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Abstract—Constrained codes are a key component in the digital
recording devices that have become ubiquitous in computer data Data Source p=| Source Encoder | Channel Encoder
storage and electronic entertainment applications. This paper
surveys the theory and practice of constrained coding, tracing
the evolution of the subject from its origins in Shannon’s classic
1948 paper to present-day applications in high-density digital
recorders. Open problems and future research directions are also Digital Recording
addressed. Channel
Index Terms—Constrained channels, modulation codes, record-
ing codes.
I. INTRODUCTION Retrieved Data | Source Decoder |-t Channel Decoder

S has been observed by many authors, the storage and ) o )
A retrieval of digital information is a special case of digital'9- 1+ Block diagram of digital recording system.
communications. To quote E. R. Berlekamp [18]:
any errors remaining after the detection and demodulation
process. (See [41] in this issue for a survey of applications
of error-control coding.)
As we will discuss in more detail in the next section, a
Thus as information theory provides the theoretical undaecording channel can be modeled, at a high level, as a linear,
pinnings for digital communications, it also serves as thatersymbol-interference (1SI) channel with additive Gaussian
foundation for understanding fundamental limits on reliableoise, subject to a binary input constraint. The combination
digital data recording, as measured in terms of data rate asfdthe ISI and the binary input restriction has presented a
storage density. challenge in the information-theoretic performance analysis
A block diagram which depicts the various steps in recordf recording channels, and it has also limited the applica-
ing and recovering data in a storage system is shown in Fig.bllity of the coding and modulation techniques that have
This “Fig. 1" is essentially the same as the well-known Fig. heen overwhelmingly successful in communication over linear
used by Shannon in his classic paper [173] to describeGaussian channels. (See [56] in this issue for a comprehensive
general communication system, but with the configuration dfscussion of these methods.)
codes more explicitly shown. The development of signal processing and coding tech-
As in many digital communication systems, a concatenatagjues for recording channels has taken place in an environ-
approach to channel coding has been adopted in data recordingnt of escalating demand for higher data transfer rates and
consisting of an algebraic error-correcting code in cascag®rage capacity—magnetic disk drives for personal computers
with a modulation code. The inner modulation code, whicloday operate at astonishing data rates on the order of 240
is the focus of this paper, serves the general function pfillion bits per second and store information at densities of
matching the recorded signals to the physical channel anp to 3 billion bits per square inch—coupled with increasingly
to the signal-processing techniques used in data retrievsgvere constraints on hardware complexity and cost.
while the outer error-correction code is designed to removeThe needs of the data storage industry have not only fostered
innovation in practical code design, but have also spurred the
development of a rigorous mathematical foundation for the
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storage in his classic two-part paper whose golden anniversary Il. BACKGROUND ON DIGITAL RECORDING

we celebrate in this issue—indeed random-access storage afe nistory of signal processing in digital recording systems
we know it today did not exist at the time—a large number Qfan pe cleanly broken into two epochs. From 1956 until
fundamental results and techniques relevant to coding for st yimately 1990, direct-access storage devices relied upon
age were introduced in his seminal publication. We will als@yna10q” detection methods, most notably peak detection.
survey emerging directions in data-storage technology, agdginning in 1990, the storage industry made a dramatic shift
discuss new challenges in information theory that they offefy «gigital techniques, based upon partial-response equaliza-
The outline of the remainder of the paper is as follows. 5y and maximum-likelihood sequence detection, an approach
In Section II, we present background on magnetic-recordigas had been proposed 20 years earlier by Kobayashi and
channgls. Section II-A gives a bagc dgscrlptlon of_the physmﬂng [130], [131], [133]. To understand how these signal-
recording process and the resulting signal and noise characfzhcessing methods arose, we review a few basic facts about
istics. In Secthn [I-B, we discuss mathematlcal models thgfe physical process underlying digital magnetic recording.
capture essential features of the recording channel and W&aders interested in the corresponding background on optical
review information-theoretic bounds on the capacity of the?@cording may refer to [25], [84], [L02, Ch. 2], and [163].)
models. In Section II-C, we describe the signal-processiRge gistill from the physics several mathematical models of
and -detection techniques that have been most widely usgd recording channel, and describe upper and lower bounds
in commercial digital-recording systems. on their capacity. We then present in more detail the analog

In Section lll-A, we introduce the input-constrained, (N0iS€;nq digital detection approaches, and we compare them to the
less) recording channel model, and we examine certain iMgstimal detector for the uncoded channel.

domain and frequency-domain constraints that the channel
input sequences must satisfy to ensure successful implemen-
tation of the data-detection process. In Section II-B, wd- Digital Recording Basics
review Shannon’s theory of input-constrained noiseless chan-The magnetic material contained on a magnetic disk or tape
nels, including the definition and computation of capacity, thean be thought of as being made up of a collection of discrete
determination of the maxentropic sequence measure, and rifggnetic particles or domains which can be magnetized by
fundamental coding theorem for discrete noiseless channels. write head in one of two directions. In present systems,
In Section 1V, we discuss the problem of designing efficiendligital information is stored along paths, called tracks, in this
invertible encoders for input-constrained channels. As in tieagnetic medium. We store binary digits on a track by magne-
case of coding for noisy communication channels, this iizing these particles or domains in one of two directions. This
a subject about which Shannon had little to say. We withethod is known as “saturation” recording. The stored binary
summarize the substantial theoretical and practical progrelgits usually are referred to as “channel bits.” Note that the
that has been made in constrained modulation code desigrword “bit” is used here as a contraction of the words “binary
In Section V, we present coded-modulation techniquesigit” and not as a measure of information. In fact, we will
that have been developed to improve the performance g#fe that when coding is introduced, each channel bit represents
noisy recording channels. In particular, we discuss familiemly a fraction of a bit of user information. The modifier
of distance-enhancing constrained codes that are intended“trannel” in “channel bits” emphasizes this difference. We
use with partial-response equalization and various types will assume a synchronous storage system where the channel
sequence detection, and we compare their performancebits occur at the fixed rate of/7.. channel bits per second.
estimates of the noisy channel capacity. Thus T, is the duration of a channel bit. In all magnetic-
In Section VI, we give a compendium of modulation-codstorage systems used today, the magnetic medium and the
constraints that have been used in digital recorders, descrisad/write transducer (referred to as the read/write head) move
ing in more detail their time-domain, frequency-domain, angith respect to each other. If the relative velocity of a track
statistical properties. and the read/write head is constant, the constant time-duration
In Section VII, we indicate several directions for futureof the bit translates to a constant linear channel-bit density,
research in coding for digital recording. In particular, weeflected in the length corresponding to a channel bit along
consider the incorporation of improved channel models inthe track.
the design and performance evaluation of modulation codesThe normalized input signal applied to the recording trans-
as well as the invention of new coding techniques for extucer (write head) in this process can be thought of as a
ploratory information storage technologies, such as nonsatwo-level waveform which assumes the valdesand—1 over
ration recording using multilevel signals, multitrack recordingonsecutive time intervals of duratidn. In the waveform, the
and detection, and multidimensional page-oriented storagetransitions from one level to another, which effectively carry
Finally, in Section VIII, we close the paper with a disthe digital information, are therefore constrained to occur at
cussion of Shannon’s intriguing, though somewhat cryptimteger multiples of the time period., and we can describe

remarks pertaining to the existence of crossword puzzles, ahd waveform digitally as a sequenae = wowiws:---
make some observations about their relevance to coding éuer the bipolar alphabef+1, -1}, wherew; is the signal
multidimensional constrained recording channels. amplitude in the time intervgliT;, (¢ + 1)T¢]. In the simplest

Section IX briefly summarizes the objectives and contertsodel, the input—output relationship of the digital magnetic
of the paper. recording channel can be viewed as linear. Denotey)
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Fig. 2. Lorentzian channel step respong&iV50 = 1.

the output signal (readback voltage), in the absence of noigdere ; = /—1. The magnitude of the frequency response
corresponding to a single transition from, sayl to +1 at with PW50 = 1 is shown in Fig. 3.
time ¢ = 0. Then, the output signaf(t) generated by the The simplest model for channel noisét) assumes that the

waveform represented by the sequencés given by noise is additive white Gaussian noise (AWGN). That is, the
- readback signal takes the form
y(t) = (wi —w;i1)s(t —iT.) (1) (1) = y(t) + n(t)
1=0
where

with w_; = 1. Note that the “derivative” sequena®’ of )
coefficients w, = w; — w;_; consists of elements taken n(t) ~ N(0,07)
from the ternary alphabef0,+2}, and the nonzero values,

. L . . ; zimd
corresponding to the transitions in the input signal, alternate

in sign. Eln(t)n(t)] =0,  forallt, # t..
A frequently used model for the transition respongg is
the function There are, of course, far more accurate and sophisticated
models of a magnetic-recording system. These models take
s(t) = b into account the failure of linear superposition, asymmetries
14 (2t/7)2 in the positive and negative step responses, and other nonlinear

often referred to as the Lorentzian model for an isolated-st penomena in the readback process. There are also advanced
odels for media noise, incorporating the effects of material

response. The Earamepens sometimes .denoteﬂ’W'So, a? defects, thermal asperities, data dependence, and adjacent track
abbreviation for “pulsewidth at 50% maximum amplitude, th? terference. For more information on these, we direct the
width of the pulse measured at 50% of its maximum heighr{;ader to [2'0] [21], [32], and [33] '

The Lorentzian step response witPtl¥50 = 1 is shown in ' ' ' '

Fig. 2.

