvectors uj(x) and
vj(x), normalized to vj(x)u

T
j (x) = 1, are analytic in a

neighborhood around R+, and

vj(x)
∂P (x)

∂x
uT
j (x) =

∂λj(x)

∂x
.

Proof. To start with, denote by λj(x) the eigenvalues of max-
imum modulus whose existence is guaranteed by Lemma V.7.
The differentiability of λj(x),uj(x), and vj(x) then follows

from the analyticity of λj(x) proven in Lemma V.7. Differen-
tiating P (x)uT

j (x) = λj(x)u
T
j (x) on both sides with respect

to x yields

P (x)
∂uT

j (x)

∂x
+
∂P (x)

∂x
uT
j (x) = λj(x)

∂uT
j (x)

∂x
+
∂λj(x)

∂x
uT
j (x).

Multiplying with vj(x) from the left, one obtains

vj(x)
∂P (x)

∂x
uT
j (x) =

∂λj(x)

∂x

as desired. We remark that a special case of this result was
proved in [17].

Note that, although λ1(x) = ρ(x) for all x ∈ R+ (where we
denote by λ1(x) the Perron root), the spectral radius ρ(x) is
not necessarily differentiable with respect to complex-valued
x, as ρ(x) is equal to the magnitude of the largest eigenvalue.
Even though the eigenvalues λj(x) of maximum modulus are
analytic in a neighborhood around the real axis, the magnitude
function is not an analytic function on the whole complex
plane.

VI. SPECTRAL PROPERTIES OF COST-DIVERSE GRAPHS

An important requirement of Theorem III.8 is that the
graph G be cost-diverse. Roughly speaking, by Definition II.4,
cost diversity means that the average costs assumed by paths
connecting two vertices do not approach a constant for large
path lengths. This property is important in the derivation
of the asymptotics of the bivariate series NG,v(t, αt) as it
entails a smooth behavior of the series in the parameter α.
Conversely, if G is cost-uniform, there is in fact only a single
value for α for which the series NG,v(t, αt) does not vanish
eventually. Note that [8] found that graphs for which all edge
costs are the same have this discontinuous behavior, however
these are not the only graphs that fall into this category.
We generalize this observation and show that cost diversity
is the precise graph property that distinguishes between a
smooth and discontinuous behavior5. We further extend the
notion of cost diversity to the property of having cost period
c (Definition II.5) and show that it relates to a very special
structure of the cost-enumerator matrix PG(x), when x is
rotated in multiples of 2π/c along the complex circle.

Connections between cost diversity and the spectral radius
will be integral to Theorem III.8. As we will see, the cobound-
ary condition defined in Definition II.7 arises in a variety of
results related to the Perron-Frobenius Theorem and is very
useful for proving several of our results. We further need the
notion of log-log-convexity, which is defined as follows.

Definition VI.1. Let I ⊆ R+ be an interval and f(x) : I 7→
R+ be a function on that interval. We call f(x) log-log-convex
if ln f(es) is convex in the variable s on the interval ln I ≜
{lnx : x ∈ I}. Analogously, we introduce the notions of strict
log-log-convexity and log-log-linearity.

With these definitions we arrive at Lemma VI.2, the central
statement of this section.

5Cost diversity has been shown in [4] to impose desirable properties on the
Perron root.
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Cost period
(Definition II.5)

Coboundary
condition

(Definition II.7)

Spectral radius
complex circle

Strict log-
log-convexity

(Definition VI.1)

Non-degeneracy
(Definition VII.5)

Smoothness
and criticality

(Definition VII.4)

Finite minimality
(Definition VII.3)

Graph G

Spectral
properties
of PG(x)

Singularities
of FG(x, y)

Lemma VI.4

Lemma VI.4

Corollary VI.10
(contrapositive)

Lemmas VI.7 & VI.5Lemma VI.12

Lemma VII.12 Lemma VII.9Lemmas VII.10 & VII.11

Fig. 4: Relationships between the properties of a cost-diverse strongly connected graph, the nature of the cost-enumerator
spectrum, and the singularities of the corresponding generating function.

Lemma VI.2. Let G be a strongly connected graph. The
following statements are equivalent.

(a) The graph G has cost period c .
(b) The graph G satisfies the c-periodic coboundary condi-

tion.
(c) For any x ∈ R+, there are precisely c solutions,

ϕk = 2πk/c for k ∈ {0, 1, . . . , c − 1}, to the equation
ρG(xe

iϕ) = ρG(x) in the interval 0 ≤ ϕ < 2π.

Furthermore, if G is cost-uniform then the spectral radius
ρG(x) is log-log-linear on x ∈ R+. If G is cost-diverse then
the spectral radius ρG(x) is strictly log-log-convex on x ∈ R+.

We will prove the result using a sequence of lemmas and
their corollaries. Fig. 4 depicts the roadmap for our subsequent
derivations that establish the connections between the graph
properties, spectral properties of PG(x), and, in Section VII,
the singularities of FG(x, y).

Remark VI.3. Lemma VI.4 establishes the equivalence (a) ⇔
(b) in Lemma VI.2. Lemma VI.7 proves (a) ⇒ (c). Corol-
lary VI.10 proves (c) ⇒ (b) through its contrapositive:
If G has precisely c solutions to ρG(xe

iϕ) = ρG(x) on
the unit circle, then ρG(xe

iϕ) = ρG(x) does not hold
for all x ∈ C and 0 ≤ ϕ < 2π. Then, by Corol-
lary VI.10, it follows that G does not satisfy the coboundary
condition, hence it must satisfy the c-periodic coubound-
ary condition for some c. Specifically, it must be fulfilled
with the same c as in statement (c), as any other c
would lead to a contradiction. Finally, Corollary VI.11 and
Lemma VI.12 establish the last two statements of Lemma VI.2.
The remaining Lemmas are either ingredients to these Lemmas
or cover the cost-uniform case.

A. Equivalence of Cost-Diversity and Coboundary Condition

We start with proving the equivalence of cost-uniformity
and the coboundary condition. For convenience, we say that
two integers are congruent modulo 0 if and only if they are
equal. The following result is a generalization of the equiva-
lence between the coboundary condition and cost-uniformity
observed in [4] to arbitrary cost periods c.

Lemma VI.4. Let G be a strongly connected graph. Then
G has cost period c if and only if it fulfills the c-periodic
coboundary condition.

Proof. We first show that the c-periodic coboundary condi-
tion implies cost period c. Let p = (e1, e2, . . . , em) be a path
from vertex vi to vertex vj with path cost τ(p) =

∑m
k=1 τ(ek).

Suppose p is represented by the vertex sequence vi = vi0 →
vi1 → · · · → vim = vj . The coboundary condition allows the
path cost to be written as

τ(p) =

m∑
k=1

(b+B(vik)−B(vik−1
)) + zc

= mb+B(vj)−B(vi) + zc,

for some integer z ∈ Z. Thus, the costs of all paths of length
m that connect vi and vj are congruent modulo c and, by
definition, the graph G has cost period c.

We now show that cost period c implies the c-periodic
coboundary condition. We start by showing that there exists
b ∈ Q such that the cost of any cycle p of length m satisfies
τ(p) ≡ bm (mod c). Let v1 ∈ V and let p1 be a cycle at
vertex v1 of length m1. Such a cycle exists by strong connec-
tivity of the graph. Suppose τ(p1) = t1, let v2 ∈ V , and let
p2 be a cycle of length m2 at vertex v2 with cost τ(p2) = t2.
Denote by g12 = gcd(m1,m2) the greatest common divisor of
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m1 and m2. Strong connectivity of G implies there is a path
p1→2 from v1 to v2 with length n ≥ 1 and cost τ(p1→2) = t.
Define the path p comprising m2/g12 repetitions of cycle p1

followed by p1→2, and the path p′ comprising p1→2 followed
by m1/g12 repetitions of the cycle p2. The paths p and p′

both have length m1m2/g12 + n. So, as G has cost period c,
m2t1/g12 + t = τ(p) = τ(p′) + zc = m1t2/g12 + t+ zc for
some z ∈ Z, implying that

m2t1 −m1t2 = g12zc.

We then employ a variation of the Chinese Remainder The-
orem described in Lemma A.2 below, which implies the
existence of b ∈ Q such that any cycle p of length m in
G has a cost τ(p) ≡ mb (mod c), which is congruent to mb
modulo c.

Now, define a function B : V → R as follows. Set
B(v1) = 0. For a vertex vi ̸= v1, choose a path p1→i from
v1 to vi of length n ≥ 1 and define B(vi) = τ(p1→i) − nb.
We claim that B(vi) mod c is independent of the chosen path
p1→i. To see this, suppose p′

1→i and p′′
1→i are two such paths

from v1 to vi of length n′ and n′′, respectively, and let pi→1 be
a path of length p from vi to v1. The cycle p′ = (p′

1→i,pi→1)
has length n′ + p, so τ(p′) = (n′ + p)b + z′c where z′ ∈ Z.
Similarly, the cycle p′′ = (p′′

1→i,pi→1) has length n′′ + p
and cost τ(p′′) = (n′′ + p)b + z′′c for some z′′ ∈ Z. Then
τ(p′

1→i) = τ(p′)− τ(pi→1) = (n′+ p)b+ z′c− τ(pi→1) and
τ(p′′

1→i) = τ(p′′)− τ(pi→1) = (n′′ + p)b+ z′′c− τ(pi→1).
It follows that

τ(pi→1) = (n′+p)b+z′c−τ(p′
1→i) = (n′′+p)b+z′′c−τ(p′′

1→i),

from which we conclude

τ(p′
1→i)− n′b = τ(p′′

1→i)− n′′b+ (z′ − z′′)c.

