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Bounds on the Minimum Distance of Punctured
Quasi-Cyclic LDPC Codes
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Abstract—Recent work by Divsalar et al. has shown that prop-
erly designed protograph-based low-density parity-check codes
typically have minimum (Hamming) distance linearly increasing
with block length. This fact rests on ensemble arguments over
all possible expansions of the base protograph. However, when
implementation complexity is considered, the expansions are
frequently selected from a smaller class of structured expansions.
For example, protograph expansion by cyclically shifting connec-
tions generates a quasi-cyclic (QC) code. Other recent work by
Smarandache and Vontobel has provided upper bounds on the
minimum distance of QC codes. In this paper, we generalize these
bounds to punctured QC codes and then show how to tighten these
for certain classes of codes. We then evaluate these upper bounds
for the family of protograph codes known as AR4JA codes that
have been recommended for use in deep space communications in
a standard established by the Consultative Committee for Space
Data Systems. At block lengths larger than 4400 bits, these upper
bounds fall well below the ensemble lower bounds.

Index Terms—Binary codes, block codes, error correction codes,
linear codes, sparse matrices.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes originated in
the seminal work by Gallager [1] over 50 years ago. The

study of these codes remained largely dormant for decades,
with the important exception of Tanner’s work on graph-based
code constructions [2]. At low SNR, properly designed LDPC
codes exhibit good performance with practical, iterative mes-
sage-passing decoders. However, at higher SNRs, they may
suffer from an abrupt change in the slope of the error-rate
curve, a phenomenon known as an error floor. The floor can
be attributed, in part, to the existence of certain properties of
the Tanner graph that is associated with a chosen parity-check
matrix and upon which the decoder operates. Techniques that
reduce the occurrence of short cycles in the Tanner graph,
for example [3], [4], have been shown to mitigate the error
floor phenomenon. Specifically, the ACE algorithm [5] for
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placing edges in a graph-based code brings down the error floor
substantially by preventing short cycles from clustering around
low-degree variable nodes.
Another property of a code that limits its error performance

at high SNR is the minimum (Hamming) distance between
codewords. The minimum distance is also important in under-
standing the likelihood of undetected errors, a critical concern
in many applications. Yet, relatively little attention has been
paid to analyzing the minimum distance of LDPC codes and
to developing LDPC code design methodologies that ensure
large minimum distance. MacKay and Davey introduced upper
bounds on the minimum distance for a class of codes that
included quasi-cyclic (QC) LDPC codes in [6]. Notable later
work appears in [7], [8]. Of particular relevance to this study
are the upper bounds of Smarandache and Vontobel [9] which
allow for more variation in the underlying protograph used to
represent the code.
Another line of research has shown that most codes in the

ensemble of protograph-based codes characterized by a limited
number of degree-2 variable nodes have minimum distance
that increases linearly with block length [10]–[12]. The family
of LDPC codes known as AR4JA codes, recommended for
deep-space communications by the Consultative Committee for
Space Data Systems (CCSDS) [13], are obtained by puncturing
QC-LPDC codes designed from protographs in this ensemble.
The selected protographs are expanded to the actual codes (in
two stages) using the ACE algorithm to place the edges with
QC constraints.
In this paper, we extend the bounds of [9] to the general class

of punctured QC-LDPC codes and show that these bounds
can be tightened in cases where the protomatrices associated
with the underlying protograph contain many zero entries.
Much of our methodology parallels [9], with our extensions
motivated by an interest in bounding the actual minimum
distance of the AR4JA codes specified in the CCSDS standard.
Somewhat surprisingly, the application of our methodology
to the protomatrices underlying the AR4JA constructions for
code rates , and yields upper bounds of 66, 58,
and 56, respectively, independent of the code block length. For
large block lengths, these bounds fall well short of the linearly
growing ensemble lower bound mentioned above. Finally,
using slight modifications of previously proposed search tech-
niques, we identify specific codewords for each of these code
rates at two of the standardized code lengths. The weights of
these codewords validate the upper bounds and suggest that the
upper bounds may be fairly tight.
The remainder of this paper is organized as follows. Section II

provides a review of protograph-based LDPC code design, as
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Fig. 1. Simple protograph and corresponding protomatrix .

well as the specific family of AR4JA codes. Section III provides
the necessary mathematical background on the polynomial rep-
resentation and properties of QC-LDPC codes obtained by the
expansion of protographs in which the expansion is based on cir-
culant matrices. In Section IV, we review the upper bounds on
the minimum-distance of QC-LDPC codes in [9], and then de-
velop the necessary algebraic results to generalize these bounds
to punctured QC-LPDC codes. Section V describes techniques
that can produce tighter upper bounds for protographs with spe-
cific properties, including some of the AR4JA protographs. In
Section VI, we apply our methods to calculate upper bounds
on the minimum distance of the codes in the CCSDS standard,
which are obtained by a two-step QC expansion of the AR4JA
protographs. In Section VII, we use computer search to find
low-weight codewords for several AR4JA codes, compare them
to our length-independent bounds, and reconcile them with the
ensemble minimum-distance lower bounds [10]–[12]. We also
examine the girth of AR4JA codes. Section VIII concludes this
paper.