The output signal(t) is therefore the linear superposition o
time-shifted Lorentzian pulses with coefficients of magnitude The most basic model of a saturation magnetic-recording
equal to2 and alternating polarity. For this channel, sometimegystem is a binary-input, linear, intersymbol-interference (1SI)
called the differentiated Lorentzian channel, the frequenépannel with AWGN, shown in Fig. 4.
response is This model has been, and continues to be, widely used in

comparing the theoretical performance of competing modula-
H(f) = —ju?r fe= 217/ tion, coding, and signal-processing systems. During the past

1B. Channel Models and Capacity
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Fig. 3. Differentiated Lorentzian channel frequency response magnifdtlé;0 = 1.

Li Filk Peak-Power Achievable Rate Lemmd&or the channel
—_— |ne:(|'t) - F’@—» shown in Fig. 4, ifh(t) is square integrable, then any rate
x(t) Q) T )=y achievable using waveforms satifying

r (8] < VP

n(t) ~ N(0,c?)
/P Spectral density Ng is achievable using the constrained waveforms

2

Fig. 4. Continuous-time recording channel model. |37(t)| = \/ﬁ

decade, there has been considerable research effort devoted Y& now exploit this result to develop upper and lower
finding the capacity of this channel. Much of this work wag0unds on the capacity. Consider, first, a continuous-time,
motivated by the growing interest in digital recording amcm?and_hmlted, additive Gaussian noise channel with transfer
the information and communication theory communities [36]Unction

[37]. In this section, we survey some of the results pertaining 1, if |f] < W

to this problem. As the reader will observe, the analysis is H(f) = {0’ otherwise.

limited to rather elementary channel models; the extension

to more advanced channel models represents a major opasume that the noise has (double-sided) spectral density
research problem. No/2. Let N = NoW be the total noise power in the

1) Continuous-Time Channel Model#dany of the bounds channel bandwidth. Shannon established the well-known and
we cite were first developed for the ideal, low-pass filterelebrated formula for the capacity of this channel, under the
channel model. These are then adapted to the more realisgsumption of an average power constrdinbn the channel
differentiated Lorentzian 1SI model. input signals. We quote from [173]:

For a given channel, le€,, denote the capacity with a
constraint” on theaverageinput power. LetC,, denote the
capacity with gpeakpower constrainf’. Finally, let C denote
the capacity withbinary input levels++v/P. It is clear that

Theorem 17: The capacity of a channel of band
perturbed by white thermal noise of pow&Twhen the
average transmitter power is limited 10 is given by

P+ N
C < Cp < Cav- Oav =W 108 ]—'\_7 (2)

The following important result, due to Ozarow, Wyner, and
Ziv [159], states that the first inequality is, in fact, an equality (We have substituted the notati@r,, for Shannon’s nota-
under very general conditions on the channel ISI. tion C to avoid confusion.)
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This result is a special case of the more general “water-In [159], the peak-power achievable rate lemma was used
filling” theorem for the capacity of an average input-poweto derive a lower bound orC for the ideal, binary-input
constrained channel with transfer functidf(f) and noise constrained, bandlimited channel

power spectral densitW(f) [74, p. 388] 2
C>W log {1 + = —} nats/s
o L [HDPB) ™ Mol
T Jrery 2 CLTNG 4 A lower bound for the more accurate channel model compris-

_ _ ~ ing a cascade of a differentiator and ideal low-pass filter was
where Fp denotes the range of frequencies in whichiso determined. For this channel, it was shown that
N(f)/|H(f)|* < B, and B satisfies the equation

8
C>Wlog |1+ —
fCFp [H(HI2] ™ In both cases, the discrepancy between the lower bounds and

the water-filling upper bound€’,, represents an effective

By the peak-power achievable rate lemma, this result prowd&@nal—to-noise ratio (SNR) difference é/73, or about—7.6
an upper bound on the capaciy of the recording channel. 4g 4 high signal-to-noise ratios.

Applications of this bound to a parameterized channel mOdeIHeegard and Ozarow [83] incorporated the differentiated

are presented in [70]. Lorentzian channel model into a similar analysis. To obtain a

An improved upper bound on the capacity = C, of |g\ver hound, they optimize, with respect g the inequality
the low-pass AWGN channel was developed by Shamai and

Bar-David [171]. This bound is a refinement of the water- (5 L log <1 + AP 1o (S,r(e?™)) df)
filling upper bound, based upon a characterization of the 2T meNo

power spectral density,(f) of any unit process meaning here 5,,-(¢#27/) is the pulse power spectral density for the
a zero-mean, stationary, two-level continuous-time randoél’ﬂ‘ferentiated Lorentzian channel

process:(t) [175]. For a specified input-power spectral density

} nats/s

2
S.(f), a Gaussian input distribution maximizes the capacity. SpT(eﬂ’Tf) = A sin?(7 f)
Therefore, for a given channel transfer function Tsinh <_7r>
Cp < sup (Cy) 4r 1
r S (f) ! - cosh <7 <|f| _ 5))
where with
1 [ 2 Lo f< 1
Cy= [ low (142PS.APIHDE/N) <<y

Their results indicate that, just as for the low-pass channel and
and the supremum is taken over all unit process powgfe differentiated low-pass channel, the difference in effective
spectral densities. In [171], an approximate solution to thiggnal-to-noise ratios between upper and lower bounds on
optimization problem for the ideal low-pass filter was used {apacity is approximatelge/=3, for large signal-to-noise ra-
prove that peak-power limiting on the bandlimited channgbs. The corresponding bound for the differentiated Lorentzian
does indeed reduce capacity relative to the average-powRknnel with additive colored Gaussian noise was determined
constrained channel. This bounding technique was appliedifo[207).
the differentiated Lorentzian channel with additive colored spamai and Bar-David [171] developed an improved lower
Gaussian noise in [207]. bound onC = C, by analyzing the achievable rate of a

We now consider lower bounds to the capadiy= C;,. random telegraph wave, that is, a unit process with time
Shannon [173] considered the capacity of a peak-power inpiffervals between transitions independently governed by an
constraint on the ideal bandlimited AWGN channel, notingxponential distribution. Again, the corresponding bound for
that “a constraint of this type does not work out as welhe differentiated Lorentzian channel with additive colored
mathematically as the average power limitation.” Neverthelegsgussian noise was discussed in [207]. Bounds on capacity for

he provided a lower bound, quoted below: a model incorporating slope-limitations on the magnetization
Theorem 20: The channel capacify for a band W are addressed in [14]. _ _ _
perturbed by white thermal noise of pow&ris bounded Computational results for the differentiated Lorentzian chan-
by nel with additive colored Gaussian noise are given in [207].
For channel densitie®WW 50/T. in the range o2-3.5, which
C, > W log 2 5 corresponds to channel densities of current practical interest,
b= med N’ the required SNR for arbitrarily low error rate was calculated.

The gap between the best capacity bounds, namely, the unit
process upper bound and the random telegraph wave lower
(We have substituted the notatiéh for Shannon’s notation bound, was found to be approximately 3 dB throughout

C to avoid confusion.) the range.

where S is the peak allowed transmitter power.
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2) Discrete-Time Channel Modelhe capacity of discrete- maximume-likelihood sequence detector (MLSD), comprises a
time channel models applicable to digital recording hasghitened matched filter, whose output is sampled at the symbol
been addressed by several authors, for example, [193], [8&lte, followed by a Viterbi detector whose trellis structure
[87], and [172]. The capacity of an average input-powereflects the memory of the ISI channel. For the differenti-
constrained, discrete-time, memoryless channel with additiated Lorentzian channel model, as for many communication
independent and identically distributed (i.i.d.) Gaussian noisbannel models, this detector structure would be prohibi-

is given by the well-known formula [74] tively complex to implement, requiring an unbounded number
1 P of states in the Viterbi detector. Consequently, suboptimal

Cov = 5 log <1 + —2> detection techniques have been implemented. As mentioned

g at the start of this section, most storage devices did not

where o2 is the noise variance anf® is the average input- even utilize sampled detection methods until the start of

power constraint. This result is the discrete-time equivalefitis decade, relying upon equalization to mitigate effects
to Shannon’s formula (2) via the sampling theorem. Smi@f ISI, coupled with analog symbol-by-symbol detection of
[180] showed that the capacity of an amplitude-constrainetiaveform features such as peak positions and amplitudes.
discrete-time, memoryless Gaussian channel is achieved b§iace the introduction of digital signal-processing techniques
finite-valued random variable, representing the input to th recording systems, partial-response equalization and Viterbi
channel, whose distribution is uniquely determined by ttéetection have been widely adopted. They represent a practical
input constraint. (Note that, unlike the case of an averagempromise between implementability and optimality, with
input-power constraint, this result cannot be directly translaté@spect to the MLSD. We now briefly summarize the main
to the continuous-time model.) features of these detection methods.