This confirms that, by definition, B(vi) mod c is independent
of the choice of path from v1 to vi.

Finally, let e ∈ E be an edge from vertex vi to vertex
vj , and let pj→1 denote a path from vertex vj to v1 of
length q. Consider the cycle p1 = (p1→i, e,pj→1), with cost
τ(p1) = (n + 1 + q)b + z1c for some z1 ∈ Z. Noting
that τ(p1) = τ(p1→i, e) + τ(pj→1), and using the fact that
τ(p1→i, e) = B(vj) + (n+ 1)b+ zjc for some zj ∈ Z, we
find

τ(pj→1) = (n+ 1 + q)b+ z1c− (B(vj) + (n+ 1)b+ zjc)

= qb−B(vj) + (z1 − zj)c.

We can also write τ(p1) = τ(p1→i) + τ(e) + τ(pj→1),
implying that

τ(e) = τ(p1)− (τ(p1→i) + τ(pj→1))

= (n+ 1 + q)b− ((B(vi) + nb) + (qb−B(vj)))

+ (zj − zi)c

= b+B(vj)−B(vi) + (zj − zi)c.

This confirms that the c-periodic coboundary condition holds.

B. Cost Period and Spectral Properties

We next show that cost-diversity implies that there can only
be a finite number of solutions to ρG(xe

iϕ) = ρG(x) over
0 ≤ ϕ < 2π. In fact, we will prove a stronger statement:
for all x ∈ R+, the solutions are exactly ϕk = 2πk/c. This
property is vital as it implies that the minimal singularities of
the corresponding generating functions are be finitely minimal.
We start with an auxiliary result on the structure of the cost-
enumerator matrix.

Lemma VI.5. Let G be a strongly connected graph with cost
period c. Then, for all x ∈ C and k ∈ Z,

PG

(
xe2πik/c

)
= e2πikb/cD−1

k PG(x)Dk,

where Dk is a diagonal matrix with entries [Dk]jj =
e2πikB(vj)/c, and b and B(vj) are defined by the coboundary
condition. Denoting by λ1(x), . . . , λ|V|(x) the eigenvalues of
PG(x), it holds that

λj

(
xe2πik/c

)
= e2πikb/cλj(x).

Proof. The graph G satisfies the c-periodic coboundary con-
dition by Lemma VI.4. Hence, there exists a constant b and
functions B : V 7→ R such that for any two vertices vi and vj ,
each edge e from vi to vj has cost τ(e), which can be written

τ(e) = b+B(vj)−B(vi) + zec

for some integer ze ∈ Z. Setting ϕk ≜ 2πk/c, Definition II.8
implies that the entries of the cost-enumerator matrix are given
by [

PG

(
xeiϕk

)]
ij
=

∑
e∈E: init(e)=vi,

term(e)=vj

xτ(e)eiϕkτ(e)

= [PG(x)]ije
iϕk(b+B(vj)−B(vi)).

Introducing the diagonal matrix Dk with entries [Dk]ii =
eiϕkB(vi), we can decompose the cost-enumerator matrix to

PG

(
xeiϕk

)
= eiϕkbD−1

k PG(x)Dk.

The second part of the lemma directly follows from the
similarity6 of the matrices PG(xe

iϕk) and eiϕkbPG(x) proven
in the first part of the lemma.

We now continue with another auxiliary result that will
serve to prove the subsequent result on the spectral structure
of PG(x) on the complex circle. Note that the proof of this
result is conceptually related to the proof in [2, Prop. 3.8] that
an irreducible graph is aperiodic (i.e., has period 1) if and only
if it is primitive.

Lemma VI.6. Let G be a strongly connected and cost-diverse
graph with cost period c. Then there exist two equal length
cycles at the same vertex whose cost difference is precisely c.

Proof. For convenience, for a path p we write init(p) for the
initial vertex of its first edge and term(p) for the terminal

6Two square matrices A and B are similar if there exists an invertible
diagonal matrix D such that A = D−1BD. Similar matrices have the
same eigenvalues with the same multiplicities [31, Cor. 1.3.4].
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v1 v2 v3 vη−1 vη v1
. . .

Γ1
Γ2 Γη

∆1 ∆2
∆η

µ1

µ2 µη

µ′
1

µ′
2

µ′
η

q1 q2 qη−1 qη

Fig. 5: Construction of the path Γ in the proof of Lemma VI.6.

vertex of its last edge. Since c is the cost period of G,
Definition II.5 guarantees the existence of η ∈ N pairs of
paths pi and p′

i for 1 ≤ i ≤ η such that: (1) pi and p′
i

share the same length mi, (2) pi and p′
i start in the same

vertex vi ≜ init(pi) = init(p′
i) and end in the same vertex

ui ≜ term(pi) = term(p′
i), and (3) the greatest common

divisor of their cost differences τ(pi) − τ(p′
i) is c. Hence,

by Bézout’s identity, there exist (possibly negative) integers
zi ∈ Z such that

η∑
i=1

(τ(pi)− τ(p′
i))zi = c

For each i, choose an arbitrary path pui→vi that connects ui

and vi and construct two cycles Γi = (pi,pui→vi) and ∆i =
(p′

i,pui→vi) that share the same return path pui→vi from ui

to vi. Further choose arbitrary paths qi, 1 ≤ i ≤ η connecting
vi and vi+1 and vη and v1. Now, set µi = max{zi, 0} and
µ′
i = µi − zi, denote by Γµ

i for µ ∈ N0 the µ−fold repetition
of the cycle Γi, and construct two large cycles Γ and ∆ by

Γ = (Γµ1

1 ,∆
µ′
1

1 , q1,Γ
µ2

2 ,∆
µ′
2

2 , q2, . . . , qη),

∆ = (Γ
µ′
1

1 ,∆µ1

1 , q1,Γ
µ′
2

2 ,∆µ2

2 , q2, . . . , qη).

In other words, Γ starts at v1, circles µ1 times along Γ1, then
µ′
1 times along ∆1, then proceeds to move along q1 to v2.

There it circles µ2 times along Γ2 and µ′
2 times along ∆2, and

so on, until it moves back from vη to v1 along qη . The cycle ∆
is created similarly. For a visualization of the construction of
the cycle Γ, see Fig. 5. Notice that µi and µ′

i are guaranteed
to be non-negative by their definitions. Computing the cost
difference of Γ and ∆, one obtains

τ(Γ)− τ(∆)

=

η∑
i=1

(µiτ(pi) + µ′
iτ(p

′
i))−

η∑
i=1

(µ′
iτ(pi) + µiτ(p

′
i))

=

η∑
i=1

(τ(pi)− τ(p′
i))zi = c.

Hence, there exist two cycles at the vertex v1 of the same
length m whose cost is precisely c.

Lemmas VI.5 and VI.6 can be combined to prove the
following result on the structure of the spectral radius on the
complex circle.

Lemma VI.7. Let G be a strongly connected and cost-diverse
graph with cost period c. Then, for any x ∈ R+, there are
precisely c solutions ϕk = 2πk/c for k ∈ {0, 1, . . . , c− 1} to
the equation ρG(xe

iϕ) = ρG(x) in the interval 0 ≤ ϕ < 2π.
For all other ϕ the inequality ρG(xe

iϕ) < ρG(x) holds.

Proof. By Lemma VI.5, for all k ∈ {0, 1, . . . , c − 1} and
1 ≤ j ≤ |V| we have λj(xe

iϕk) = eiϕkbλj(x), which implies
that ρG(xeiϕk) = ρG(x).

We proceed with proving that for all other values of ϕ the
spectral radius ρG(xe

iϕ) is strictly less than ρG(x). We start
with the observation that, for any ϕ ∈ R, we have

|[PG(xe
iϕ)]ij | =

∣∣∣∣∣∣
∑

e∈E:init(e)=vi,term(e)=vj

(xeiϕ)τ(e)

∣∣∣∣∣∣
≤

∑
e∈E:init(e)=vi,term(e)=vj

xτ(e) = [PG(x)]ij .

By Wielandt’s theorem [35, Sec. 8.3] (Theorem V.4), it follows
that the spectral radius satisfies ρG(xe

iϕ) ≤ ρG(x), with
equality if and only if there exist θ, θ1, θ2, . . . , θ|V| such that

PG(xe
iϕ) = eiθD−1PG(x)D,

where D is a diagonal matrix with entries [D]jj = eiθj . It
therefore suffices to prove that this equality can not be fulfilled
for any 0 ≤ ϕ < 2π that is not equal to some ϕk. Raising the
above equation to the power m ∈ N, it follows that

Pm
G (xeiϕ) = eimθD−1Pm

G (x)D.

In particular, the entry i, j of this equation reads as

[Pm
G (xeiϕ)]ij = ei(mθ+θj−θi)[Pm

G (x)]ij ,

and it follows that

|[Pm
G (xeiϕ)]ij | = |[Pm

G (x)]ij | = [Pm
G (x)]ij .