II. PROTOGRAPHS AND THE AR4JA FAMILY OF CODES

Protographs were introduced as a way to impart structure to
the interconnectivity of graph-based codes [14]. Protographs
themselves are a subset of multiedge type graphs [15, ch.7].
A protograph is essentially a Tanner graph with a relatively

small number of nodes. More specifically, a protograph,
, consists of a set of variable nodes , a set of check

nodes , and a collection of edges . Each edge, ,
connects a variable node, , to a check node, .
Protographs have the additional property that parallel edges are
permitted. Moreover, variable nodes in can be designated as
punctured; i.e., the corresponding bits are not included in the
transmitted codeword.
A simple protograph with three variable nodes, two check

nodes, and five edges is shown in Fig. 1. The accompanying pro-
tomatrix fully describes the protograph structure. The entry
in the th row and th column of the protomatrix indicates
the number of edges connecting the th check node to the th
variable node within the corresponding protograph.
A derived graph is constructed by replicating the protograph

a specified number of times and interconnecting the copies of
the variable and check nodes in a manner consistent with the
topology of . In this example, all copies of check node
are called “type ” check nodes. Similarly, all copies of vari-
able node 1 are called “type 1” variable nodes. The replicas of
an edge connecting check node and variable node 1 form a
so-called edge set, and their connected check nodes may be per-
muted within the set of “type ” check nodes. (The term “type,”

Fig. 2. Protograph replicated times.

Fig. 3. Derived graph obtained by edge set permutations that preserve degree
and interconnectivity among node types.

when used in Section VI to classify matrices as in [9], is unre-
lated.) The corresponding linear code is referred to as a proto-
graph code.
The application of this interconnection procedure to all

replicas ensures that node degrees and connectivity by node
types of the original protograph are maintained in the resulting
derived graph. The corresponding iterative decoder implemen-
tation may, in fact, be less complex than that of “random”
LDPC codes because of the structure imposed on the node
interconnections.
Figs. 2 and 3 illustrate the process of making copies

of the protograph of Fig. 1 and interconnecting them to generate
the derived graph. The parity-check matrix corresponding to the
derived graph of Fig. 3 is shown below, divided into submatrices
so that the relationship to the protomatrix of Fig. 1 is evident:

Protograph-based code design allows for the introduction of
degree-one variable nodes and punctured variable nodes in a
structured way. With regard to degree-one nodes, recall that the
optimization of irregular LDPC codes by density evolution typ-
ically avoids degree-one variable nodes. This is because they
induce an error rate floor in randomly constructed codes, even
as the block length grows toward infinity [15, p. 161]. How-
ever, density evolution often produces a significant fraction of
degree-2 variable nodes. This suggests that the incorporation of
degree-one variable nodes may offer a potential benefit in code
performance, as noted in [15, p. 382].
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Fig. 4. AR4JA protograph, rate- .

Fig. 5. AR4JA protograph, rate- .

The protograph for the rate AR4JA code [10] is
shown in Fig. 4. We follow the convention of representing the
transmitted variable nodes as solid circles and the punctured
variable nodes as unfilled circles. The protograph of the rate-
code is extended to rate- by adding two degree-4 variable
nodes, as shown in Fig. 5. The corresponding protomatrices are

(1)

and

(2)

respectively. The numerical labels of the variable nodes in the
figures correspond to the columns in the protomatrices, enumer-
ated from left to right, and the check nodes correspond to the
rows of the protomatrix.
The AR4JA family of protographs further extends the code

rate options by adding an additional four degree-4 variable
nodes. The rate- protograph has 11 variable nodes alto-
gether, as can be seen from its protomatrix,

(3)

For all of these rate options, the variable nodes in the derived
graph that correspond to copies of the degree-6 variable node
in the protograph (equivalently, the right-most column of the
protomatrix) are punctured.
The name AR4JA is derived from the operations reflected

in the protograph structure and indicated in Figs. 4 and 5. As
can be seen, the protograph embodies several features similar
to those of an Accumulate–Repeat–Accumulate code. For the
AR4JA code construction, a partial precoding by accumulation
(A) is followed by “repetition four times” (R4), culminating in

a “jagged” accumulation (JA). The jagged accumulation differs
from a standard accumulation, which contains degree-2 variable
nodes only, by the additional edge at the upper right of the pro-
tograph. In fact, the switch from a standard accumulation stage
to the jagged accumulation stage, which reduces the number of
degree-2 variable nodes, allows the AR4JA protographs to meet
the criterion of the ensemble of protographs with linearly in-
creasing minimum distance. More specifically, the techniques
of Divsalar and other researchers [10]–[12], [16] can be used
to calculate the asymptotic ensemble weight enumerators for
protograph-based codes, from which the typical relative min-
imum distance can be found. They prove that the min-
imum distance of most of the codes in the ensemble de-
rived from the protograph exceeds , where is the block
length of the code. For the rate- AR4JA protomatrix in (1),

[10].

III. QC EXPANSION AND POLYNOMIAL REPRESENTATION

The codewords of a block code may be divided into nonover-
lapping subblocks of consecutive symbols. A quasi-cyclic
(QC) code is a linear block code having the property that
applying identical circular shifts to every subblock of a code-
word yields a codeword. QC codes are a generalization of
conventional cyclic block codes and are simple to encode
[17, Sec. 8.14].
A binary QC-LDPC code of length can be de-

scribed by an sparse parity-check matrix ,
with , which is composed of circulant sub-
matrices. A right circulant matrix is a square matrix with each
successive row right-shifted circularly one position relative to
the row above. Therefore, circulant matrices can be completely
described by a single row or column. As in [9], we use the de-
scription corresponding to the left-most column.
A binary QC-LDPC code can also be described in poly-

nomial form, since there exists an isomorphism between the
commutative ring of circulant binary matrices and
the commutative ring of binary polynomials modulo ,
i.e., . Addition and multiplication in the latter
ring correspond to, respectively, addition and multiplication of
polynomials in , modulo .
The isomorphism between binary circulant matrices

and polynomial residues in the quotient ring maps a matrix to
the polynomial in which the coefficients in order of increasing
degree correspond to the entries in the left-most matrix column
taken from top to bottom. Under this isomorphism, the
identity matrix maps to the multiplicative identity in the poly-
nomial quotient ring, namely 1. A few examples of the mapping
(indicated by ) for are shown as follows:

This isomorphism requires that care be taken when repre-
sentingmultiplication of a circulant matrix by a binary vector

. If we associate the polynomial
with the matrix under the isomorphism just described, and
let represent the vector
, then the product maps to the polynomial
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modulo , and the product maps to the
polynomial modulo . Note that from
this paragraph onwards, all indexing begins at zero and all vec-
tors are row vectors.
Given a polynomial residue , we de-

fine its weight to be the number of nonzero co-
efficients. Thus, the weight of the polynomial is
equal to the Hamming weight of the corresponding bi-
nary vector of coefficients . For a length- vector of elements
in the ring, , we define
its Hamming weight to be the sum of the weights of its com-
ponents, i.e., . Throughout this
work, computations implicitly shift to integer arithmetic upon
taking the weight.
In using a ring, there are a few important points to bear in

mind. The elements in a ring need not have a multiplicative
inverse; the ones that do are called units. The ring may include
zero divisors, where a zero divisor (or factor of zero) is a nonzero
element , such that for some .
For example, the elements and in ,
the ring of integers modulo 6, are zero divisors. Note that units
cannot be zero divisors. Moreover, in finite rings, such as
or , every nonzero element of the ring must be
either a unit or a zero divisor [18, p. 205].
The elements of weight one in the polynomial quotient ring

are the monomials, all of which are units in the
ring. Specifically, the inverse of the monomial

, is the monomial . Under the
isomorphism defined above, the monomials in the ring corre-
spond to cyclic permutation matrices, which are binary circu-
lant matrices with a single one in each row and each column.
For any , the nonzero elements in the ring

that have even weight are zero divisors. For in-
stance, the product of the polynomial
and any even weight polynomial is zero. Odd weight polyno-
mials, on the other hand, may sometimes be zero divisors, such
as in the ring .
As we are interested in the connection between protographs

and QC-LDPC codes, we focus on parity-check matrices that
are in block matrix form, i.e.,

...
. . .

...

where each submatrix is an binary circulant ma-
trix. Let be the left-most entry in the th row of
the submatrix . We can then write ,
where is the identity matrix circularly left-shifted
by positions. Now, using the same convention as above for
identifying matrices with polynomial residues, we can asso-
ciate with the polynomial parity-check matrix , where

,

...
. . .

...

and .

We will be interested in the weight of each polynomial entry
of , or, equivalently, the row or column sum of each sub-
matrix of . Theweight matrix of , which is a matrix
of nonnegative integers, is defined as

...
. . .

...

Note that for a protograph-based QC-LDPC code, the weight
matrix of the associated polynomial parity-check matrix

is precisely the corresponding protomatrix,
. It is also convenient to represent code-

words of QC codes in polynomial form. In particular, the
set of codewords, which is the set of vectors such that

over , maps to the set of polynomial vectors
satisfying .

Under this identification, the entries of the polynomial
vector correspond to the
length- subblocks of the codeword that were defined at the
start of this section.

IV. MINIMUM DISTANCE BOUNDS FOR QC CODES

In this section, we review the upper bounds on the minimum
(Hamming) distance of QC-LDPC codes that were established
in [9] and then extend them to punctured QC-LDPC codes.

A. Upper Bounds for QC Codes

We will use the shorthand notation to indicate the set of
consecutive integers, . We also let

denote all the elements of , excluding the element . We denote
by the submatrix of containing the columns indicated by
the index set . Similarly, denotes the subvector containing
the elements of the vector indicated by the index set .
The permanent of a matrix over a ring is

defined to be

where the summation is over all permutations of the set
, and is the th entry of the permuted set . The

definition of the permanent resembles that of the determinant of
a square matrix;

where equals if is an even permutation and
if is an odd permutation. (Recall that an even permutation is
obtained by applying an even number of transpositions of pairs
of elements to the sequence .) When the ele-
ments of belong to a ring of characteristic two, where addition
and subtraction are interchangeable, . Like
the determinant, the permanent may be computed recursively by
taking the cofactor expansion along any row or column. That is,
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for any , the cofactor expansion of the permanent of ma-
trix along the th row is

(4)

with denoting the submatrix of with the th row removed.
(Note that the subscript on in (4) removes the th
column.)
In the derivation of upper bounds on the minimum distance,

we will make use of the notion of dependence of vectors over a
commutative ring . This will require an appeal to some special
properties of the ring of matrices over a finite commutative ring
with unity. We remark that, in [9], an alternative approach that
exploits the connection between QC block codes and convolu-
tional codes was used in the derivation of the upper bounds on
the minimum distance.
Let be a set of vectors over ; that is,

, where . The set is
said to be dependent1 if there exist elements ,
not all zero, such that the linear combination

(5)

If no such set of elements exists, the set is said to be indepen-
dent. (See, for example, [19, p. 454].) We note that this indepen-
dence test may be applied to the set of row vectors of a matrix
with elements in . A dependent row is any row in (5) which is
multiplied by a nonzero scalar.
Lemma 1: Let be a square matrix over a finite commutative

ring with unity. Then, equals zero or is a zero divisor if
and only if the set of row vectors of is dependent.

Proof: The proof of Lemma 1 can be found in the Ap-
pendix, along with some illustrative examples.
We now review a technique from [9] for explicitly con-

structing codewords of a QC code specified by a polynomial
parity-check matrix.
Lemma 2 (Lemma 6 [9]): Let be a QC code with polyno-

mial parity-check matrix . Let
be an arbitrary size- subset of and let

be a length- vector whose elements are
given by

.

Then, is a codeword in .
Proof: For any , let the th row of be .