Shamai, Ozarow, and Wyner [172] established upper andl) Peak Detection:The channel model described above is
lower bounds on the capacity of the discrete-time Gaussiagcurate at relatively low linear densities (dai#’50/1:. ~ 1)
channel with ISI and stationary inputs. We will encounter ignd where the noise is generated primarily in the readback
the next section a discrete-time ISI model of the magnetiglectronics. Provided that the density of transitions and the
recording channel of the fori(D) = (1 — D)(1+ D)V, for noise variances* are small enough, the locations of peaks
N > 1. For N = 1, the channel decomposes into a pair dh the output signal will closely correspond to the locations of
interleaved “dicode” channels correspondingit®) = 1—D. the transitions in the recorded input signal. With a synchronous
In [172], the capacity upper bour,, was compared to upper clock of period7:, one could then, in principle, reconstruct
and lower bounds on the maximum achievable informatidhe ternary sequenae’ and the recorded bipolar sequenee
rate for the normalized dicode channel model with system The detection method used to implement this process in the
polynomial h(D) = (1/4/2)(1 — D), and input levelsty/P. potentially noisy digital recording device is known as peak

These upper and lower bounds are given by detection and it operates roughly as follows. The peak detector
differentiates the rectified readback signal, and determines the

1,=0, <£2> (3) time intervals in which zero crossings occur. In parallel, the

7 amplitude of each corresponding extremal point in the rectified

and signal is compared to a prespecified threshold, and if the
I, =C, <i) threshold is not exceeded, the corresponding zero crossing is
202 ignored. This ensures that low-amplitude, spurious peaks due

to noise will be excluded from consideration. Those intervals

respectively, where . ) ; . :
in which the threshold is exceeded are designated as having a

oo —t?/2 _ ;
Cy(R) =log 2 — e log (1+ 6_2\/§t_2R) gt pgak. The tV\_/(_) Iev_el recor_ded sequence is then recor_wstructed,
e V27 with a transition in polarity corresponding to each interval

is th ) ¢ a bi . ined | containing a detected peak. Clock accuracy is maintained by
IS t e_cape;]cny OI ah ma;}ry mput-zonstg].e ' melmor:y e3h adaptive timing recovery circuit—known as a phase-lock
Gaussian channel. Thus the upper boundCors simply the |5 (p| |} _which adjusts the clock frequency and phase to

capacity of the latter channel. These upper and lower boungs, o that the amplitude-qualified zero crossings occur, on

(:Jng?j:elzy 3 dB, as was the case for continuous-time channgho aqe in the center of their respective clock intervals.

. . . ) PRML: Current high-density recording systems use a
For other results on capacity estimates of recordmg—chanr@g hnique referred to as PRML, an acronym for “partial-

models, we refer the reader to [14] and [149]. The general ) <o (PR) equalization with maximum-likelihood (ML)
problem of computing, or developing improved bounds fo equence detection.” We now briefly review the essence of

the capacity of discrete-time ISI models of recording channq s technique in order to motivate the use of constrained

remains a significant challenge. modulation codes in PRML systems.
Kobayashi and Tang [133] proposed a digital communica-
tions approach to handling intersymbol interference in digital
Forney [53] derived the optimal sequence detector for an umagnetic recording. In contrast to peak detection, their method
coded, linear, intersymbol-interference channel with additiveconstructed the recorded sequence from sample values of a
white Gaussian noise. This detection method, the well-knowuitably equalized readback signal, with the samples measured

C. Detectors for Uncoded Channels
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at time instantst = n7.,n» > 0. At channel bit densities For higher channel bit densities, Thapar and Patel [190]
corresponding taPW50/T. = 2, the transfer characteristicsintroduced a general class of partial-response models, with
of the Lorentzian model of the saturation recording channstiep-response functions

(with a time shift ofT.,/2) closely resemble those of a linear

filter with st () given b Y /N t— kT,
ilter with step response iven _ . — K,
p resp g y s(t)_’;) <k>smc< T ) (5)
5(t) = sinc <f:> +ene < T, ) @) The corresponding input—output relationship takes the form
where N
) Yi = Z hv ww;
. sin(mt) —
sine(t) = . =
7t

_ _ where the discrete-time impulse respondey(D) =
Note that at the consecutive sample tintes 0 andt = 7, . hniD* has the form

the functions(¢) has the valuel, while at all other times N
which are multiples ofZ., the value is0. Through linear hn(D)=(1-D)(1+ D)
superposition (1), the output signglt) generated by the

waveform represented by the bipolar sequesds given by where N > 1. The frequency response corresponding to

hny(D) has a first-order null at zero frequency and a null

o0 of order N at the Nyquist frequency, one-half the symbol
y(t) = > (wi —wi1)s(t — i) frequency. Clearly, the PR4 model correspondsito= 1.
i=—1 The channel models wittv' > 2 are usually referred to as
which can be rewritten as “extended Class-4” models, and denoted by £PR4. The
PR4, EPR4, and #PR4 models are used in the design of most
y(t) = i (w5 — wi_a) Smc<t = iTc> magnetic disk drives today.
prd ! " T, Models proposed for use in optical-recording systems have

discrete-time impulse responses of the form
where we setw_, = w_; = wg. The transition response N
results in controlled intersymbol interference at sample times, gn(D) = (1+D)

Ie;\dmg tof output-signal san|1pleg75_, :h y(Te) tf;_?]t, In tne where N > 1. These models reflect the nonzero DC-response
absence of noise, assume values in the@et2}. Thus in the characteristic of some optical-recording systems, as well as

noiseless case, we can recover the recorded bipolar SeqUACR high-frequency attenuation. The models corresponding

w from the output sample values; = y(iI.), because to N =1and N = 2 were also tabulated in [117], and

the interference between agjacent transiti.ons is prescribedapa known as Class-1 (PR1) or “duobinary,” and Class-
contrast to the peak detection method, this approach does QO&,RZ) respectively. Recently, the models with > 3

require the separation of transitions. have been called “extended PR2" models, and denoted by

Sampling provides a discrete-time version of this recordinng_QPRZ_ (See [203] for an early analysis and application
channel model. Setting; = y(:1..), the input-output relation- ¢ o equalization.)

ship is given by If the differentiated Lorentzian channel with AWGN is
equalized to a partial-response target, the sampled channel
model becomes

(D) = hy(D)yw(D) + n(D)

Yi = Wy — Wi—2.

In D-transform notation, whereby a sequencis represented
by
oo wherer; = r(iT,.) andn; = n(iI.).
2(D) = Z 2D’ Under the simplifying assumption that the noise samples
—0 n; are independent and identically distributed, and Gauss-
ian—which is a reasonable assumption if the selected partial-

the input-output relationship becomes response target accurately reflects the behavior of the channel

y(D) = h(D)w(D) at the specified channel bit density—the maximume-likelihood
sequence detector determines the channel input—outputvpair
where the channel transfer functidiD) satisfies and y satisfying

D)= (1- D)1+ D)=1- D>

This represention, called partial-responsechannel model, =

is among those given a designation by Kretzmer [134] ard each timen.

tabulated by Kabal and Pasupathy [117]. The label assignedrhis computation can be carried out recursively, using the
to it—"Class-4"—continues to be used in its designation, andterbi algorithm. In fact, Kobayashi [130], [131] proposed the

the model is sometimes denoted “PR4.” use of the Viterbi algorithm for maximum-likelihood sequence
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0/0 4 dB, and the gap from the unit-process upper bound [171]

was approximately 7 dB. These results suggest that, through
0\ suitable coupling of equalization and coding, SNR gains as
0-1 large as 6 dB over PR4-based PRML should be achievable.

In Section V, we will describe some of the equalization and
coding techniques that have been developed in an attempt to
0/0 realize this gain.

1/0

i

ol I1l. SHANNON THEORY OF CONSTRAINED CHANNELS

In this section, we show how the implementation of record-
1/0 ing systems based upon peak detection and PRML introduces
the need for constraints to be imposed upon channel input
Fig. 5. Trellis diagram for PR4 channel. sequences. We then review Shannon’s fundamental results on
the theory of constrained channels and codes.