Denote now by Pij(m) = {p = (e1, . . . , em) : init(e1) =
vi, term(em) = vj} the set of paths of length m from vi to
vj . It is well known [8] that [Pm

G (x)]ij =
∑

p∈Pij(m) x
τ(p).

By Lemma VI.6, for a graph with cost period c there exists
a length m and a vertex vi such that there are two cycles of
length m at vi whose cost differs by exactly c. Let m and vi
fulfill this property and denote by τ and τ+c the costs that are
assumed by these two cycles. Thus, the polynomial [Pm

G (x)]ii
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contains the sum of at least two monomials xτ and xτ+c, each
with integer-valued coefficients. Now, recall that the triangle
inequality of a sum of complex numbers is tight if and only
if the complex angles of all summands agree. Therefore, if
2πϕc is not an integer multiple of 2π then |[Pm

G (xeiϕ)]ii| <
[Pm

G (x)]ii and the claim follows.

Conversely, for cost-uniform graphs, the eigenvalues of
PG(x) have a special structure that can be derived explicitly.

Lemma VI.8. Let G = (V, E , σ, τ) be a strongly connected
graph that satisfies the coboundary condition. Then, for all
1 ≤ j ≤ |V| and x ∈ C, the eigenvalues λ1(x), . . . , λ|V|(x)
of PG(x) have the form

λj(x) = λj(1)x
b,

where b is the constant of the coboundary condition.

Proof. The graph G satisfies the coboundary condition by
assumption. Hence, there exists a constant b and functions
B : V 7→ R such that, for any two vertices vi and vj , each
edge from vi to vj has cost

τij = b+B(vj)−B(vi).

Furthermore, the number of edges from vi to vj is precisely
[PG(1)]ij . It follows that each entry [PG(x)]ij of PG(x) is
equal to

[PG(x)]ij = [PG(1)]ijx
τij = [PG(1)]ijx

b+B(vj)−B(vi)

and, introducing the diagonal matrix D(x) with entries
[D(x)]ii = xB(vi), we can decompose the cost-enumerator
matrix as

PG(x) = xbD−1(x)PG(1)D(x).

Thus, the characteristic polynomial ϕ(λ, x) of the cost-
enumerator matrix PG(x) becomes

det(λI − PG(x))

=det(λI − xbD−1(x)PG(1)D(x))

=det(D) det(λI − xbD−1(x)PG(1)D(x)) detD−1

(a)
= det(λI − xbPG(1)),

where in (a) we used the multiplicativity of the determinant.
Thus, ϕ(λ, x) = xb|V|ϕ(x−bλ, 1). Since the eigenvalues of
PG(x) are precisely the roots of the characteristic polynomial,
we can identify λj(x) as the roots of ϕ(λ, x) and λj(1) as the
roots of ϕ(λ, 1). By a variable substitution, it follows that
λj(x) = λj(1)x

b for all 1 ≤ j ≤ |V| and x ∈ C.

Lemma VI.8 illustrates that the eigenvalues of cost-uniform
graphs have the very special structure of being monomials
in x. All eigenvalues share the same exponent b from the
coboundary condition and their coefficient is given by the
corresponding eigenvalue of the matrix PG(1). The following
example illustrates Lemma VI.8.

Example VI.9. Consider the cost-uniform graph from Fig. 2d
on Page 4. We can verify, by analyzing the cost of the edges
which are self-loops, that the constant from the coboundary

condition is given by b = 2. Computing the eigenvalues, we
obtain λ1(x) = 2x2 and λ2(x) = 0, confirming the statement
from Lemma VI.8.

This puts us in the position to prove the converse to
Lemma VI.7. That is, we can show that if a graph is cost-
uniform, or equivalently satisfies the coboundary condition,
then the spectral radius is invariant on the complex circle.

Corollary VI.10. Let G be a strongly connected graph that
satisfies the coboundary condition. Then ρG(xe

iϕ) = ρG(x)
for all x ∈ C and 0 ≤ ϕ < 2π.

Proof. The corollary directly follows from Lemma VI.8, using
the fact that the coboundary condition implies that for all x ∈
C,

ρG(xe
iϕ) = ρG(1)|xeiϕ|b = ρG(1)|x|b = ρG(x).

C. Cost-Diversity and Strict Log-Log-Convexity

We conclude this section with a discussion of the log-log-
convexity of the spectral radius. This property will help in
several places to prove Theorem III.9. First, we show that for
cost-uniform graphs the spectral radius is log-log-linear on the
real axis.

Corollary VI.11. Let G be a strongly connected graph. If G
is cost-uniform then ρG(x) is log-log-linear on the interval
x ∈ R+.

Proof. By Lemma VI.8, ln ρG(es) = ln(ρG(1)) + bs for all
real-valued s ∈ R, which is a linear function in s.

We now turn towards proving the converse to the previous
corollary, showing that if the graph G is cost-diverse then
ρG(x) is strictly log-log-convex. Notice that the (non-strict)
log-log convexity of the Perron root is known from classical
results on irreducible matrices [37]–[39].

Lemma VI.12. Let G be a strongly connected, cost-diverse
graph. Then ρG(x) is strictly log-log-convex for all x ∈ R+.

Our proof of Lemma VI.12 makes use of the following
result.

Lemma VI.13 ( [40, Thm. 1.37]). Let P (s) be an irreducible
matrix whose nonzero entries are log-convex functions of s ∈
R. Then the spectral radius ρ(s) of P (s) is log-convex. If,
additionally, at least one entry of P (s) is strictly log-convex,
then ρ(s) is strictly log-convex.

Proof of Lemma VI.12. Consider the m-th power Pm
G (x) of

PG(x). We know from [8] that, denoting Pij(m) as the set
of paths of length m from vi to vj , the entry i, j of the matrix
Pm

G (x) is given by [Pm
G (x)]ij =

∑
p∈Pij(m) x

τ(p). We will
show that this entry is strictly log-log-convex if there exist two
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paths of length m from vi to vj with different costs. Taking
the second derivative of the log-log expression, we obtain

∂2

∂s2
ln([Pm

G (es)]ij)

=

∑
p e

sτ(p)
∑

p τ(p)
2esτ(p) −

(∑
p τ(p)e

sτ(p)
)2

([Pm
G (es)]ij)

2 .

Identifying the vectors u = (esτ(p)/2 : p ∈ Pij(m)) and
v = (τ(p)esτ(p)/2 : p ∈ Pij(m)), both of which have length
|Pij(m)|, the numerator is equal to (u · u)(v · v)− (u · v)2,
where u · v denotes the inner product of the vectors u and
v. The numerator is therefore non-negative by the Cauchy-
Schwarz inequality, see, e.g., [31, Ch. 0.6.3], and thus the
entries [Pm

G (x)]ij are either 0 or positive and log-convex.
Furthermore, due to the cost-diversity of the graph G, there
exist m, i, and j such that there exist two paths of length
m from vi to vj with different costs, and thus u and v
are linearly independent. In this case, the Cauchy-Schwarz
inequality holds with strict inequality and thus the numerator
is positive, which implies that [Pm

G (es)]ij is strictly convex in
s.

The spectral radius of Pm
G (es) is given by ρmG (es). With

Lemma VI.13 it follows that ρmG (es) is strictly log-convex.
Since raising to a positive integer power does not change
log-convexity, ρG(es) is also strictly log-convex, so ρG(x) is
strictly log-log-convex.

VII. MULTIVARIATE SINGULARITY ANALYSIS

The main step in proving Theorem III.8 is showing that
the prerequisites of [14, Thm. 5.1 and 9.1] are fulfilled,
which requires exhibiting certain properties of the singularities
of FG,v . We start by deriving the generating function and
reviewing the properties of the generating function required to
understand [14, Thm. 5.1 and 9.1]. Afterwards, we prove that
these properties apply to the generating function of NG,v(t, n),
the size of the limited-cost follower sets.

A. Derivation of the Generating Function

The beginning point of the multivariate singularity analysis
is the derivation of the generating function of the sequence
NG,v(t, n). Together with the detailed analysis of the singu-
larities of the generating function in the proceeding sections,
this will allow us to use the powerful machinery of analytical
combinatorics in several variables. The following recursion is
the key observation we need to derive the generating function
of the series NG,v(t, n).

Lemma VII.1. Let G = (V, E , τ, σ) be a strongly connected,
deterministic graph. Then the size of the follower set of any
vertex v ∈ V obeys the recursion

NG,v(t, n) =
∑

e∈E:init(e)=v

NG,term(e)(t− τ(e), n− 1),

for all n > 0 and t ≥ 0, where NG,v(t, 0) = 1 for all t ≥ 0
and NG,v(t, n) = 0 whenever t < 0 or n < 0.