Then,

(6)

(7)

(8)

1Some authors use the term “linearly dependent” in this context.

where computations are in the ring . The co-
factor expansion of (7) is (6). As the elements belong to a ring
of characteristic two, the permanent in (7) equals the determi-
nant in (8). The determinant shown must be zero as it contains a
repeated row. Since every row of has zero inner product
with , we conclude that . Therefore,
is a codeword in .
While the function applied to a collection of nonnegative

real numbers returns the minimum, we will require a variant
of this function, denoted , defined as follows. For a finite
collection of nonnegative real numbers , let be the
subset of positive elements of . We define

if
if .

The minimum distance of the QC code can then be written as

(9)

where we have used to exclude the all-zero codeword.
We now develop two upper bounds on the minimum distance.

The first, based upon [9], uses Lemma 2 to produce low-weight
codewords from the polynomial parity-checkmatrix of the code.
We will generate as many codewords as possible and apply (9)
to achieve an upper bound on the minimum distance.
Theorem 3 (Theorem 7 [9]): Let be a QC

code with the polynomial parity-check matrix
. Then, the minimum

distance of satisfies the upper bound

(10)

Proof: Let be a subset of of size- and apply
Lemma 2 to construct a codeword in . The weight of
is

(11)

The upper bound (10) follows immediately by combining (9)
and (11) and noting that, in general, only a strict subset of the
codewords can be generated by Lemma 2.Wemust use the
function because, for some choices of the set , the construction
in Lemma 2 will yield the all-zero codeword, and we have to
exclude those sets from the calculation of the upper bound.
The second upper bound on the minimum distance makes use

of an upper bound on the weight of the permanent of a ma-
trix over the ring , as described in the following
lemma.
Lemma 4: Let be a matrix with elements

in the ring . Then, the weight of the permanent
of satisfies the upper bound
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Proof: Let the polynomials and be in the ring
. We know that

, as the maximum number of nonzero coefficients in
the sum is .
Similarly, we know that

, as the maximum number of nonzero coefficients in
the product is . Therefore,

The second upper bound on the minimum distance, described
in the next theorem, is expressed in terms of the weight matrix
of the code.
Theorem 5 (Theorem 8 [9]): Let be a QC code with polyno-

mial parity-check matrix and
let . Then, the minimum distance of satisfies
the upper bound

(12)

Proof: The proof follows from Theorem 3 and Lemma 4.
The only subtlety arises from the fact that the sets excluded
from (10) by the function may not be excluded from (12)
by the application of , i.e., there might be sets such that

but
. The resolution of this potential complication can be achieved
by reference to Theorem 8 in [9].
Remark 1: Alternatively, we may prove the correctness of

this upper bound by following the arguments presented in the
proof of Theorem 9, below. Since Theorem 9 includes punc-
turing, consider the set to be empty for this case.

B. Upper Bounds for Punctured QC Codes

We now extend the preceding upper bounds on the minimum
distance to the class of punctured QC codes. The puncturing
strategy of the AR4JA codes is prompted by the addition of
the precoder to the underlying protographs, a modification that
generally improves the decoding threshold [10], [11]. Note that
puncturing whole subblocks of the polynomial codeword
preserves quasi-cyclicity. The set indexes the sub-
blocks of the polynomial codeword which are not trans-
mitted. Indices of may also be associated with columns of
the polynomial parity-check matrix .
We begin with a QC code based upon . Next, we de-

fine a new QC code by puncturing the components of
that are indexed by . We mark the subblocks to be punctured

with the symbol “ ” as reindexing would introduce unneces-
sary notational complexity, and we define , since the
punctured symbols are not transmitted.
Lemma 6: Let be a punctured QC code constructed by

puncturing subblocks of the QC code , defined by the polyno-
mial parity-check matrix . Let
the subblocks of indexed by the set , be punc-
tured. Let be an arbitrary size- subset of . Let
the length- vector , with

, be defined by

.

Then, is a codeword of the punctured code .
Proof: This follows by noting that is obtained by

puncturing the subblocks indexed by from the codeword
of Lemma 2.
Theorem 7: Let be a punctured QC code constructed

by puncturing subblocks of the QC code with polynomial
parity-check matrix . Let the
subblocks of indexed by the set , be punctured.
Then

(13)

Proof: Let be a subset of of size- , and apply
Lemma 6 to construct a codeword in . The weight of
this codeword is

(14)

where we use the fact that . Combining (14) with
(9), we obtain the upper bound (13), again noting that we obtain
an upper bound because in general only a strict subset of the
codewords can be generated by Lemma 6.
Care must be taken to ensure that the puncturing operation

does not reduce the dimensionality of the code, i.e., the base-2
logarithm of the number of distinct codewords. This is a require-
ment in the results that follow. Clearly, if puncturing a nonzero
codeword of produces the all-zero codeword of , dimen-
sionality will be lost with respect to the original code.
Lemma 8: Let be a punctured QC code constructed by

puncturing subblocks of the QC code , while maintaining the
dimensionality of . Let the length- vector be a codeword
of and be a codeword of obtained by puncturing .
Then, if and only if .