detection (MLSD) on a PR4 recording channel at about the ] .
same time that Forney [53] demonstrated its applicability f Modulation Constraints
MLSD on digital communication channels with intersymbol 1) Runlength ConstraintsAt moderate densities, peak de-
interference. tection errors may arise from ISl-induced shifting of peak
The operation of the Viterbi algorithm and its implemenlocations and drifting of clock phase due to an inadequate
tation complexity are often described in terms of the trellisumber of detected peak locations.
diagram corresponding ta(D) [53], [54] representing the  The latter two problems are pattern-dependent, and the class
time evolution of the channel input—output process. The treli runlength-limited (RLL)(d, k) sequences are intended to
structure for the EPR4 channel hag¥*? states. In the address them both [132], [101]. Specifically, in order to reduce
case of the PR4 channel, the input—output relationghip- the effects of pulse interference, one can demand that the
w; — w;_o permits the detector to operate independently aferivative sequences’ of the channel input contain some
the output subsequences at even and odd time indices. Tlieimum number, say/, of symbols of value zero between
Viterbi algorithm can then be described in terms of a decouplednsecutive nonzero values. Similarly, to prevent loss of clock
pair of 2-state trellises, as shown in Fig. 5. There has besgnchronization, one can require that there be no more than
considerable effort applied to simplifying Viterbi detector arsome maximum number, say, of symbols of value zero
chitectures for use in high data-rate, digital-recording systent®tween consecutive nonzero valuesuih
In particular, there are a number of formulations of the PR4 In this context, we mention that two conventions are used
channel detector. See [131], [178], [206], [211], [50], antb map a binary sequence= zgz; - -- to the magnetization
[205]. pattern along a track, or equivalently, to the two-level sequence
Analysis, simulation, and experimental measurements hawe In one convention, called nonreturn-to-zero (NRZ), one
confirmed that PRML systems provide substantial performandigection of magnetization (otw; = +1) corresponds to a
improvements over RLL-coded, equalized peak detection. Ta@redl and the other direction of magnetization ¢gr= —1)
benefits can be realized in the form of 3—5-dB additional noiserresponds to a store@ In the other convention, called
immunity at linear densities where optimized peak-detectigionreturn-to-zero-inverse (NRZI), a reversal of the direction
bit-error rates are in the range if —6-10—2, Alternatively, the of magnetization (orw; = +2) represents a storet and a
gains can translate into increased linear density—in that rargnreversal of magnetization (ef. = 0) represents a stored
of error rates, PR4-based PRML channels achieve 15-25%9 he NRZI precoding convention may be interpreted as a
higher linear density thaii1, 7)-coded peak detection, withtranslation of the binary information sequenzénto another
EPR4-based PRML channels providing an additional improveinary sequencee = zoz; --- that is then mapped by the
ment of approximately 15% [189], [39]. NRZ convention to the two-level sequerweThe relationship
The SNR loss of several PRML systems and MLSD relativeetweenz and z is defined by
to the matched-filter bound at a bit-error rate I@f°¢ was
computed in [190]. The results show that, with the proper

choice of PR target for a given density, PRML performanq,’-\\,herex_1 — 0 and& denotes addition modul®.

Ty =Ti—1 D %

can achieve within 1-2 dB of the MLSD. It is easy to see that
In [207], simulation results for MLSD and PRA4-based
PRML detection on a differentiated Lorentzian channel with wi = w; —wi—y = —(—=1)F"1 - 2z

colored Gaussian media noise were compared to some of the

capacity bounds discussed in Section II-B. BoW50/7, in and. therefore,
the range of2-3, PR4-based PRML required approximately

2-4 dB higher SNR than MLSD to achieve a bit-error rate

of 107%. The SNR gap between MLSD and the telegrapiFhus under the NRZI precoding convention, the constraints on
wave information-rate lower bound [171] was approximatelghe runlengths of consecutive zero symbolafinare reflected
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) ] ) ] Fig. 7. DC-free constrained sequences with DSVIV.
Fig. 6. Labeled directed graph f¢d, k) constraint.

constraint, emphasizing the point that intersymbol interference

is acceptable in PRML systems. It should be noted that the

bmbination of(0, G/I) constraints and an INRZI precoder
e been used to prevent quasicatastrophic error propagation
in EPR4 channels, as well.

3) Spectral-Null Constraints: The family of (d, k) run-
th-limited constraints and, G/I) PRML constraints are
esentative of constraints whose description is essentially in
time domain (although the constraints certainly have impli-

ions for frequency-domain characteristics of the constrained
guences). There are other constraints whose formulation is

Bst natural in the frequency domain. One such constraint

ecifies that the recorded sequenagshave no spectral

ntent at a particular frequenge that is, the average power

Qﬁectral density function of the sequences has value zero at the

ecified frequency. The sequences are said to have a spectral
channel output sequences are represented by more t

th in the detector trellis. Such i I at frequency/.
one path in he detector WellS. Such a sequence IS Propq. 5, ensemble of sequences, with symbols drawn from the
duced by at least two distinct channel input sequencgs

; . olar alphabet{+1,—1} and generated by a finite labeled
For the PR channels under consideration, namely, tho&g g P
, ted h of the kind illustrated in Fig. 6,
with transfer polynomial i(D) = (1 — DYM(1 — D)™, ected graph of the kind illustrated in Fig a necessary

X and sufficient condition for a spectral null at frequenty=
M,N = 0, the difference sequences = zy — 3, (m/n)(1/T.), whereT. is the duration of a single recorded
corresponding to pairs of such input sequengesand x5,

. . . symbol, is that there exist a constaBtsuch that
are easily characterized. (For convenience, the symbols

in correspondingd, k) constraints on the binary information
sequencez. The set of sequences satisfying this constrai
can be generated by reading the labels off of the paths in
directed graph shown in Fig. 6.

2) Constraints for PRML Channel3wo issues arise in the
implementation of PRML systems that are related to properti%
of the recorded sequences. The firstissue is that, just as in pe
detection systems, long runs of zero samples in the PR cha
output can degrade the performance of the timing recovery
gain control loops. This dictates the use of a global constra
G on the number of consecutive zero samples, analogousrﬁ
the k£ constraint described above.

The second issue arises from a property of the Piig
systems known as quasicatastrophic error propagati
[55]. This refers to the fact that certain bi-infinite P

and —1 are denoted by+ and —, respectively, in these 4 o
difference sequences.) Specifically, M > 0 and N = 0, Z wie IZTm/n < B (6)
then these difference sequences @¥>, (+)>°, and (—)>. i=t

If M =0andN > 0, the difference sequences are of the forrﬂJr all recorded sequences
(0)00’(+_)O<>’ and (—+)°<>, Finally, if M > 0 and N > 0, ¢ < L [145], [162], [209].

then they are(0)™, ()7, (=), (+=)%, (=), (+0)7, In digital recording, the spectral null constraints of most

(0+)>, (=0)>, and (0—)=. importance have been those that prescribe a spectral null
As a consequence of the existence of these sequences, tggrje — 0 or DC. The sequences are said to BE-free

could be a potentially unbounded delay in the merging f ‘charge-constrainedThe concept of running digital sum

survivor paths in the Viterbi detection process beyond amkns) of a sequence plays a significant role in the description

specified tlme_ index;, even n the absence (_)f noise. It isg analysis of DC-free sequences. For a bipolar sequence
therefore desirable to constrain the channel input sequenges

: ! . = wowy -+ wr_1, the RDS of a subsequeneg - - - w,
in _such a way that the.se dlffe_rence sequences are forbiddgty,qted RDSuwe, -, we), is defined as
This property makes it possible to limit the detector path
memory, and therefore the decoding delay, without incurring a
any significant degradation in the sequence estimates produced RDS(we, -, we) = Z Wi
by the detector. =t

In the case of PR4, this has been accomplished by limitikgom (6), we see that the spectral density of the sequences
the length of runs of identical channel inputs in each of theanishes atf = 0 if and only if the RDS values for all
even and odd interleaves, or, equivalently, the length of russquences are bounded in magnitude by some constant integer
of zero samples in each interleave at the channel output, toBeFor sequences that assume a rangé&’afonsecutive RDS
no more than a specified positive integerBy incorporating values, we say that thetligital sum variation (DSV)s N.
interleaved NRZI (INRZI) precoding, th€ andI constraints Fig. 7 shows a graph describing the bipolar, DC-free system
on output sequences translate intband I constraints on with DSV equal toN.
binary input sequences The resulting constraints are denoted DC-free sequences have found widespread application in
(0, G/I), where the 0" may be interpreted as @ = 0 optical and magnetic recording systems. In magnetic-tape

= WoWy ** - W[—1 and0 </ <
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systems with rotary-type recording heads, such as the Where N(T) is the number of allowed sequences of length
DAT digital audio tape system, they prevent write-signafhe following quote, which provides a method of computing
distortion that can arise from transformer-coupling in théhe capacity, is taken directly from Shannon’s original paper
write electronics. In optical-recording systems, they redug¢equation numbers added):
interference between data and servo signals, and also permig
o . . uppose all sequences of the symbSls---, S, are
filtering of low-frequency noise stemming from smudges on .
) N allowed and these symbols have duratidgns --,¢,.
the disk surface. It should be noted that the application of DC- . .
. . : What is the channel capacity? ¥ (¢) represents the
free constraints has certainly not been confined to data storage, ]
. 7 L number of sequences of duratiohwe have
Since the early days of digital communication by means of
cable, DC-free codes have been employed to counter the Nt)=N{t—t) + Nt —ty)+---+ Nt —t,) (8)
effects of low-frequency cutoff due to coupling components, .
isolating transformers, and other possible system impairmentsThe total number is equal to the sum of the number of
[35]. sequences ending iy, Sa, - - -, S, and there areéV(t —
Sequences with a spectral null it= 1/27. also play an 1), N(¢ —#2),---, N(t — #.), respectively. According
important role in digital recording. These sequences are oftento & well-known result in finite differencesy(#) is then
referred to aNyquist free There is in fact a close relationship ~ asymptotic for large to X5 whereX, is the largest real
between Nyquist-free and DC-free sequences. Specifically,solution of the characteristic equation
consider sequences = {w; } over the bipolar alphabdt-1}. Xt Xt Xt — ] 9
If wis DC-free, then the sequenae= {w;} defined by + o ©
‘ and, therefore,
TIJZ‘ = (—1)Zwi, 7 2 0
C = log Xo. (10)
is Nyquist-free DC/Nyquist-freesequences have spectral nulls
at bothf = 0 and f = 1/27T.. Such sequences can always Shannon’s results can be applied directly to the case of
be decomposed into a pair of interleaved DC-free sequencgs. k) codes by associating the symbdlS; } with the (k —
This fact is exploited in Section V-C in the design of distancet+ 1) different allowable sequences @6 ending in al. The
enhancing, DC/Nyquist-free codes for PRML systems. result is
In some recording applications, sequences satisfying both -
charge and runlength constraints have been used. In particular, ¢ =log Xo (11)
a sequence in the (d, k; ¢) charge-RLLconstraint satisfies \yhere v, is the largest real solution of the equation
the (d, k) runlength constraint, with the added restriction
that the corresponding NRZI bipolar sequenwebe DC- XD L x =@+ o x—0HD =g (12)

free with DSV no larger tharV = 2¢ + 1. Codes using ) ,
(1,3; 3) and (1, 5; 3) constraints—known, respectively asShannon went on to describe constrained sequences by labeled,