Proof. Denote by PG,v(t, n) the set of all length-n paths
in G that start from vertex v and have cost at most t.
By the deterministic property of the graph, NG,v(t, n) =
|PG,v(t, n)|. Partition the paths PG,v(t, n) according to the
first traversed edge e ∈ E into the distinct parts PG,v,e(t, n) =
{p ∈ PG,v(t, n) : p = (e, e2, . . . )} for any e ∈ E
that emanates from v, i.e., init(e) = v. To start with,
PG,v(t, n) =

⋃
e∈E PG,v,e(t, n) and the parts are distinct

by definition. Now, any path p ∈ PG,v,e(t, n) starts by
traversing e, which costs τ(e) and results in the vertex term(e).
Therefore, each path p ∈ PG,v,e(t, n) can be assembled by
prepending e to some path of cost at most T − τ(e) and
length n − 1 that starts from term(e), i.e., PG,v,e(t, n) ={
p = (e,p′) : p′ ∈ PG,term(e)(t−τ(e), n−1)

}
.

Thus |PG,v,e(t, n)| = NG,term(e)(t − τ(e), n − 1), which
proves the recursive statement of the lemma. The initial
condition NG,v(t, 0) = 1 for all t ≥ 0 comes from the fact
that we include the length 0 string in our computations.

This recursion allows us to derive the exact generating
function of the integer sequences NG,v(t, n). Furthermore,
we can extract the asymptotic behavior of integer sequences
by means of powerful methods in complex analysis [14],
[41]. Note that here we restrict our attention to the sequence
NG,v(t, n), which directly implies the generating function for
NG,v(t) because we have NG,v(t) =

∑
n≥0 NG,v(t, n). We

proceed with the proof of Lemma II.13.

Proof of Lemma II.13. Starting from the recursive expression
of NG,v(t, n), we first incorporate the beginning of the recur-
sion and obtain

NG,v(t, n) =
∑

e∈E:init(e)=v

NG,term(e)(t− τ(e), n− 1) + U(t, n),

where U(t, n) = 1 if n = 0 and t ≥ 0, and U(t, n) = 0
otherwise. Multiplying by xtyn on both sides and summing
over n and t yields

FG,v(x, y) =
∑

e∈E:init(e)=v

xτ(e)yFG,term(e)(x, y) +
1

1− x
,

where we used that NG,v(t, n) = 0 for any t < 0 or n < 0 and
the fact that

∑
t≥0 x

t = 1/(1− x). Combining the generating
functions of all vertices into one vector FG(x, y), we obtain

FG(x, y) = yPG(x)FG(x, y) +
1

1− x
1T,

and rearranging the above equality yields the claimed recur-
sion.

B. Analytic Combinatorics in Several Variables

We briefly review the ingredients required to invoke ACSV
results [14]. For reasons of clarity we present definitions for
the bivariate case, where we wish to compute the asymptotic
behavior of N(α1t, α2t) as t → ∞. Notice that in our setup
α1 = 1 and α2 = α. Furthermore, we assume that the
generating function has the form F (x, y) = Q(x, y)/H(x, y)
for two polynomials Q(x, y) and H(x, y). We start with the
notion of singularities of a generating function.
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Definition VII.2 ( [14, Def. 3.5]). A point (x0, y0) ∈ C2 is
called a singularity of F (x, y), if F (x, y) is unbounded in any
neighborhood around (x0, y0).

Similar to the univariate case, a sufficient condition for a
point to be a singularity is that H(x0, y0) = 0 and Q(x0, y0) ̸=
0, and when Q and H are coprime then the singularities of
F are precisely the zeroes of Q. An important property of
singularities is the following.

Definition VII.3 ( [14, Def. 3.9]). A point (x0, y0) ∈ C2 is
called a minimal singularity of F (x, y) = Q(x, y)/H(x, y)
if it is a singularity of F (x, y) and there exists no other
singularity (x′, y′) ∈ C2 with |x′| < |x| and |y′| < |y|.

A minimal singularity is called finitely minimal [14, Def.
5.6], if there exist only a finite number of singularities with
the same coordinate-wise modulus. In contrast to the case of
univariate generating functions, not all minimal singularities
contribute to the asymptotic behavior of the sequence under
consideration. The following notion of critical points helps
to determine those singularities which are important for the
asymptotic expansion.

Definition VII.4 ( [14, Def. 5.4]). When H(x, y) is square-
free (has no repeated irreducible factors) then a point
(x0, y0) ∈ C2 is a smooth critical point of F (x, y) =
Q(x, y)/H(x, y) with respect to the direction (α1, α2) if at
least one of the partial derivatives Hx(x0, y0) and Hy(x0, y0)
is nonzero and

H(x0, y0) = α2xHx(x0, y0)− α1yHy(x0, y0) = 0,

and is a non-smooth critical point if

H(x0, y0) = Hx(x0, y0) = Hy(x0, y0) = 0.

When H(x, y) is not square-free then critical points are
defined by replacing H with its square-free part (the product
of its distinct irreducible factors) in these equations.

We need one final definition before describing the asymp-
totic results of ACSV.

Definition VII.5 ( [14, Def. 5.7, Prop. 5.2]). Let (x0, y0) ∈
C2 be a smooth critical point with respect to the direction
(α1, α2). Assume without loss of generality that Hy(x0, y0) ̸=
0, and let g(x) be the analytic function characterizing the
singularities (x, g(x)) in a neighborhood around (x0, y0). The
point (x0, y0) is called a nondegenerate critical point if Hx0,y0

,
the value of the Hessian matrix (i.e., second derivative) H of

ϕ(θ) = ln

(
g(x0e

iθ)

g(x0)

)
+

iθα1

α2

at θ = 0, is nonzero.

Remark VII.6 ( [14, Lemma 5.5]). An explicit characteriza-
tion of nondegeneracy in terms of H(x, y) can be obtained as

follows. We say that (x0, y0) is nondegenerate with respect to
the direction (α1, α2) when the quantity

Hx0,y0
=

α1(α1 + α2)

α2
2

+
x2
0Hxx(x0, y0)

y0Hy(x0, y0)

− 2
α1x0Hxy(x0, y0)

α2Hy(x0, y0)
+

α2
1y0Hyy(x0, y0)

α2
2Hy(x0, y0)

exists and is nonzero, where subscripted variables refer to
partial derivatives.

First, we present a theorem for ‘smooth’ asymptotics, which
applies when asymptotics are determined by a smooth critical
singularity. We will apply this result in the regime when αlo

G <
α < αup

G .

Theorem VII.7 ( [14, Thm. 5.1]). Let α1, α2 > 0 and
let Q(x, y) and H(x, y) be coprime polynomials such that
the generating function F (x, y) = Q(x, y)/H(x, y) admits a
power series expansion F (x, y) =

∑
t,n≥0 N(t, n)xtyn. Sup-

pose that the system of polynomial equations

H(x, y) = α2xHx(x, y)− α1yHy(x, y) = 0 (1)

admits a finite number of solutions, exactly one of which
(x0, y0) ∈ C2 is minimal. Suppose further that (x0, y0)
has nonzero coordinates, Hy(x0, y0) ̸= 0, and (x0, y0) is
nondegenerate with respect to the direction (α1, α2). Then,
as t → ∞,

N(tα1, tα2) = x−tα1
0 y−tα2

0 t−1/2 1√
2πα2Hx0,y0

·
(

−Q(x0, y0)

y0Hy(x0, y0)
+O

(
1

t

))
(2)

when t(α1, α2) ∈ N2.

Theorem VII.7 has been extended to the case when the
critical point equations (1) admit a finite set of minimal sin-
gularities, which all have the same coordinate-wise modulus.
Provided that all such points fulfill the conditions of Theorem
VII.7, an asymptotic expansion of N(tα1, tα2) is obtained by
summing the right-hand side of (2) over all such singularities
[14, Cor. 5.2]. In order to compute the asymptotic expansion
in the smooth case, we thus need to verify the following
properties. First, we need to characterize the minimal points
that satisfy (1) and show that Hy does not vanish at these
points. Second, the points need to be nondegenerate and
the numerator should be nonzero to guarantee a dominant
asymptotic term.

The other case of interest is the multiple-point case where
two smooth branches of the singular set collide. In this
case, the asymptotic behavior is obtained using the following
theorem.

Theorem VII.8 ( [14, Prop. 9.1 and Thm. 9.1]). Let α1, α2 >
0 and let Q(x, y) and H(x, y) be coprime polynomials such
that F (x, y) = Q(x, y)/H(x, y) admits a power series expan-
sion F (x, y) =

∑
t,n≥0 N(t, n)xtyn. Suppose that (x0, y0)

is a strictly minimal point, and near (x0, y0) the zero set of
H(x, y) is locally the union of the sets defined by the vanishing
of polynomials R(x, y) and S(x, y) such that R(x0, y0) =
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S(x0, y0) = 0 and the gradients of R(x, y) and S(x, y) are
linearly independent at (x0, y0) (in particular, both gradients
must be nonzero so each of the zero sets are locally smooth
near (x0, y0)). If there exist ν1, ν2 > 0 such that

(α1, α2) = ν1

(
1,

y0Ry(x0, y0)

x0Rx(x0, y0)

)
+ ν2

(
1,

y0Sy(x0, y0)

x0Sx(x0, y0)

)
and the matrix

H =

(
x0Rx(x0, y0) y0Ry(x0, y0)
x0Sx(x0, y0) y0Sy(x0, y0)

)
is nonsingular then, as t → ∞,

N(tα1, tα2) = x−tα1
0 y−tα2

0

Q(x0, y0)

|detH|
+O

(
δt
)

for some 0 < δ < x−α1
0 y−α2

0 .