Proof: The necessity of the condition follows
from the requirement that the dimensionality of the original
code be maintained. The sufficiency of the condition follows
directly from the fact that puncturing the all-zero codeword of
produces the all-zero codeword of .
Since the contribution of each subblock to the weight of the

codeword is nonnegative, the weight of any particular punctured
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codeword must be less than or equal to its weight before punc-
turing, as can be seen by comparison of (14) to (11). Moreover,
Lemma 8 implies that the upper bound of Theorem 7 will al-
ways be less than or equal to the upper bound of Theorem 3,
where no puncturing is used.
Theorem 9: Let be a punctured QC code constructed by

puncturing subblocks of the QC code , defined by the poly-
nomial parity-check matrix and
let . Let the subblocks of indexed by the set

, be punctured, while maintaining the dimension-
ality of the code. Then

(15)

Proof: The proof techniques we use are similar to those
used in the proof of Theorem 8 in [9], while avoiding the use of
intermediate bounds based on convolutional codes. Let be a
subset of of size- , and apply Lemma 6 to construct
a codeword, , in code . From (14), we obtain

where we invoked Lemma 4 to obtain the inequality in the
second step.
We now show the validity of using the function

in the upper bound. The potential complication arises from
the fact that for specific choices of the set , namely those
which yield the all-zero codeword in Lemma 6, the
function may not exclude their contribution to (15), even
though it does so in the bound (13). So, assume that a spe-
cific choice of yields according to (14),
but produces a nonzero value for . We

must show that there exists a nonzero codeword for
which . Thus, for such
specific choices of , we assume in the remainder of the
proof that . By Lemma 8, we know
that for this . By Lemma 2, we know that every

submatrix of must have a zero permanent and
determinant. We now consider two cases.
Case 1: If , then this specific

has no effect on the bound (15), as the zero result will be dis-
carded by the function.
Case 2: Alternatively, if , there

are no all-zero rows in and, therefore, none in .
However, we know that every submatrix of has
a zero determinant for the specific that generates .
By Lemma 1, this implies that the set of rows of
is dependent. We analyze this case further by setting aside
the th row of , preferring a dependent row
to be the th row.2 We form a new matrix, , with the

2The proof holds no matter which row is chosen for removal; however, the
row removal process terminates more rapidly if a dependent row is chosen.

remaining rows of and a matrix, , with the
corresponding rows of . Because of the assumption that

, there must be at least one index
, such that . The cofactor expansion

of this term along row contains a term

(16)

for some , where the positive integer is the entry
in the th row and th column of . Let .
Proceeding, we now assume that contains at least

one submatrix with nonzero permanent. (If
this is not true, we repeat the row removal process above, which
may need to be repeated several times. In the extreme case, these
reductions could continue until we get a 1 2 matrix ,
having at least one nonzero entry.) Then, applying Lemma 2,
with and , we generate a nonzero vector,

, with components

if

otherwise.

The proof of Lemma 2 implies that . Multi-
plying the removed row of the parity-check matrix by the vector

yields

since all submatrices of were assumed to have a
zero permanent. Therefore, the nonzero vector is a code-
word in .
By puncturing , we generate another nonzero vector,

, which is a codeword in . The Hamming weight of this
codeword satisfies the upper bound

(17)

(18)

(19)

(20)

Applying Lemma 4 produces (17). Using the fact that ,
a consequence of (16), we upper bound (17) by (18). Next, we
further upper bound (18) by (19) by adding additional nonneg-
ative terms to (19). We recognize that (19) contains the sum of
the cofactor expansions of each addend of (20).
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We can now conclude that, even if a set generates the all-
zero codeword in Lemma 6, it still yields a valid upper bound
on the minimum distance of the punctured code, i.e.,

provided that is positive for at least one .
The validity of the upper bound in (15) follows.

V. TIGHTER BOUNDS ON THE MINIMUM DISTANCE

Examining the AR4JA protomatrices for rate- in (2) and
rate- in (3), we see cases where the selection of
columns of the weight matrix will produce a submatrix
containing an all-zero top row. This particular selection of
produces the all-zero codeword by the codeword construction
of Lemmas 2 and 6, and, thus, will have no effect on the upper
bounds of Theorems 3, 5, 7, and 9.We can improve those bounds
by finding nonzero codewords after row elimination, as in the
proof of Theorem 9.
In the interest of brevity, we will state the following theo-

rems in a way that applies to both unpunctured and punctured
codes. In the unpunctured case, it is understood that the set
is empty.
Lemma 10: Let be a QC code constructed by optionally

puncturing subblocks of the QC code , defined by the polyno-
mial parity-check matrix . Let
the subblocks of indexed by the set , be punctured.
Let be a submatrix of with rows
, removed. Let be a subset of of size , such

that

(21)

Let the components of the length- vector
, with

, be defined as

.

Then, is a codeword in .
Proof: We consider two cases.

Case 1: If (the code is unpunctured), then . We
first examine every retained row of , denoted by ,
where and . The inner product of with the
vector is

since the determinant expression contains a repeated row. Next,
for every row removed from , i.e., every row
in which , we have

because the permanent was assumed to be zero in (21). Since all
rows of the original polynomial parity-check matrix have
been accounted for, and is a codeword
in .
Case 2: If the code is punctured, let the components of

the length- vector , with
, be defined as

if

otherwise.

The proof follows by noting that is obtained by puncturing
subblocks indexed by from the unpunctured codeword ,
above. Since Case 1 establishes that , we conclude that

.
Not only does Lemma 10 remove all-zero rows from ,

it also helps produce lower weight codewords in more general
conditions, as the following example shows.
Example 1: Consider the polynomial parity-check matrix

where , 2, 3, are arbitrarily chosen polynomials.
Since with the column set , as
required by (21), we proceed with single row removal on .
Application of Lemma 10 for all possible choices of with

yields the codewords and

However, with careful consideration, we see that Lemma 10will
let us delete two subrows when the column set is .
This produces the obvious codeword ,
when or .
Theorem 11: Let be a QC code constructed by optionally

puncturing subblocks of the QC code , defined by the polyno-
mial parity-check matrix . Let
the subblocks of indexed by the set , be punctured.
Let be a submatrix of with rows
, removed. Let be a subset of of size , such

that (21) holds. Then

(22)