“zero-modulation” and “Miller-squared” codes—have foundiirected graphs, often referred to as state-transition diagrams.
application in commercial tape-recording systems [160], [13d]92N; guoting from the paper:

[150]. A very general type of restriction which may be placed
on allowed sequences is the following: We imagine a

B. Discrete Noiseless Channels number of possible states, az, - - -, a,,. For each state
only certain symbols from the sef;,---,S, can be

In Section IlI-A, we saw that the successful implementation . ’ i
b transmitted (different subsets for the different states).

of analog and digital signal-processing techniques used in dat .
recording may require that the binary channel input sequencez_:,when one of these has been transmitted the state changes

satisfy constraints in both the time and the frequency domains. [0 & neéw state dependmg both on the old state and the
Shannon established many of the fundamental propertiesp"’lrt'cm"’lr symbol transmitted.

of noiseless, input-constrained communication channels inShannon then proceeded to state the following theorem

Part | of his 1948 paper [173]. In that section, entitled/hich he proved in an appendix:

“Discrete Noiseless Systems,” Shannon considered discrete _ () _

communication channels, such as the teletype or telegraph! "€0rem 1: Let;;” be the duration of theth symbol

channel, where the transmitted symbols were of possibly Which is allowable in staté and leads to statg Then

different time duration and satisfied a set of constraints as tothe channel capacit¢’ is equal t°10$>‘(W) whergW 1S

the order in which they could occur. We will review his key the largest real root of the determinant equation:

results and illustrate them using the family of runlength-limited 4
(d, k) codes, introduced in Section IlI-A. S Wi — ;) =0, (13)
Shannon first defined the capacityof a discrete noiseless s
channel as whereéd;; = 1if < = j and is zero otherwise.
C— lim log N(T') 7) The condition that different states must correspond to dif-

T—00 T ferent subsets of the transmission alphabet is unnecessarily
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restrictive. For the theorem to hold, it suffices that the state- wherelgj) is the duration of theth symbol leading from
transition diagram representation be lossless, meaning that angtate: to statej and theB; satisfy
two distinct state sequences beginning at a common state and ()
ending at a, possibly different, common state generate distinct B; = Z B;wh
symbol sequences [144]. 5,d
This result can be applied téd, k) sequences in two
different ways. In the first, we let th€S;} be the collection
of allowable runs of consecutive’s followed by a1, as  Itis an easy matter to apply Shannon’s result to find these
before. With this interpretation we have only one state singobabilities for(d, k) codes. The result is that the probability
any concatenation of these runs is allowable. The determingfita run of ¢ 0's followed by a1 is equal toA=(+Y) for
equation then becomes the same as (12) itheplaced by ¢ = d,---,k, andlog()) is the maximum entropy. Since
w. the sum of these probabilities (summed over all possible
In the second interpretation, we let th6;} be associated runlengths) must equdl we have
with the binary symbol$) and 1 and we use the graph with —(d+1 —(d+2 (ka1
(k+1) states shown earlier in Fig. 6. Note now that all of the AT AT ) =, (15)
symbols are of length so that the determinant equation is of Note that this equation is identical to (12), except for the
the form (14), as shown at the bottom of this page. choice of the indeterminate. Thus the maximum entropy is
Multiplying every element in the matrix byV', we see achieved by choosing as the largest real root of this equation
that this equation specifies the eigenvalues of the connectigiy the maximum entropy is equal to the capadcity The
matrix, or adjacency matrix, of the graph—that is, a matriyrobanilities of the symbols which result in the maximum
which hass, jth entry equal tol if there is a symbol from entropy are shown in Fig. 8 (where now the branch labels are
state« that results in the new state and which hasi, jth the probabilities of the binary symbols and not the symbols
entry equal to0 otherwise. (The notion of adjacency matrixhemselves).
can be extended to graphs with a multiplicity of distinctly The maximum-entropy solution described in the theorem
labeled edges connecting pairs of states.) Thus we see thatdfagates that any sequenee= 1, - - -, z1, of lengthL, starting

channel capacity’ is equal to the logarithm of the largest reajn state; and ending in statg, has probability
eigenvalue of the connection matrix of the constraint graph B
L=

shown in Fig. 6. p(z) = BA™
Shannon proceeded to produce an information source by B;

assigning nonzero probabilities to the symbols leaving eaghere P, denotes the probability of state Therefore,

state of the graph. These probabilities can be assigned in any

manner subject to the constraint that for each state, the sum of b 108 (@) _ log (V).

the probabilities for all symbols leaving that staté.iShannon L—oo

gave formulas as to how to choose these probabilities suphis is a special case of the notion of “typical long sequences”

that the resulting information source had maximum entropa(gain introduced by Shannon in his classic paper. In this

He further showed that this maximum entropy is equal to tl’@ecim case of maximum-entropy’ k) sequences, fak |arge

capacityC. Specifically, he proved the following theorem. enough, all sequences of lengthare entropy-typical in this

sense. This is analogous to the case of symbols which are of

fixed duration, equally probable, and statistically independent.
Shannon proved that the capadityof a constrained channel

represents an upper bound on the achievable rate of infor-

mation transmission on the channel. Moreover, he defined a

then H is maximized and equal t¢.

Theorem 8: Let the system of constraints considered as
a channel have a capacify = log W. If we assign

(=) _ & W—IS? concept of typical sequences and, using that concept, demon-
Y B; strated that transmission at rates arbitrarily clos€'toan in
1 2 d d+1 E k+1
1 -1 w! 0 0 0 0
2 0 -1 0 0 0 0
d 0 0 el —1 WL ..o 0 =0. (14)
d+1 w1 0 <o 0 -1 - 0 0
k w1t 0 0 0 -1 Wt
E+1 w1 0 0 0 0 -1
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1 1 1 1
lh

X(d+l)
1— X(d+ D 1_}‘.((1: 1 )k_(d +2)
Fig. 8. Markov graph for maximum entropf, k) sequences.
principle be achieved. Specifically, he proved the following p bits g bits
“fundamental theorem for a noiseless channel” governing ] I
transmission of the output of an information source over a Encoder Logic
constrained channel. We again quote from [173]. (states)
Theorem 9: Let a source have entropy (bits per -

symbol) and a channel have a capacity (bits per
second). Then it is possible to encode the output of the
source in such a way as to transmit at the average rate
(C/H) — e symbols per second over the channel where
e is arbitrarily small. It is not possible to transmit at an
average rate greater thd’/H). In this section, we will survey selected aspects of this theo-
retical and practical progress. The presentation largely follows

The proof technique, relying as it does upon typical Ion@lpz], [146], and, especially, [144], where more detailed and

sequences, is nonconstructive. It is interesting to note, ho . ! .
ever, that Shannon formulated the operations of the Sour(%:oemprehenswe treatments of coding for constrained channels
. i .~ may be found.

encoder (and decoder) in terms of a finite-state machine, a
construct that has since been widely applied to constrained
channel encoding and decoding. In the next section, we tdfn
to the problem of designing efficient finite-state encoders.  Encoders have the task of translating arbitrary source in-
formation into a constrained sequence. In coding practice,
typically, the source sequence is partitioned into blocks of
lengthp, and under the code rules such blocks are mapped onto

For constraints described by a finite-state, directed grapiords of ¢ channel symbols. The rate of such an encoder is
with edge labels, Shannon’s fundamental coding theorem gu&r= p/q < C. To emphasize the blocklengths, we sometimes
antees the existence of codes that achieve any rate less thamote the rate ag : q.
the capacity. Unfortunately, as mentioned above, Shannon’dt is most important that this mapping be done as effi-
proof of the theorem is nonconstructive. However, duringently as possible subject to certain practical considerations.
the past 40 years, substantial progress has been made inBffieiency is measured by the ratio of the code rdteto
engineering design of efficient codes for various constraintee capacityC' of the constrained channel. A good encoder
including many of interest in digital recording. There havalgorithm realizes a code rate close to the capacity of the
also been major strides in the development of general cotlenstrained sequences, uses a simple implementation, and
construction techniques, and, during the past 20 years, rigorewsids the propagation of errors in the process of decoding.
mathematical foundations have been established that permifn encoder may be state-dependent, in which case the code-
the resolution of questions pertaining to code existence, coderd used to represent a given source block is a function of the
construction, and code implementation complexity. channel or encoder state, or the code may be state-independent.