We will apply Theorem VII.8 when 0 < α < αlo
G. As in the

smooth case, if there exist a finite number of singularities with
the same coordinate-wise modulus as (x0, y0) that all satisfy
the conditions of Theorem VII.8, then we get an asymptotic
expansion by summing the asymptotic contributions of each.

C. Singularity and Critical Point Analysis

The main challenge in proving Theorem III.8 is showing
that the prerequisites of Theorems VII.7 and VII.8 are fulfilled.
We establish the necessary conditions through a careful study
of the singularities of our generating functions

FG(x, y) =
1

1− x
· (I − yPG(x))

−11T.

We can write FG(x, y) = QG(x, y)/HG(x, y) for a polyno-
mial vector QG(x, y) = adj(I − yPG(x))1

T and polynomial
HG(x, y) = (1−x) det(I−yPG(x)). In particular, all entries
of FG(x, y) share the same denominator, which allows us to
analyze crucial properties such as minimality and criticality
for singularities just once instead of for each entry. According
to Definition II.10, we always work with respect to the
diagonal (α1, α2) = (1, α), and this direction is assumed when
discussing notions like critical points and nondegeneracy.

The first step in our multivariate singularity analysis is to
identify those singularities which are minimal, i.e., for which
there exists no other singularity that has a smaller magnitude
in all coordinates (see Definition VII.3).

Lemma VII.9. Let G be a strongly connected and cost-diverse
graph with period d and cost period c. The points

{(x0, 1/ρG(x0)) : 0 < x0 < 1}
∪ {(1, y0) : y0 ∈ C, |y0| ≤ 1/ρG(1)}

are minimal singularities of each coordinate of FG(x, y). All
other minimal singularities are(

x0e
i2πk/c, e−2πi(kb/c+j/d)/ρG(x0)

)
for some 0 < x0 ≤ 1, k ∈ {0, 1, . . . , c − 1}, and j ∈
{0, 1, . . . , d − 1}, where b is the constant of the c-periodic
coboundary condition.

Proof. The singularities of the coordinates of FG(x, y)
are a subset of the solutions to the equation
(1− x) det(I − yPG(x)) = 0, and any root of the
denominator where the numerator does not vanish is a
singularity. Using that det(I − yPG(x)) =

∏
j(1− yλj(x)),

where λj(x) are the eigenvalues of PG(x), the singularities
of FG are thus a subset of the variety

X ={(x, 1/λj(x)) : x ∈ C, 1 ≤ j ≤ |V|} ∪ {(1, y) : y ∈ C}.

We start by investigating the first set of singularities. Right
away, we see that for all x ∈ C with |x| > 1 the singularities
(x, 1/λj(x)) cannot be minimal, since there exists y ∈ C
such that (1, y) has a coordinate-wise smaller modulus than
(x, 1/λj(x)). We thus focus on those singularities with 0 <
|x| ≤ 1. Due to the fact that the graph G is strongly connected,
it follows that PG(x0) is irreducible for all x0 ∈ R+ and
thus, by the Perron-Frobenius Theorem, has a single real
eigenvalue ρG(x0) of maximum modulus. In the following we
identify the Perron-Frobenius eigenvalue as the first eigenvalue
ρG(x0) = λ0(x0).

We now show that for all 0 < x0 ≤ 1 the points
(x0, 1/ρG(x0)) are minimal singularities. To begin, the nu-
merator of FG at this point can be expressed as

QG(x0, 1/ρG(x0)) = adj

(
I − PG(x0)

ρG(x0)

)
1T

= ρG(x0)
1−|V|adj(ρG(x0)I − PG(x0))1

T,

so an application of Lemma V.6 shows that the numerator
is nonzero, as adj(ρG(x0)I − PG(x0)) is either all-positive
or all-negative. In particular, these points are singularities
of each coordinate and it remains to show minimality. We
prove minimality using Proposition 5.4 of [14], which states
that a singularity (x0, 1/ρG(x0)) with positive coordinates is
minimal if and only if HG(tx0, t/ρG(x0)) is nonzero for all
0 < t < 1. The term (1− tx0) does not vanish for 0 < t < 1,
so if HG(tx0, t/ρG(x0)) = 0 then t/ρG(x0) = 1/λj(tx0) for
some 0 < t < 1 and j ≥ 1. However,

t/ρG(x0) < 1/ρG(x0)
(a)

≤ 1/ρG(tx0) ≤ |1/λj(tx0)|,

where inequality (a) uses that each entry of PG(x0) is
monotonically increasing in x0 and thus ρG(x0) is also
monotonically increasing in x0. Hence HG(tx0, t/ρG(x0))
does not vanish on 0 < t < 1 and it follows that any point
(x0, 1/ρG(x0)) with 0 < x0 < 1 is a minimal singularity.

We next prove that the only other minimal singularities in
{(x, 1/λj(x)) : x ∈ C, 1 ≤ j ≤ |V|} are as given in the
statement of the lemma. To start with, by Theorem V.3, for
each 0 < x0 ≤ 1 there are precisely d simple eigenvalues
λ0(x0), . . . , λd−1(x0) with the same modulus as the spectral
radius and they are given by

λj(x0) = ρG(x0)e
2πi(j−1)/d.

Due to the similarity of PG(xe
iϕk) and eiϕkbPG(x) for all

ϕk = 2πk/c and k ∈ {0, 1, . . . , c − 1}, which was derived
in Lemma VI.5, the eigenvalues of PG(x0e

iϕk) are given by
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λj(x0e
iϕk) = eiϕkbλj(x0). Therefore, for each j and k we

obtain one candidate for a minimal singularity,(
x0e

iϕk , e−i(ϕkb+2πj/d)/ρG(x0)
)
.

For all other ϕ that are not integer multiples of 2π/c, the
singularities (x0e

iϕ, 1/λj(x0e
iϕ)) are not minimal, as in this

case the inequality ρG(x0e
iϕ) < ρG(x0) was proven in

Lemma VI.7. Furthermore, all other eigenvalues λj(x) with
j ≥ d have |λj(x)| < ρG(x), which implies that they cannot
be minimal.

Finally, we study the singularities in {(1, y) : y ∈ C}. All
points (1, y0) for y0 ∈ C and |y0| ≤ 1/ρG(1) are singularities,
since the matrix I−y0PG(1) is invertible. Furthermore, these
singularities are minimal due to the fact that (1, 1/ρG(1)) is
minimal as proven above. Conversely, for |y0| > 1/ρG(1)
the points (1, y0) are not minimal due to the existence of the
singularities (x0, 1/ρG(x0)).

It is worth noting that, while we have proven that the
points (x0, 1/ρG(x0)) are indeed singularities, the same is
not necessarily true for the other minimal points. This is
because, for these points, the numerator is not guaranteed to
be nonnegative. Next is a statement on the smoothness and
criticality of the singularities.

Lemma VII.10. Let G be a strongly connected and cost-
diverse graph with period d and cost period c. For all
x0 ∈ R+ with x0 ̸= 1 and all k ∈ {0, 1, . . . , c − 1} and
j ∈ {0, 1, . . . , d− 1}, the points(

x0e
2πik/c, e−2πi(kb/c+j/d)/ρG(x0)

)
are smooth points of FG(x, y), and are critical if and only
if αx0ρ

′
G(x0) = ρG(x0). Any point (1, y0) with y0 ∈ C and

|y0| < 1/ρG(1) is not a root of det(I − yPG(x)) and thus is
a smooth point that is never critical.

Proof. Abbreviate for convenience ϕk ≜ 2πk/c and θj ≜
2πj/d. We start by verifying that for all x0 ∈ R+ with
x0 ̸= 1 and k ∈ {0, 1, . . . , c − 1}, j ∈ {0, 1, . . . , d − 1}, the
points (x0e

iϕk , e−i(ϕkb+θj)/ρG(x0)) are smooth. By Jacobi’s
Formula, we have

∂HG(x, y)

∂y
= −(1− x)tr (adj(I − yPG(x))PG(x)) .

For the rest of this proof we write λj(x0e
iϕk) for the d eigen-

values of PG(x0e
iϕk) of maximum modulus, which satisfy

λj(x0e
iϕk) = ei(ϕkb+θj)λ0(x0), where λ0(x0) = ρG(x0) is

the Perron root of PG(x0), according to Theorem V.3 and
Lemma VI.5. The corresponding normalized eigenvectors are
uj(x0e

iϕk) and vj(x0e
iϕk), and plugging in the points of

interest we obtain

∂HG(x, y)

∂y

∣∣∣∣x=x0e
iϕk ,

y=1/λj(x0e
iϕk )

= −(1− x0e
iϕk)

· tr
(
adj(I − PG(x0e

iϕk)/λj(x0e
iϕk))PG(x0e

iϕk)
)
.

Here we can use Lemma VI.5 to simplify the cost-enumerator
matrix and Lemma V.6 to find an explicit representation of the
adjoint matrix, simplifying the above expression to

− cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V|

· tr(eiϕkbvj(x0)PG(x0)u
T
j (x0))

= −cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V|λj(x0e
iϕk),

where cj(x0) ∈ R\{0} is a nonzero constant. This expression
is nonzero for all x0 ∈ R+ with x0 ̸= 1 and k ∈ {0, 1, . . . , c−
1} and j ∈ {0, 1, . . . , d− 1}, so the points are smooth.