Proof: The proof mirrors the proof of Theorem 7, with the
weight of the resulting codeword now given by
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Note that the minimization in (22) requires the removal of
every possible set of rows and every set of retained columns
for which and (21) holds. In the case of

single row removal , any row may be removed, as our
requirement (21) degenerates to the condition
, which is independent of the row selected for removal. For
multiple row removal, the conditions are more complex to eval-
uate as each row in the set to be removed must be tested indi-
vidually to verify that (21) holds.
For a specified expansion factor , Lemma 10 and Theorem

11 impose certain conditions on the set that allow for the re-
moval of rows from the polynomial parity-check matrix. How-
ever, these conditions cannot be directly translated into a form
applicable to the nonnegative weight matrix , which is inde-
pendent of . Therefore, the following theorem uses the stricter
condition that the subrow is all-zero before removal.
Theorem 12: Let be a QC code constructed by optionally

puncturing subblocks of the QC code , defined by the polyno-
mial parity-check matrix and
let . Let the subblocks of indexed by the set

, be punctured, while maintaining the dimension-
ality of the code. Let be a submatrix of with rows

, removed. Let be a subset of of size ,
such that the subrows . Then

Proof: Let be the submatrix of with rows
, removed. The subrows of the weight matrix

to be removed are all-zero (i.e., ) if and only if
the corresponding subrows of the polynomial parity-check ma-
trix are all-zero (i.e., ). The latter
condition implies that (21) holds and we may apply Lemma 10
with this and and construct a codeword in the code
. By Theorem 11, the weight of is

where Lemma 4 is applied to obtain the inequality. Once again,
the use of the function in the bound must be validated
by consideration of the all-zero codewords discarded in The-
orem 11. The reasoning largely parallels that used in the proof
of Theorem 9, but with subrows of guaranteed to be
all-zero. We omit the details.
Example 2: The benefits of Theorem 12 may be seen by con-

sidering the weight matrix given by

Treating the code as unpunctured, Theorem 9 produces a min-
imum distance upper bound of , since all 3 3 submatrices
of have a zero permanent. Theorem 12 produces a much
tighter bound of 3, when .

Example 3: We now consider the weight matrix

which resembles the rate- AR4JA protomatrix in (1).
Treating the code as unpunctured, Theorem 9 produces a min-
imum distance upper bound of 30, while Theorem 12 produces
a substantially tighter upper bound of 10. The reason for the
difference is that the permanents of Theorem 9 produce large
values with the top row of present. Theorem 12 will remove
the top row of when the chosen column set is ,
yielding the tighter bound.

VI. QC EXPANSION OF THE AR4JA FAMILY OF CODES

A direct QC expansion of the AR4JA protographs shown in
Figs. 4 and 5 will generate a QC-LDPC code. Applying The-
orems 9 and 12 to the AR4JA protomatrices (1)–(3) yields an
upper bound of 10 on the minimum distance for all code rates,
independent of block length. A minimum distance of 10 or less
is rather small for the large block lengths desired, motivating
the consideration of a more involved expansion procedure.
In fact, the construction of the AR4JA codes defined in [13]

makes use of a two-step expansion process. After a first QC
expansion (“lifting”) by a factor of 4, a larger weight matrix is
obtained, as illustrated for rate- by the matrix

(23)

This is a so-called type-1weight matrix—that is, it contains only
ones and zeros—implying that the associated protograph does
not have parallel edges [9].
According to the CCSDS standard, the weight matrices so ob-

tained, such as (23), are considered to be protomatrices them-
selves, that are then expanded in a second QC expansion to
create QC-LDPC codes with three block lengths, corresponding
to , 4096, and 16 384 information bits. For example,
quasi-cyclically expanding (23) by a factor of and
puncturing the last four columns of (23) yields the

AR4JA code. In this final expansion, the binary
parity-check matrix is constructed by replacing each 1 entry
in (23) by a cyclic permutation matrix selected using a variation
on the ACE algorithm. These codes are QC with a subblock
size equal to the second step expansion factor (e.g., ).
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TABLE I
MINIMUM DISTANCE OF AR4JA PROTOMATRICES AFTER FIRST QC EXPANSION

(INDEPENDENT OF BLOCK LENGTH)

In other words, the two-step process is not equivalent to any
single-step QC expansion.
To compute length-independent minimum distance bounds

for the AR4JA codes specified in the CCSDS standard using
the techniques we have developed in this paper, the protoma-
trices such as (23) should be used. The resulting upper bounds,
shown in Table I, range from 56 to 66. Note that, prior to [9],
the tightest known upper bound on the minimum distance of
QC-LDPC codes was in the case when the protoma-
trices are all-ones [6], [8]. (We find in [9] that
also holds for the more general case of type-1 protomatrices.)
For the protomatrix of (23), where , this would yield the
extremely loose upper bound .
This example points to the potential advantage of a two-step

QC expansion, as suggested by the increase from 10 to the range
56–66 in the minimum distance upper bound. It also illustrates
the strength of the general class of hierarchical QC-LDPC codes
that have recently been examined in [20].
In order to reduce the computation time required to produce

the results in Table I, a number of techniques were used. For
larger weight matrices, if we assume that calculations are domi-
nated by the computation time for the permanent, then
the total time to evaluate Theorem 9 is . The
final term is the number of sets in the weight matrix
and is shown in the right column of Table I for AR4JA. For

the computations of interest, with , we built a simple
recursive routine with for computing sparse per-
manents (as measured on a 2.6 GHz CPU). Thus, the estimated
time for computing the rate- results in Table I is , while
we measured an actual run-time of , including bookkeeping
and set manipulations. On the other hand, for the rate- con-
struction, the estimated time to completely evaluate the upper
bound of Theorem 9 is 344 days. Therefore, we selectively di-
rected the computations, yielding the results shown in Table I.
These selective computations were performed by choosing sets
which, based upon the findings from the rate- code, we

thought would yield the smallest value permanents in evalu-
ating (15). Additional efforts at each code rate to recompute the
minimum distance bounds using the row elimination logic of
Theorem 12 did not yield tighter results with the AR4JA weight
matrices.