Early contributors to the theory and practical applicatioState-independence implies that codewords can be freely con-
of constrained code design include: Berkoff [19]; Cattermoleatenated without violating the sequence constraints. A set of
[34], [35]; Cohen [40]; Freiman and Wyner [69]; Gabor [73]such codewords is callegklf-concatenabléVhen the encoder
Jacoby [112], [113]; Kautz [125]; Lempel [136]; Patel [160]is state-dependent, it typically takes the form of a synchronous
and Tang and Bahl [188]; and, especially, Franaszek [57]-[64ihite-state machine, illustrated schematically in Fig. 9.

Further advances were made by Adler, Coppersmith, andA decoder is preferably state-independent. As a result of
Hassner (ACH) [3]; Marcus [141]; Karabed and Marcus [120krrors made during transmission, a state-dependent decoder
Ashley, Marcus, and Roth [12]; Ashley and Marcus [9], [10]could easily lose track of the encoder state, and begin to
Immink [104]; and Hollmann [91]-[93]. make errors, with no guarantee of recovery. In order to avoid

Fig. 9. Finite-state encoder schematic.

Encoders and Decoders

IV. CODES FORNOISELESSCONSTRAINED CHANNELS
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Decoder Logic

Fig. 11. Typical labeled graph.

i N A B
N
P bits “typical” labeled graph. When context makes it clear, a labeled
Fig. 10. Sliding-block decoder schematic. graph may be called simply a “graph.”
A labeled graph can be used to generate finite symbol

error propagation, therefore, a decoder should use a finjteauences by reading off the labels along paths in the graph,

observation interval of channel bits for decoding, thus Iimitin%‘ereby producing avord (also called astring or ablock). For

the span in which errors may occur. Such a decoder is cal mple, In Ftlﬁ :Ill’ thedword btf‘ ctb? can bghgatzzngrgtge(i by
a sliding-block decoder A sliding-block decoder makes a ollowing a path along edges with state sequ )

decision on a received word on the basis of thkit word \zf\ﬁ W'II(I sometimes call word of length generated by an
itself, as well asm precedingg-bit words anda upcoming =~ ock. . _ . .

g-bit words. Essentially, the decoder comprises a register ofThe connecuong in the d|re.cted graph unQerIymg a Iapeled
length (m + a + 1) ¢-bit words and a logic function thatgraph are conveniently described by an adjacency matrix, as

translates the contents of the register into the retriexed was mentioned in Section Ill. Specifically, for a grah

bit source word. Since the constants and a are finite, an W& denote byd = Ag = [(Ag)uluvevs the [Va| x Vo

error in the retrieved sequence can propagate in the deco gg;\cency matrmvhos_e entr}(AG)“:’” Is the numper of edges
sequence only for a finite distance, at most the decoder wind M stateu to statev in G The a?\llacenr?y mhatrlx, OLCOU;SG’ h
length. Fig. 10 shows a schematic of a sliding-block decod fs nonnegative integer entries. Note t attqe number of paths
An important subclass of sliding-block decoders arelitoek of lengthg from statew to sta'ltev' is simply (AG)u, v, ?nd the
decoderswhich use only a single codeword for reproduciné1umber of cycles of Iengtb IS S'mply thg trace OfAG.

the source word, i.em — a — 0. The fundamental object considered in the theory of con-

: S trained coding is the set of words generated by a labeled
Generally speaking, the problem of code design is to COﬁfa h Aconstr%ined systerfor constrai?\) denotedS‘y is the
struct practical, efficient, finite-state encoders with sliding? tpf. I dsg (i yf ite-lenath ' ' ted b
block decoders. There are several fundamental questions L Of all wordsz (i.e., finite- eng sequences) generated by
lated . reading the labels of paths in a labeled graphWe will
ated to this problem. . LI,
. also, at times, consideight-infinite sequencesyx;zs - - - and
a) F_or a ratel? < C what encoder mpu_t and output bIOCksometimesbi-infinite Sequences -+ x_sx_1Loxixa--+. The
sizesp andg, with R = p/q, are realizable? Iphabet of symbols appearing in the wordsfs denoted
b) Can a sliding-block decodable encoder always be foun (). We say that the grapl¥ presentsS or is apresentation
¢) Can 100% efficient sliding-block decodable encoders ta? S, and we writeS = S(G). For a state: in G, the set of
designed when the capacifyis a _ratlonal nur_nbep/q? all finite words generated from is called thefollower setof
d) Are there good bounds on basic complexity measures,. ~ yenoted byFe:(u)
pertaining to constrained codes for a given constraint ' A
such as number of encoder states, encoder gate comp

ity, encoding delay, and sliding-block decoder windo

' As mentioned above, a raje: g finite-state encoder will
Sherate a word in the constrained systéncomposed of a
equence of;-blocks. For a constrained systefhpresented

length? by a labeled graphG, it will be very useful to have an
Many of these questions have been answered fully or éplicit description of the words i, decomposed into such
part, as we now describe. nonoverlapping blocks of lengti.
Let G be a labeled graph. Thgth power of &, denoted
B. Graphs and Constraints G4, is the labeled graph with the same set of state7as

It is very useful and convenient, when stating code existeneet one edge for each path of lengthn G, labeled by the
results and specifying code construction algorithms, to referlock generated by that path. The adjacency matigx of
to labeled graph descriptions of constrained sequences. M6tk satisfies
precisely, alabeled graph(or afinite labeled directed graph
G = (V,E, L) consists of a finite set of statds = V; a
finite set of edge¥ = F, where each edge has an initial For a constrained syste presented by a labeled gragh
state and a terminal state, both ¥y and an edge labeling the gth power ofS, denotedS?, is the constrained system pre-
L = Lg: E — %, whereX is a finite alphabet. Fig. 11 shows asented byG?. So, 5S¢ is the constrained system obtained from

AGq = (AG)q.
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S by grouping the symbols in each word into nonoverlappingord all terminate at the same state. The smalé$or which
words of lengthg. Note that the definition ofS? does not this holds is called thenemoryof G and is denoted\{(G).
depend on which presentati@r of S is used. A property related to finite anticipation is that of being
It is important to note that a given constrained system cém, «)-definite. A labeled graph has this property if, given
be presented by many different labeled graphs and, dependimy word £ = %_,,,Z_my1 - %o %4, the set of paths
on the context, one presentation will have advantages relatiae,,c_,,4+1---¢o - - - ¢, that generater all agree in the edge
to another. For example, one graph may present the constraintA graph with this property is sometimes said to héinite
using the smallest possible number of states, while anotimemory-and-anticipatiariNote that, whereas the definition of
may serve as the basis for an encoder finite-state machinefinite anticipation involves knowledge of an initial state, the
There are important connections between the theory @f., a)-definite property replaces that with knowledge of a
constrained coding and other scientific disciplines, includifigite amount of memory.
symbolic dynamics, systems theory, and automata theoryFinally, as mentioned in Section Ill, a labeled graph is
Many of the objects, concepts, and results in constrainkbslessif any two distinct paths with the same initial state
coding have counterparts in these fields. For example, the aetl terminal state have different labelings.
of bi-infinite sequences derived from a constrained system isThe graph in Fig. 6 has finite memo#ky and it is(k, 0)-
called a sofic system (or sofic shift) in symbolic dynamicslefinite because, for any given waedof length at leask+1,
In systems theory, these sequences correspond to a discraltepaths that generate end with the same edge. In contrast,
time, complete, time-invariant system. Similarly, in automathe graph in Fig. 7 does not have finite memory and is not
theory, a constrained system is equivalent to a regular languagdinite.
which is recognized by a certain type of automaton [94].
The interrelationships among these various disciplines ape Finite-Type and Almost-Finite-Type Constraints
discussed in more detail in [15], [127], and [142].