We now examine when these minimal points are solutions
of the critical point equations

αx
∂HG(x, y)

∂x
= y

∂HG(x, y)

∂y
.

The partial derivative of the denominator with respect to x is
given by

∂HG(x, y)

∂x
=− det(I − yPG(x))− (1− x)y

· tr
(
adj(I − yPG(x))

∂PG(x)

∂x

)
.

Evaluating this partial derivative at the points
(x0e

iϕk , 1/λj(x0e
iϕk)), we obtain

∂HG(x, y)

∂x

∣∣∣∣x=x0e
iϕk ,

y=1/λj(x0e
iϕk )

= −(1− x0e
iϕk)

· tr
(
adj(I − PG(x0e

iϕk)/λj(x0e
iϕk))P ′

G(x0e
iϕk)

)
,

where P ′
G(x) is the partial derivative of the cost-enumerator

matrix with respect to x. Here we use that det(I − yPG(x))
evaluated at these points is 0, as λj(x0e

iϕk) is an eigenvalue of
PG(x0e

iϕk). Similar to the case of the derivative with respect
to y, we simplify this expression to

− cj(x0)(1− x0e
iϕk)(λj(x0))

1−|V|eiϕk(b−1)

· tr(vj(x0)P
′
G(x0)u

T
j (x0))

(a)
= − cj(x0)(1− x0e

iϕk)(λj(x0))
1−|V| · λ′

0(x0)e
i(ϕk(b−1)+θj)

where, in the first step, we used that P ′
G(x0e

iϕk) =
eiϕk(b−1)D−1

k P ′
G(x0)Dk according to Lemma VI.5, and

equality (a) follows from an application of Lemma V.9.
Substituting our expressions for the partial derivatives into the
critical point equations shows that the critical point equations
simplify to αx0λ

′
0(x0) = λ0(x0). Since λ0(x0) = ρG(x0),

the first part of the lemma follows.
The singularities (1, y0) with |y0| < 1/ρG(1) are not

roots of det(I − yPG(x)) as ρG is an eigenvalue of PG

of largest modulus. Thus, near these points the zero set of
the denominator is locally the zero set of the factor 1 − x
and is therefore smooth (algebraically, the partial derivative
with respect to x is nonzero at these points). These points can
never be critical because the partial derivative of HG(x, y)
with respect to y vanishes at any such point.

Notice that the derivative ρ′G(x) in the statement of
Lemma VII.10 should crucially be understood with respect
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to real-valued x. The complex derivative does not necessarily
exist, since the spectral radius is the largest magnitude of all
eigenvalues, ρG(x) = |λ0(x)|, and the magnitude function is
not complex differentiable on the whole complex plane.

Lemma VII.11. Let G be a strongly connected and
cost-diverse graph. Then the critical point equation
αxρ′G(x) = ρG(x) has a positive real solution x0 if
and only if

lim
x→∞

ρG(x)

xρ′G(x)
< α < lim

x→0+

ρG(x)

xρ′G(x)
.

This solution, if it exists, is unique among all positive real x.
If α > ρG(1)/ρ

′
G(1) then x0 < 1, and if α < ρG(1)/ρ

′
G(1)

then x0 > 1.

Proof. Since ρG(x) > 0 for x ∈ R+, we can rewrite
the equation we are trying to solve as f(x) = 1, where
f(x) ≜ αxρ′G(x)/ρG(x). To start we investigate the limit
of f(x) as x → 0+. Note that f(x) > 0 for all x ∈ R+.
Furthermore, the strict log-log-convexity of ρG(x) proven in
Lemma VI.12 implies that f ′(x) > 0: strict log-log-convexity
of ρG(x) means that log ρG(e

s) is strictly convex in s, and
substituting x = es gives

∂

∂x
f(x) = e−s ∂

∂s
f(es) = αe−s ∂

∂s

esρ′G(e
s)

ρG(es)

= αe−s ∂2

∂s2
log ρG(e

s) > 0.

Since f ′(x) > 0 and f(x) > 0 we see that f(x) is a
bounded and decreasing function as x → 0 from above,
and the monotone convergence theorem implies limx→0+ f(x)
exists. Consequently, if α < limx→0+ ρG(x)/(xρ

′
G(x)) then

limx→0+ f(x) < 1, as both limits exist. Notice that we
allow the upper bound on α to diverge to ∞, in which case
we can take α as large as desired. This can happen, for
example, when there exists a cycle of weight 0 in G. Similarly,
the limit limx→∞ 1/f(x) exists, as 1/f(x) is decreasing
and positive. Hence, if α > limx→∞ ρG(x)/(xρ

′
G(x)) then

limx→∞ 1/f(x) < 1.
To summarize, under our conditions on α we have

limx→∞ f(x) < 1 and limx→0+ f(x) > 1. By the intermedi-
ate value theorem, there is at least one solution to f(x) = 1 in
x ∈ R+. This solution is unique, due to the strict monotonicity
of f coming from f ′(x) > 0. We further see that if α is not
within these boundaries, there will be no solution in x ∈ R+

due to this monotonicity.
If αρ′G(1) > ρG(1) then f(1) > 1, and the solution to

f(x) = 1 must occur at x0 < 1. Similarly, if αρ′G(1) < ρG(1)
then f(1) < 1 and it follows that x0 > 1. For a visualization,
see Fig. 6.

Another requirement of Theorem VII.7 is the nondegener-
acy of the singularities. We prove this in the following.

Lemma VII.12. Let G be a strongly connected and cost-
diverse graph with period d and cost period c. For all x0 ∈ R+

and k ∈ {0, 1, . . . , c−1} and j ∈ {0, 1, . . . , d−1}, the points(
x0e

2πik/c, e−2πi(kb/c+j/d)/ρG(x0)
)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
x0 x′

0

x

α
x
ρ
′ G
(x
)/
ρ
G
(x
)

0 < x0 < 1
1 < x0

No solution

Fig. 6: Visualization of the solutions of the critical point
equation for ρG(x) = x+x2. The illustrated cases correspond
to different values of α.

are nondegenerate.

Proof. Write ξk ≜ x0e
2πik/c. According to Theorem V.3 and

Lemma VI.5, there are d eigenvalues of maximum modulus
λj(ξk) of PG(ξk) that satisfy λj(ξk) = ei(ϕkb+θj)ρG(x0),
where ρG(x0) is the Perron root of PG(x0). From the proof
of Lemma VII.9 it follows that the analytic function g(x) in
Definition VII.5 is given by g(x) = 1/λj(x). The quantity
Hx0,y0

determining nondegeneracy in the smooth case is
therefore the second derivative of

ϕ(θ) = log

(
λj(ξk)

λj(ξkeiθ)

)
+

iθ

α

at θ = 0. Differentiating twice with respect to θ gives

∂2

∂θ2
ϕ(θ)

∣∣∣∣
θ=0

(a)
= − ∂2

∂θ2
log λj(x0e

iθ)

∣∣∣∣
θ=0

=
∂2

∂s2
log λj(e

s)

∣∣∣∣
s=log x0

(b)
=

∂2

∂s2
log ρG(e

s)

∣∣∣∣
s=log x0

(c)
> 0.

In (a) we used Lemma VI.5 to conclude that λj(ξke
iϕ) =

e2πikb/cλj(x0e
iϕ). Note that the differentiation to the left and

right hand side of (b) should be understood with respect to
complex-valued s and real-valued s, respectively, as ρG(e

s)
is not complex differentiable in s in general. In (b) we
used that for analytic functions, by the definition of complex
differentiation, the derivative along the real line equals the
complex derivative. Inequality (c) follows from the strict
log-log-convexity of ρG(x) for x ∈ R+, as was proven in
Lemma VI.12.
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D. Proof of Theorem III.8

The final ingredient in the proof of Theorem III.8 is to iden-
tify the critical singularities that contribute to the asymptotic
expansion, depending on the value of α. We call a smooth
critical singularity contributing if it satisfies the hypotheses
of Theorem VII.7 and a non-smooth critical singularity con-
tributing if it satisfies the hypotheses of Theorem VII.8.

Lemma VII.13. Let G be a strongly connected and cost-
diverse graph with period d and cost period c. Let λj(x0) =
e2πij/dρG(x0) with j ∈ {0, 1, . . . , d − 1} denote the d
eigenvalues of maximum modulus of PG(x0).

• If 0 < α < αlo
G then (1, 1/λj(1)) for j ∈ {0, 1, . . . , d−1}

are contributing points.
• If αlo

G < α < αup
G then (x0e

2πik/c, 1/λj(x0e
2πik/c)) for

j ∈ {0, 1, . . . , d − 1} and k ∈ {0, 1, . . . , c − 1} with
αx0ρ

′
G(x0) = ρG(x0) are smooth contributing points.

In both cases, there are no contributing points other than those
mentioned.