VII. NUMERICAL RESULTS OBTAINED BY SEARCH

In this section, we present numerical results on the minimum
distance of AR4JA codes obtained by means of computer search
for low-weight codewords.We also examine bounds on the girth
of AR4JA codes.

TABLE II
DISTANCE OF CCSDS AR4JA PARITY-CHECK MATRIX

A. Distance Bounds From Codeword Search for AR4JA Codes

Several papers, including [21]–[23], have described search
techniques to find the minimum distance and/or stopping dis-
tance of general LDPC codes. To validate our bounds on the
minimum Hamming distance, we utilized the error impulse and
decoding algorithm of [21] to conduct a nonexhaustive search
for small stopping sets, and then examined the results to identify
the codewords. We modified the algorithm to take advantage of
QC symmetry by skipping impulse combinations that are iden-
tical after cyclically shifting every subblock.We also broadened
the search space by increasing the value of the parameters in
[21] corresponding to the number of iterations and the max-
imum threshold . In addition, before the erasure decoding step,
we erased the punctured symbols in addition to the symbols al-
ready erased by the algorithm. The resulting upper bounds on
the minimum distance and the stopping distance obtained by
this search methodology are summarized in Table II.
It should be noted that, in [21], the search algorithm was ap-

plied to rate- codes up to a minimum distance of 19, and the
estimated weight spectrum results were listed only up to a max-
imum codeword weight of 25. It may be the case, then, that the
application of this method to some of the AR4JA codes under
consideration here may be pushing the algorithm beyond its ef-
fective range. Thus, further searching may turn up lower weight
codewords and stopping sets than we have found.
We note that, as a consequence of the quasi-cyclicity of the

code, when a codeword of a QC-LDPC code is located by our
search technique, it is an indication of a group of codewords
with the same weight. For instance, the low-weight codewords
of the rate- CCSDS AR4JA code generally
occur as a set of cyclically shifted versions of a base
codeword. On occasion, when all subblocks are periodic with a
common period, the cyclically shifted codeword returns to the
base codeword after only a fraction of shifts. Accounting
for this, we tabulated all distinct low-weight codewords found
using our search algorithm for three of the AR4JA parity-check
matrices given in the CCSDS standard. The estimated weight
spectra, based upon the codewords we identified during our
search, are shown in Tables III–V.
Fig. 6 summarizes our minimum distance results for rate-

AR4JA codes as a function of the block length . First, the upper
bound of 66 obtained from the weight matrix using Theorems 9
and 12 is plotted as a horizontal line. The points indicated by the
symbol represent the minimum distance upper bounds based
on the QC polynomial parity-check matrices from Theorem 7.
These bounds are 62, 63, and 65 for the block lengths 2048,
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TABLE III
ESTIMATED WEIGHT SPECTRUM FOR CCSDS AR4JA RATE-

USING SEARCH PARAMETERS: AND

TABLE IV
ESTIMATED WEIGHT SPECTRUM FOR CCSDS AR4JA RATE-

USING SEARCH PARAMETERS: AND

TABLE V
ESTIMATED WEIGHT SPECTRUM FOR CCSDS AR4JA RATE-

USING SEARCH PARAMETERS: AND

Fig. 6. Minimum distance bounds versus block length for rate- AR4JA.

8192, and 32 768, respectively. Finally, the codeword weights
found by our search technique, as shown in Table II, are desig-
nated by the symbol . Note that the smallest codeword weights
found in our search are fairly close to the length-independent
bound of 66 for all block lengths. We note that while our code-
word searches generally used error impulse pairs, the codeword
of weight 52 at the smallest block length was found using im-
pulse triplets.
Divsalar et al. showed that most codes in the ensemble

of certain protograph-based codes, including the AR4JA
codes, have minimum distance linearly increasing with block
length [10]–[12]. Specifically, by upper bounding the en-
semble average weight enumerator, they were able to prove
that exponentially fast as ,
for some constant . For the rate- AR4JA-based
ensemble of codes, they computed the value . The

TABLE VI
GIRTH OF THE CCSDS AR4JA CODES

corresponding linear growth of the ensemble minimum-dis-
tance is plotted in Fig. 6 as a dashed line.
It can be seen that for the QC-AR4JA codes that appear in

the standard, our bounds are tighter than the linearly increasing
ensemble bound for . By examining the proba-
bility that a random expansion is QC, we can shed some light
on this possibly surprising situation. Consider the expansion of
each 1 entry in a protomatrix such as (23) by a factor . There
are cyclic permutation matrices to choose from and gen-
eral permutation matrices. Thus, a randomly chosen permuta-
tion matrix has only a probability of of being cyclic.
This probability goes to zero superexponentially fast. Since the
QC class of expansions is such a small fraction of the ensemble
of all possible expansions, one cannot claim with certainty that
the probabilistic bound of Divsalar et al. applies to the resulting
class of codes.