: . : ; . There are some special classes of constraints, cfiléd-
The bridge to symbolic dynamics, established in [3], ha}g e and almost-finite typethat play an important role in the

e o oot oo ey ans consitcton o consaned codes. A constaines
account of thii develo ?nent and its impact on.the design temsfisfinite-type&(a term derived from symbolic dynamics
: P X pac . 9 8]) if it can be presented by a definite graph. Thus the
recording codes for magnetic storage is given in [2]. A ve .
af, k)-RLL constraint is finite-type.

comprehensive mathematical treatment may be found in [13 There is also a useful intrinsic characterization of finite-type

constraints: there is an integé¥ such that, for any symbol
b € £(S) and any worde € S of length at leastV, we have

) zb € S if and only if b € S whereg’ is the suffix ofz of
In order to state the coding theorems, as well as for PUrPOg88gth V. The smallest such intege¥, if any, is called the

of encoder construction, it will be important to CO”Siderrnemoryof S and is denoted by\(S).

labelings with special properties. Using this intrinsic characterization, we can show that not
We say that a labeled graphdsterministicif, at each state, eyery constrained system of practical interest is finite-type. In

the outgoing edges have distinct labels. In other words, at ea¢ticylar, the charge-constrained system described by Fig. 7

state, any label generated from that state determines a UniQURst To see this. note that the symba¥can be appended
outgoing edge from that state. Constrained systems that plgYine word

a role in digital recording generally have natural presentations

by a deterministic graph. For example, the labeled graphs in -11-11..- -11

Figs. 6 and 7 are both deterministic. It can be shown that any

constrained system can be presented by a deterministic grRgh not to the word

[144]. Similarly, a graph is calledodeterministidf, for each 11 0 1-11-11- —11

state, the incoming edges are distinctly labeled. Fig. 6 is not — '

codeterministic, while Fig. 7 is. N
Many algorithms for constructing constrained codes beghtevertheless, this constrained system falls into a natural

with a deterministic presentation of the constrained systdmoader class of constrained systems. These systems can be

and transform it into a presentation which satisfies a weakkbought of as “locally finite-type.” More precisely, a con-

version of the deterministic property callédite anticipation strained system islmost-finite-typeif it can be presented

A labeled graph is said to have finite anticipation if there is dmy a labeled graph that has both finite anticipation and finite

integer N such that any two paths of length + 1 with the coanticipation.

same initial state and labeling must have the same initial edgeSince definiteness implies finite anticipation and finite coan-

Theanticipation. A(G) of G refers to the smallesY for which ticipation, every finite-type constrained system is also almost-

this condition holds. Similarly, we define treanticipation finite-type. Therefore, the class of almost-finite-type systems

of a labeled grapli7 as the anticipation of the labeled graptdoes indeed include all of the finite-type systems. This inclu-

obtained by reversing the directions of the edgesqin sion is proper, as can be seen by referring to Fig. 7. There,
A labeled graphiG hasfinite memonyif there is an integer we see that the charge-constrained systems are presented by

N such that the paths i@ of length /V that generate the samelabeled graphs with zero anticipation (i.e., deterministic) and

C. Properties of Graph Labelings
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zero coanticipation (i.e., codeterministic). Thus these systems 0/00

are almost-finite-type, but not finite-type. Constrained systems

used in practical applications are virtually always almost-

finite-type. 1/01 Q 0/10
Another useful property of constrained systems is irre-

ducibility. A constraint isirreducible if, for every pair of

words z, 2’ in S, there is a wordz such thatzzz’ is in S. 1/01

Equivalently, S is irreducible if and only if it is presented by Fig. 12. Ratel :

some irreducible labeled graph. In coding, it usually suffices

to consider irreducible constraints. o ) _
Irrreducible constrained systems have a distinguished pfé@t€u with input tags. The next encoder state is the terminal

sentation called th&hannon coverwhich is the unique (up state of the edge. A tagge(_j encode_r is illustrated in F!g. 12.

to labeled graph isomorphism) deterministic presentation of1) Block Encoders:We first consider the construction of

S with a smallest number of states. The Shannon co/e structurally simplest type of encoder, namely, a block

can be used to determine if the constraint is almost-finit8Ncoder. A ratep : ¢ finite-state(S, «)-encoder is called a

type or finite-type. More precisely, an irreducible constraind@te p : ¢ block (5, «)-encoderif it contains only one state.

system is finite-type (respectively, almost-finite-type) if anBlock encoders have played an important role in digital storage

only if its Shannon cover has finite memory (respectivelypySt€ms.

2 tagged encoder.

finite coanticipation). The following theorem states that block encoders can be
Referring to Section III, recall that the (bas¢-capacity of USed to asymptotically approach capacity. It follows essen-
a constrained systerfi is given by tially from Shannon’s proof of the fundamental theorem for
. noiseless channels.
cap,(5) = lim - log, N(£5) Block-Coding Theoremiet S be an irreducible con-

strained system and let be a positive integer. There exists a

where N(¢; S) is the number of-blocks inS. The (basex) sequence of rate,, : g, block (S, «)-encoders such that
capacity of an irreducible syste can be obtained from the

Shannon cover. In fact, as mentioned in Section llIGifis 111%0 Pm/m = cap,(S).

m—
any irreducible lossless presentationsfthen . o
y P = The next result provides a characterization of all block

cap,(S) =log, A(Ag). encoders.
) Block Code CharacterizationlLet S be a constrained sys-
E. Coding Theorems tem with a deterministic presentatiéhand letn be a positive

We now state a series of coding theorems that refine aingeger. Then there exists a blogK, n)-encoder if and only if
strengthen the fundamental coding theorem of Shannon, tlibere exists a subgragt of &G and a collectiorC of n» symbols
answering many of the questions posed above. Moreover, #feZ(.5), such thatl is the set of labels of the outgoing edges
proofs of these theorems are often constructive, leading ftom each state ind.

pragncal algorlthm_s for code design. . . Freiman and Wyner [69] developed a procedure that can
First, we establish some useful notation and terminology,, | <4 to determine whether there exists a blatk o?)-

An encoder usually takes the form of a synchronous finit%— coder for a given constrained systéhwith finite memory
state machine, as mentioned earlier and shown schematically

R ) ) < 7%. Specifically, letG be a deterministic presentation §f
n F'g 9'. More precisely, for a cons.tramed systéimand a For every pair of states andv in G, consider the sefg (u, v)
positive integern, an (S, n)-encoderis a labeled graplf

S ) : of all words of lengthg that can be generated @ by paths
satisfying the following properties: 1) each state‘ofiasout- h : Toi : HI of
degreen, that is, outgoing edges; 2§(€) C S: and 3) the that start at: and terminate at. To identify a subgrapt o

presentation® is lossless G? as in the block-code characterization, we search for a set

A tagged(S, n)-encoderis an (S, n)-encoder€ in which P of states in¢: satisfying
the outgoing edges from each statefirare assigned distinct .
words, orinput tags from an alphabet of size.. We will ﬂ U Fe(u,v)
sometimes use the same symlsolto denote both a tagged wel Awel
(S, n)-encoder and the underlying, »)-encoder. Freiman and Wyner [69] simplify the search by proving that,
Finally, we define aate p : ¢ finite-state(S, «)-encoderto whend has finite memon ¢, it suffices to consider set8
be a taggedS?, a?)-encoder where the input tags are the which arecompletenamely, ifu is in P andFg(u) C Fg(v),
ary p-blocks. We will be primarily concerned with the binarythen v is also in P.
case,« = 2, and will call such an encoderrate p : ¢ finite- Even with the restriction of the search to complete sets,
state encoder fors. The encoding proceeds in the obvioushis block-code design procedure is not efficient, in general.
fashion, given a selection of an initial state. If the curretiowever, givena and ¢, for certain constrained systems
state isu and the input data is thp-block s, the codeword S, such as thgd, k)-RLL constraints, it does allow us to
generated is the-block that labels the outgoing edgefrom effectively compute the largestfor which there exists a block

> b
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TABLE | of zeros at the beginning and end of the even interleave and
OpTAL LEneTHD List odd interleave of the word are no more tt&A rate 16/17,
FoR (d, k) = (0, 2) (0, G/I)= (0, 6/6) block code, derived from an optimal list

'O"O%LS ?luggft of length417 words with an analogous definition, has also been
0001 | 11011 designed for use in PRML systems [161], [1].
0010 | 10010 2) Deterministic EncodersBlock encoders, although con-
0011 | 10011 ceptually simple, may not be suitable in many cases, since
0100\ 11101 they might require a prohibitively large value ofin order
0101 | 10101 y mg q ap y 'arg ue 9 )
0110 | 10110 to achieve the desired rate. Allowing multiple states in the
0111 | 10111 encoder can reduce the required codeword length. If each
1000 | 11010 state in G has at leastw” outgoing edges, then we can
}8% 8}8(1)(1] obtain a deterministiq S, a)-encoder by deleting excess
1011 | 01011 edges. In fact, it is sufficient (and necessary)@rto have a
1100 | 11110 subgraph where each state satisfies this condition. This result,
1101 | 01101 characterizing deterministic encoders, is stated by Franaszek
1110 | 01110 in [57]
1111 | 01111 ’
- 11111 Deterministic Encoder Characterizatior:et S be a con-
strained system with a deterministic presentatioand letn
Rare 1/;/*(3'-5)”_ 2,7 be a positive integer. Then there exists a deterministicn)-
VARIABLE-LENGTH BLOCK ENCODER encoder if and only if there exists such an encoder which is

a subgraph ofd.

Input | Output

i? %gg Let G be a deterministic presentation of a constrained
000 | 000100 system.S. According to the characterization, we can derive
010 | 100100 from G a deterministiq.S?, oF)-encoder if and only if there
8(1&0 88188?00 exists a setP of states inG, called aset of principal states
0011 | 00001000 such that

> (AL)uw = aP,  foreveryue P.