Proof. We first discuss the multiple-point, non-smooth case
0 < α < αlo

G. We start by proving that (x0, y0) = (1, 1/ρG(1))
satisfies the conditions of Theorem VII.8. The two surfaces
defined by the vanishing of R(x, y) = 1 − x and S(x, y) =
det(I − yPG(x)) intersect at this point. Direct computation
shows Rx(x, y) = −1 and Ry(x, y) = 0, while Jacobi’s
formula implies Sx(x, y) = −ytr(adj(I − yPG(x))P

′
G(x))

and Sy(x, y) = −tr(adj(I − yPG(x))PG(x)). Hence,
(1, 1/ρG(1)) is a contributing point if there exist ν1, ν2 > 0
such that

ν1

(
1,

y0Ry(x0, y0)

x0Rx(x0, y0)

)
+ ν2

(
1,

y0Sy(x0, y0)

x0Sx(x0, y0)

)
=

(
ν1 + ν2, ν2

ρG(1)

ρ′G(1)

)
= (1, α).

We can set ν1 = 1 − ν2 and ν2 = αρ′G(1)/ρG(1), which
are both positive due to α < ρG(1)/ρ

′
G(1), and the required

conditions hold. Using the same arguments, the singularities
(1, 1/λj(x0)) also contribute to the asymptotics. The remain-
ing singularities (x, y) ∈ C2 with the same coordinate-wise
modulus (|x|, |y|) = (1, 1/ρG(1)) are smooth, however, by
[14, Cor. 5.6], none of them are critical as (1, 1/ρG(1)) is not
critical by Lemma VII.11.

We now move to the smooth case αlo
G < α < αup

G . Lem-
mas VII.9–VII.12 show that the point (x0, 1/ρG(x0)) where
0 < x0 < 1 and αx0ρ

′
G(x0) = ρG(x0) is unique and a smooth,

finitely minimal, critical and nondegenerate singularity. Fur-
thermore, all other singularities with the same coordinate-wise
modulus, which are (x0e

2πik/c, 1/λj(x0e
2πik/c)) for some

k, j ∈ Z, fulfill these properties as well.

We are finally ready to prove Theorem III.8 by combining
Lemmas VII.9–VII.13 with Theorems VII.7 and VII.8.

Proof of Theorem III.8. We differentiate between the two
cases 0 < α < αlo

G and αlo
G < α < αup

G . In the first case, the
non-smooth singularity (1, 1/ρG(1)) and those with the same
coordinate-wise moduli are the singularities that determine
the asymptotic behavior. In the second case, the singularities

(x0, 1/ρG(x0)) with 0 < x0 < 1 and αx0ρ
′
G(x0) = ρG(x0),

and those with the same coordinate-wise moduli, are the ones
contributing.

We start with the multiple-point, non-smooth case 0 < α <
αlo
G, aiming to apply Theorem VII.8 with the extension [14,

Cor. 9.1]. For any x0 ∈ R+ let λj(x0) = e2πij/dρG(x0) with
j ∈ {0, 1, . . . , d − 1} denote the d eigenvalues of maximum
modulus of PG(x0) and let uj(x0) and vj(x0) be the
corresponding right and left eigenvectors. By Lemma VII.13,
Theorem VII.8 is applicable for the contributing singularities
(1, 1/λj(1)) and it remains to compute the required terms.
The numerator of the generating function is given by

QG,v(1, 1/λj(1)) = λj(1)
1−|V|adj(λj(1)I − PG(1))1

T

(a)
= cj(1)λj(1)

1−|V|uT
j (1)vj(1)1

T,

where (a) follows from an application of Lemma V.6. Simi-
larly, we obtain for the numerator

detH = − 1

λj(1)
Sy(1, 1/λj(1))

=
1

λj(1)
tr(adj(I − PG(1)/λj(1))PG(1))

= cj(1)λj(1)
1−|V|.

Plugging these results into the expressions of Theorem VII.8
and summing over all contributing points (1, 1/λj(1)) accord-
ing to [14, Cor. 9.1] proves the first statement of Theorem
III.8.

In the smooth case αlo
G < α < αup

G , the point (x0, 1/ρG(x0))
where 0 < x0 < 1 and αx0ρ

′
G(x0) = ρG(x0) is unique

and a smooth, finitely minimal, critical and nondegenerate
singularity and thus contributing by Lemma VII.13. The same
applies to the other singularities with the same coordinate-
wise modulus, which are (x0e

2πik/c, e−2πi(kb/c+j/d)/ρG(x0))
for some k, j ∈ Z. This allows us to invoke the extension
[14, Cor. 5.2] of Theorem VII.7. Notice that there may be
values of j and k where the numerator vanishes, however we
have shown in Lemma VII.9 that this does not occur when
k = j = 0. Thus, it is possible that the leading asymptotic
terms from some of these points vanishes, but the sum of all
terms always captures the dominant asymptotic behavior of
the sequence under consideration. The quantity H appearing
in the asymptotic expansion was derived in Lemma VII.12.
Abbreviating ϕk = 2πk/c in the following, we find that

QG,v(x0e
iϕk , 1/λj(x0e

iϕk))

= cj(x0)λj(x0)
1−|V|D−1

k uT
j (x0)vj(x0)Dk1

T,

where we used that for any two square matrices D and
P , the adjoint of the conjugation of P by D is given by
adj(D−1PD) = D−1adj(P )D.

E. Proof of the Other Theorems

We continue with proving the remaining theorems.

Proof of Theorem III.1. Theorem III.1 directly follows from
Theorem III.8. By the definition of the capacity, we take the
logarithm of the asymptotic expansion NG,v(t, αt) and divide
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by t. Computing the limit t → ∞, all terms except for the
exponential in t vanish.

Theorems III.6 and III.9 can be proven using standard
univariate singularity analysis [10]. We start with proving
Theorem III.9, which depicts the more general statement of
the exact representation of the follower set size.

Proof of Theorem III.9. By Lemma II.13, the generating
functions of NG,v(t) are given by the fractions
FG,v(x) = QG,v(x)/HG(x), with the polynomials QG,v(x) =
[adj(I − P (x))1T]v and HG(x) = (1 − x) det(I − PG(x)),
and thus the singularities are a subset of the solutions to
(1 − x) det(I − PG(x)) = 0. Invoking [10, Thm. IV.9] then
proves Theorem III.9. Note that in principle not all solutions
have to be singularities, as the numerator and denominator are
not guaranteed to be coprime. This case is covered by setting
ΠG,v,i(t) = 0 for all roots which share common factors with
the numerator in the partial fraction decomposition.

Proof of Theorem III.6. The theorem follows directly
from Theorem III.9 by the computation of
CG = limt→∞ logNG,v(t)/t and the fact that
HG(x) = (1 − x)

∏
j(1 − λj(x)), where λj(x) are the

eigenvalues of PG(x). Since PG(x) is an irreducible matrix,
there is an eigenvalue which is equal to the spectral radius
and thus the singularity of smallest magnitude of FG,v(x) is
that for which ρG(x) = 1. The numerator at this singularity
is nonzero due to Lemma V.6.

F. Details of Remarks III.2 and III.7

We now return to Remarks III.2 and III.7.

Proposition VII.14. The inverse of αlo
G is the average cost

per edge, asymptotically in n, over all paths of length n in G.
Equivalently, it is the average cost per edge associated with
the unique stationary Markov chain of maximum entropy on
G. The inverse of αup

G is the minimum average cost per edge
among the cycles in G.

Proof. 7 Recall the definitions αlo
G ≜ ρG(1)/ρ

′
G(1) and αup

G ≜
lim

x→0+
ρG(x)/(xρ

′
G(x)). Define the sequence of functions

fm(x) ≜
1

m
log

(∑
u,v

(PG(x)
m)u,v

)
,

where (PG(x)
m)u,v is the generating function for the costs

of paths p of length m from state u to state v, i.e.,

(PG(x)
m)u,v =

∑
p : u → v

length p = m

xτ(p).

For x > 0, the cost-enumerator matrix PG(x) is irreducible,
so by [2, Lemma 3.5]

lim
m→∞

fm(x) = log ρG(x). (3)

7The authors thank Andrew Tan for helpful comments regarding this proof.

The corresponding sequence of derivatives f ′
m(x) is given

by

f ′
m(x) =

1

m

d
dx

∑
u,v

(PG(x)
m)u,v∑

u,v
(PG(x)m)u,v

=
1

m

∑
p τ(p)x

τ(p)−1∑
p x

τ(p)
.

It can then be shown that f ′
m(x)

m→∞−−−−→ d
dx log ρG(x) uni-

formly on a closed interval in (0,∞), i.e., the sequence of
derivatives converges uniformly to the derivative of the limit.
Thus, the derivative and limit can be interchanged, so that

lim
m→∞

f ′
m(x) =

(
lim

m→∞
fm(x)

)′
= (log ρG(x))

′
=

ρ′G(x)

ρG(x)
.

(4)
The proof of uniform convergence of the sequence of deriva-
tives makes use of the following fact; see [2, proof of Lemma
3.17].

Fact: Let P be a primitive matrix, i.e., P is irreducible
and has period 1. Then, there exist real vectors u,v such
that Pu = ρu,vTP = ρvT , and vTu = 1. Moreover,
lim

m→∞
Pm

ρm = uvT and Pm = ρmuvT + E(m) with

|E(m)
s,t | = O(mh−1µm), where ρ is the spectral radius of

P , µ is the largest absolute value of the eigenvalues of P
other than ρ, and h is the highest algebraic multiplicity of the
eigenvalues of P whose absolute value is µ.