B. Bounds on the Girth of AR4JA Codes

In this section, we show that the two-step expansion approach
was essential in order to achieve girths beyond 6 for larger block
lengths of the rate- AR4JA codes. Recall that the girth of a
code denotes the length of the shortest cycle in its Tanner graph.
Table VI summarizes the results of our calculations of the girth
of the AR4JA codes. The girths of the standardized codes for
each block length and code rate are shown in the table. Also
shown, in parentheses, are upper bounds obtained by the tree
method of [1] and [16], which we briefly describe. In the pro-
tograph, the neighborhood of any node can be diagrammed as a
tree. We can measure how tall this tree is at a given number of
nodes corresponding to the specified block length. We do this
for each node type in the protograph and select the smallest as
an upper bound on girth that would apply to any possible expan-
sion method. These are the upper bounds recorded in the table.
We also determined upper bounds on the girth that derive

from properties of QC expansions. Since the AR4JA protoma-
trices of (1)–(3) all contain the element 3, the girth of the derived
graphs obtained by QC expansion cannot exceed 6 (see, for ex-
ample, [9]). However, since the codes in the CCSDS standard
use a two-step expansion, we must examine the intermediate
protomatrices such as (23) to evaluate the girth. We find that
they contain the submatrix

at every code rate. This limits the girth of the QC expansion to
a maximum of 12, independent of block length [8], [24], [25],
as shown in the final row of Table VI.
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VIII. CONCLUSION

This work has extended the upper bounds on the minimum
distance of QC-LDPC codes developed in [9] to the class of
punctured QC-LDPC codes. We have also tightened those dis-
tance bounds in situations where the codes are derived from pro-
tographs whose protomatrices contain many zeros.
We evaluated the minimum distance upper bounds for the

AR4JA codes specified in the CCSDS standard for deep space
communication. Our results show that the use of a two-step ex-
pansion in the definition of these codes was critical to achieve
reasonably high minimum distance. On the other hand, we have
also shown that the minimum distance of the standardized QC
AR4JA codes does not grow with block length, even though
the asymptotic ensemble minimum distance of AR4JA codes
grows linearly in the block length [10]–[12]. Nevertheless, the
minimum distance of the CCSDS codes is likely high enough
for practical purposes.
The bounds developed here and in [9] can be useful tools in

evaluating future QC-LDPC code designs, both punctured and
unpunctured.

APPENDIX
PROOF OF LEMMA 1

In this appendix, we state several properties of matrices
over a commutative ring with unity. Several terms defined in
Sections III and IV will be used here, such as determinant, unit,
zero divisor, and independence.

A. Matrices Over Commutative Rings

Let be a commutative ring and let be the
ring of matrices over . The determinant of a ma-
trix is denoted by . Given matrices

, we have the identity [19, Sec. 12.2]

(24)

If is a commutative ring with unit element 1, then a matrix
is a unit in if and only if is a unit in .

To see this, suppose that has inverse . From (24), we
conclude that , where is the

identity matrix. This implies that is a unit in .
Conversely, fromCramer’s rule, we have ,
where is the adjugate (or classical adjoint) of [19]. If

is a unit in , then is invertible, with inverse
.

Consider the free module of rank over , that is,
. The set

, where ,
generates if every can be expressed as a linear
combination of members of the set , i.e., ,
with , for all . Furthermore, a generating
set is a basis for if it is also independent. The standard
basis of is simply the set of rows of the

identity matrix .
The following theorem is a reformulation of material from

[26, Ch. 5].

Theorem 13: Let be a commutative ring with unity, and
let have rows and columns

. The following statements are equiva-
lent.
1) is invertible, i.e., a unit in .
2) is a unit in .
3) The set generates .
4) The set generates .
Proof: We have already shown in the discussion above the

equivalence between 1) and 2). We now prove that 1) implies 3).
Namely, if is invertible, then for any we can write

Conversely, if the rows of generate , then they must
generate the elements of the standard basis. Given vec-
tors satisfying , for all

, the inverse matrix is the matrix whose
rows are the vectors .
Finally, the equivalence of 3) and 4) follows from the fact that

, which implies that is a unit in
if and only is.

B. Finite Commutative Rings

In our application, we consider finite rings with unity. As al-
ready noted, every nonzero element of a finite ring must be ei-
ther a unit or a zero divisor.

Theorem 14: Let be a finite commutative ring with unity
and let . The rows of generate

if and only if they are independent.
Proof: If the rows of generate , then, by Theorem 13,
is invertible and not a zero divisor in . Therefore, if

a matrix satisfies , then , proving
that the rows of are independent. Conversely, suppose the
rows of are independent. If they do not generate , then, by
the pigeonhole principle, there exist distinct vectors
such that . This implies that

. This contradicts the assumed independence of the
rows of , so the rows of must generate .
Theorems 13 and 14 imply that if is a finite commuta-

tive ring with unity and , then the determinant
is zero or a zero divisor in if and only if the rows of

are dependent. Of course, the ring used throughout this work,
, is a finite commutative ring with unity. This

completes the proof of Lemma 1.
Example 4 (Integer and quotient rings):

a) Consider the infinite ring of integers with . Define
the matrix

Note that , and that 2 is not a unit in . By
Theorem 13, the matrix is not invertible and, therefore,
its rows cannot generate all of . In particular, no linear
combination of the rows of can generate odd integers
in the second coordinate. On the other hand, the rows are
independent, as can be easily verified.
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b) Next, consider , the finite ring of integers
modulo 3. Here, the ring element 2 is a unit, since .
By Theorem 13, is invertible and, therefore, its rows
generate . In accordance with Theorem 14, the rows
are independent.

c) Finally, consider , the finite ring of integers
modulo 6. In this case, 2 is a zero divisor, so, by Theorem
13, the rows of do not generate . By Theorem 14,
there is at least one dependent row. Specifically, multi-
plying the second row by the scalar yields the zero
element .
Example 5 (Polynomial and quotient rings):

a) Consider the infinite polynomial ring . Define
the square matrix

Note that , which is not a unit in . There-
fore, by Theorem 13, the matrix is not invertible and its
rows do not generate . Yet, the rows are independent.

b) Consider the finite quotient ring .
In this ring, is a zero divisor. Therefore, is not
invertible and the rows do not generate . Since is
finite, Theorem 14 implies that the set of rows is de-
pendent. Specifically, multiplying the second row by the
scalar yields the zero
element .
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