The derivative f ′
m(x) evaluated at x = 1 is

f ′
m(1) =

1

m

∑
p τ(p)x

τ(p)−1∑
p x

τ(p)

∣∣∣∣∣
x=1

=

∑
p τ(p)

N(m)
≜ Tave,m,

where the sums in the numerator and denominator of the
expressions on the right run over all paths p of length m
in G and N(m) denotes the total number of such paths. Since
τ(p)/m is the average edge cost of the path p, the derivative
evaluated at x = 1 equals Tave,m, the average edge cost over
all paths of length m in G. Setting x = 1 in (4), we obtain

Tave ≜ lim
m→∞

∑
p τ(p)/m

N(m)
=

ρ′G(1)

ρG(1)
= (αlo

G)
−1,

where we can interpret Tave as the asymptotic average cost
per edge over all paths in G. Noting that the Markov chain
of maximum entropy Hmax on G assigns probability approx-
imately 2−mHmax to each path in G, we see that this is also
the average cost per edge with respect to this Markov chain.

Turning to αup
G , we note from [2, Theorem 3.17] that an

expression similar to (3) applies to the cycles at each state u
in G, namely

lim
m→∞

1

m
log(PG(x)

m)u,u = log ρG(x). (5)

The matrix element (PG(x)
m)u,u is the generating function

for the cost of cycles of length m at vertex u. So the logarithm
in the argument of the limit can be written as

log(PG(x)
m)u,u = log

 ∑
length-m cycles p at u

xτ(p)

 .
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Let Tmin,m(u) denote the minimum average cost per edge
over cycles of length m at u. We note that the limit Tmin =
lim infm→∞ Tmin,m(u) is independent of u and equals the
minimum average cost per edge in a simple (non-intersecting)
cycle in G.

Rewriting x = elog(x) and applying the log-sum-exp in-
equality to the resulting expression, we obtain

max
cycles p

{log(x)τ(p)} ≤ log(PG(x)
m)u,u

≤ max
cycles p

{log(x)τ(p)}+ log(PG(1)
m)u,u,

where the term on the right is the logarithm of the number of
cycles of length m at u.

We are interested in the limit as x → 0+ so, restricting
to the range 0 < x < 1 where log(x) < 0, the maximum
evaluates to log(x)Tmin,m, yielding

log(x)mTmin,m ≤ log(PG(x)
m)u,u

≤ log(x)mTmin,m + log(PG(1)
m)u,u.

Normalizing by m and taking the limit, we invoke (5) to
conclude that

log(x)Tmin ≤ log ρG(x) ≤ log(x)Tmin + log ρG(1).

We divide by log(x) and take the limit as x → 0+. Recalling
that ρG(x) → 0 as x → 0+, we apply l’Hôpital’s rule to
conclude

Tmin = lim
x→0+

xρ′G(x)

ρG(x)
= (αup

G )−1.

Proposition VII.15. Let G be a strongly connected, determin-
istic, cost-diverse graph. Then CG(α) is a concave function
in α and its maximum is equal to CG(α

∗) = CG, where
α∗ = 2CG/ρ′G(2

−CG).

Proof. To start with, CG(α) is linear in the interval 0 ≤
α < αlo

G. In the interval αlo
G ≤ α < αup

G , CG(α) =
− log x0(α) + α log ρG(x0(α)), where x0(α) is the unique
positive solution to f(x) = α−1 with f(x) ≜ xρ′G(x)/ρG(x).
Notice that ρG(x) > 0 for all x > 0 and thus, by Lemma V.7,
f(x) is analytic for all x > 0. Furthermore, as in the proof of
Lemma VII.11, we can show that ∂

∂xf(x) > 0, which means
that x0(α) is analytic in α and also strictly monotonically
decreasing in α. Therefore, for αlo

G ≤ α < αup
G ,

∂

∂α
CG(α) = −x′

0(α)

x0(α)
+ log ρG(x0(α)) + α

x′
0(α)ρ

′
G(x0(α))

ρG(x0(α))

= −x′
0(α)

x0(α)
+ log ρG(x0(α)) + αf(x0(α))

x′
0(α)

x0(α)
(a)
= log ρG(x0(α)),

where we used in (a) that f(x0(α)) = α−1 by definition.
Since x0(α) is strictly monotonically decreasing in α and
also ρG(x) and the logarithm are strictly monotone functions
(see Lemma V.9), CG(α) is strictly concave in the considered
interval. Then CG(α) → αlo

G log ρG(1) by the definition of
αlo
G, as α approaches αlo

G from both the left and right, proving
continuity of CG(α). Thus CG(α) is a concave function on
the full interval 0 ≤ α ≤ αup

G .

From the above derivation of the derivative of CG(α), we
further see that α∗ with ρG(x0(α

∗)) = 1 is a unique stationary
point of CG(α) with capacity CG(α

∗) = − log x0(α
∗) = CG.

It follows that α∗ is the unique solution for α to the system of
two equations f(x) = α−1 and ρG(x) = 1 with x > 0. The
above exposition proves that the solution to these equations
are α∗ and x0(α

∗), where α∗ is as given in the statement.

VIII. CONCLUSION

In this paper we have analyzed costly constrained channels,
i.e., directed graphs with labeled and weighted edges. We have
derived the precise asymptotic behavior of the size of the
number of limited-cost paths for arbitrary strongly connected
and cost-diverse graphs. That is, we have explicitly derived
an easily computable function, whose ratio with respect to
the true number of followers approaches one for large costs.
Our theorems imply explicit expressions for the fixed-length
and variable-length capacity, i.e., the exponential growth rate
of the number of paths. Interestingly, through the direct
derivation of the capacity, we recover a known result on the
equivalence of the combinatorial and probabilistic capacity of
costly constrained channels subject an average cost constraint.
While previous works have shown this equivalence using a
typical sequence argument and converse inequalities, this proof
yields an expression for the combinatorial capacity in terms of
singularities of a generating function that matches the known
formula for the probabilistic capacity obtained by Markov
chain analysis.

Establishing an explicit and comprehensive framework to
compute both the fixed-length and variable capacity for arbi-
trary strongly connected graphs, our results not only open the
way for future research but can also directly be employed in
suitable applications. For our derivations, we have extended
the well-known notions of periodicity to weighted graphs.
We show that the notion of cost-diversity is the precise
property that distinguishes between degenerate and smooth
behavior of the fixed-length capacity. In our exposition we
use results from analytic combinatorics in several variables,
which establishes novel and intriguing connections between
noiseless information theory and complex analysis. In order
to prove these connections we have built a comprehensive
theory that extends results from the Perron-Frobenius theory
of irreducible matrices. These results were then related to
properties of the singularities of the generating functions of
the follower set size, which built the bridge to the theory of
analytic combinatorics in several variables.

We illustrated our capacity results by analyzing the discrete
noiseless channels describing the synthesis of q-ary sequences
using the q-ary alternating sequences. The case q = 4 is
particularly relevant to the synthesis of DNA strands. Our
framework can be extended to the analysis of maximum
achievable synthesis rates for general synthesis sequences
and synthesis of constrained sequences, as well as to the
enumeration of subsequences of a given supersequence. These
extensions are discussed in [42].
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APPENDIX

Lemma A.1. Let G = (V, E , σ, τ) be a strongly connected
graph with period d, as defined in Definition II.3. Then the
greatest common divisor of all cycle lengths is d.

Proof. To start with, we note that the length m of each cycle
must be divisible by d, since otherwise the twice repetition
of this cycle would not have a length congruent to that
of the single cycle modulo d. Analogously to the proof of
Lemma VI.6, we can prove the existence of two cycles at the
same state whose lengths differ by precisely d. This implies
that the the greatest common divisor of the cycle lengths is d,
which proves the statement.

Lemma A.2. Let c ∈ N and (m1, τ1), (m2, τ2), . . . be pairs
of integers (mi, τi) ∈ N2. Denote by d the greatest common
divisor of all mi. If these pairs satisfy

miτj ≡ mjτi (mod (cd))

for all i and j then there exists b ∈ Z such that, for all i,

dτi ≡ mib (mod (cd)).

Furthermore, any b′ ∈ Z with b′ ≡ b (mod c) has the same
property.

Proof. We prove the statement by a direct construction. As-
sume without loss of generality that gcd(m1, . . . ,mn) = d
for some n ∈ N. This is possible, since there exist finitely
many mi such that their greatest common divisor is equal
to d. By Bézout’s identity, there exist z1, . . . , zn ∈ Z with
z1m1 + · · · + znmn = d. Choosing b = z1τ1 + . . . znτn, we
obtain for any 1 ≤ i ≤ n,

mib = zimiτi +
∑
j ̸=i

zjmiτj

= τi

d−
∑
j ̸=i

zjmj

+
∑
j ̸=i

zjmiτj

= τid+
∑
j ̸=i

zj(miτj −mjτi).

By assumption miτj−mjτi ≡ 0 (mod (cd)) and thus mib ≡
τid (mod (cd)). On the other hand, for any i > n, we set
zi = 0 and obtain via a similar argument

mib = zimiτi +

n∑
j=1

zjmiτj = τid+

n∑
j=1

zj(miτj −mjτi),

which implies that mib ≡ τid (mod (cd)). This concludes the
proof.
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