(51, oP)-encoder. In fact, the procedure can be used to find a =

largest possible set, of self-concatenable words of lenggh

- . This inequality can be expressed in terms of the character-
Block Encoder ExamplesDigital magnetic-tape systems. .
- e istic vectorz = [z,].cv,, Of the set of state®, wherezx,, =1
have utiized block codes satisfyindd, k) = (0, k) if «w e P andx, = 0 otherwise Thenp is a set of principal
constraints, fork = 1,2, and 3. Specifically, the codes, Y Lu = ' P P

with rates1/2,4/5, and8/9, respectively, were derived from states if and only if

optimal_lists of size§]£2| =2, |£5] = 17, and |Ly| = 293, ALz > oz, (16)
respectively. The simple raté : 2 (d, k) = (0, 1) code,

known as the Frequency Modulation code, consists of f[he tWo\e digress briefly to discuss the significance of this in-
codeword®)1 and11. The 17 words of thed, k) = (0, 2) list equality. Given a nonnegative integer squafex N matrix

are shown in Table I. The 16 words remaining after deletioR 544 an integer, an (A, n)-approximate eigenvectds a
of the all-l’'s word form the codebook for the rate/5 Group nonnegative integer vectar £ 0 satisfying

Code Recording (GCR) code, which became the industry
standard for nine-track tape drives. The input tag assignments Av > nw (17)
are also shown in the table. See [146] for further details.

Arate 1/2, (d, k) = (2, 7) code, developed by Franaszekvhere the inequality holds componentwise. We refer to this
[59], [44], became an industry standard in disk drives usirigequality as theapproximate eigenvector inequalitgnd we
peak detection. It can be described as a variable-length blafknote the set of all A, n)-approximate eigenvectors by
code, and was derived using a similar search method. Th€A, n). Approximate eigenvectors will play an essential role
encoder table is shown in Table II. in the constructive proof of the finite-state coding theorem

Disk drives using PRML techniques have incorporateié the next section, as they do in many code-construction
a block code satisfying0, G/I) = (0, 4/4) constraints procedures.

[45]. The code, with rat&/9, was derived from the unique The existence of approximate eigenvectors is guaranteed
maximum size list of sizdLy| = 279. The list has a very by the Perron—Frobenius theory [76], [170]. Specifically, let
simple description. It is the set of lengthbinary words X be the largest positive eigenvalue df and letn be a
satisfying the following three conditions: 1) the maximunpositive integers satisfying < A. Then there exists a vector
runlength of zeros within the word is no more th&n2) the v # 0, with nonnegative integer components, satisfying (17).
maximum runlengths of zeros at the beginning and end of tfie following algorithm, taken from [3] and due originally to
word are no more tha®; and 3) the maximum runlengthsFranaszek, is an approach to finding such a vector.
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1/01 If an encoderé has finite anticipationd = A(£), then
we can decode in a state-dependent manner, beginning at the
initial stateuq, and retracing the path followed by the encoder,
as follows. If the current state is, then the current codeword
to be decoded, together with thd upcoming codewords,
constitute a word of length4d + 1 (measured ing-blocks)
1/01 7/ 0/00 1/01 that is generated by a path that startsuatBy definition
/10 of anticipation, the initial edge of such a path is uniquely
determined; the decodedblock is the input tag o€, and the
@ ‘@D next decoder state is the terminal statecof
0/10 - This decoding method will invert the encoder when applied
to valid codeword sequences. The output of the decoder will
be identical to the input to the encoder, possibly with a shift
of A input p-blocks.

Franaszek Algorithm for Finding an Approximate Eigenvec- The following theorem establishes that, with finite antic-
tor: Choose an initial vectoe(® whose entries arei(o) = L, ipation, invertible encoders can achieve all rational rafes
where L is a nonnegative integer. Define inductively less than or equal to capacity, with any input and output

blocklengthsp and ¢ satisfying R = p/q.

Fig. 13. Ratel : 2 MFM encoder.

tem. If p/q < cap,(S) then there exists a rate: ¢ finite-state

N .. . .
m . m 1 m - . -
Ui( +D _ in Uz( = Z Aijv](» ) ' Finite-State Coding TheoremLet .S be a constrained sys
n
=t (S, a)-encoder with finite anticipation.

Let v = »(™), wherem is the first integer such that The theorem improves upon Shannon’s result in three
pmFD) — y(m) important ways. First, the proof is constructive, relying upon

L o the state-splitting algorithm, which will be discussed in Section
There are two situations that can ariseiza)> 0 and b) |\, Next, it proves the existence of finite-stafé, a)-

v = 0. Case a) means that we have found an approximaifcoqers that achieve rate equal to the capaajiy (S), when

eigenvector, and in case b) there. is no solution, so we mcre@gsa(s) is rational. Finally, for any positive integeys and

L and start from the top again. .There may be multlpl}; satisfying the inequalityp/q < cap,(S), there is a rate

solutions for the yectom. The choice of thg ve_ctor may,, ., finite-state(S, «)-encoder that operates at rate ¢. In

affect the complexity of the code C(_)nstructed in this way. T%rticular, choosing and ¢ relatively prime, one can design

components ob are often calledveights o an invertible encoder using the smallest possible codeword
From (16), it follows thatP is a set of principal states length ¢ compatible with the chosen rajg/q.

. \ . ’ p
if and only if the characteristic vectar is an (Ag, &)= For completeness, we also state the more simply proved
approximate eigenvector. Hence, we can find whether th‘?fﬁte—state inverse-coding theorem.

is a deterministi¢.5?, o)-encoder by applying the Franaszek

algorithm to the matrixA = A%, the integem = o, and the Finite-State Inverse-to-Coding Theorerhet S be a con-
all-1's vector as the initial vectas). A nonzero output vector Strained system. Then, there exists a rate g finite-state
v is a necessary and sufficient condition for the existence @f, «)-encoder only ifp/q < cap, ().

a set of principal states, for which is then a characteristic 4) Sliding-Block Codes and Block-Decodable Codés
vector. mentioned earlier, it is often desirable for finite-state encoders

Deterministic Encoder ExampleThe rate1/2, (d, k) = to have decoders that limit the extent of error propagation.
(1, 3) encoder—known as Modified Frequency Modulatiod he results in this section address the design of encoders with
code, Miller code, or Delay Modulation—is a determinisiti®liding-block decoders, which we now formally define.
encoder. The encoder is derived from the second power ofL€t m anda be integers such that +a > 0. A sliding-
the Shannon cover of thl, k) = (1, 3) constraint. A set of block decoderfor a ratep : ¢ finite-state(.S, «)-encoder is a
principal states is? = {1, 2, 3}. Fig. 13 shows a raté¢ : 2 Mmapping
deterministic encoder. In fact, the tagged encoder in Fig. 12
is a simpler description of the MFM tagged encoder obtained
by “merging” state® and3 in Fig. 13. (See Section IV-F for
more on merging of states.)

3) Finite-State Coding TheoremAlthough deterministic
encoders can overcome some of the limitations of blo
encoders, further improvements may arise if we relax the $i = D(Tjems > Tir 1 Tia)-
deterministic property. In this section, we show that, for a
desired ratep : ¢ wherep/q < cap,(5), even though a We call a the look-aheadof D andm the look-behindof D.
deterministic encoder may not exist, a finite-state encodBne summ + a + 1 is called thedecoding window lengtbf
always does. D. See Fig. 10, wheren = 1 anda = 2.

D: E(S(I)m+a+l N {0’ 1,---, a—l}p

such that, ifz = zy22--- is any sequence ofi-blocks
generated by the encoder from the input tag sequence of
gplimekSS = s182- -+, then, fori > m
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TABLE Il Block-Decodable Code Example§or certain irreducible
RaTE 2 : 3 (d, k) = (1, 7) SUDING-BLOCK-DECODABLE ENCODER constrained systems, including powers ((Mv k)-RLL con-
'“1"”0\05“‘@ 10}/4 103/4 00?/4 013/4 00(5)/4 strained systems, Franaszek [57], [58] showed that whenever
o T01/3 [ 100/3 | 001/3 | 010/3 | 000/3 there is a deterministi¢s, n?—encoder which is a subgraph of
10 101/5 | 100/2 | 001/5 | 010/2 | 000/2 the Shannon cover, there is also such an encoder that can be
11 100/5 | 100/1 | 010/5 | 010/1 | 000/1 tagged so that it is block-decodable. In fact, the MFM encoder

of Fig. 13 is block-decodable.

As mentioned earlier, a single error at the input to a sliding- For
block decoder can only affect the decodingblocks that
fall in a “window” of length at mostn + a + 1, measured in

(d, k)-RLL constrained systems, an explicit description
of such a labeling was found by Gu and Fuja [79] and, indepen-
. dently, by Tjalkens [191]. They show that their labeling yields
¢-blocks. Thus a sliding-block decoder controls the extent e largest rate attainable by any block-decodable encoder for

error propagation. . ) .
The following result, due to Adler, Coppersmith, and Hassi,i—ny given(d, k)-RLL constrained system,

ner [3], improves upon the finite-state coding theorem far The Gu—Fuja construction is a generalization of a coding
e » IMp up 9 scheme introduced by Beenker and Immink [16]. The under-
finite-type constrained systems.

lying idea, which is quite generally applicable, is to design
Sliding-Block Code Theorem for Finite-Type Systerbst S block-decodable encoders by usimgrging bitsbetween con-
be a finite-type constrained system.plf¢ < cap,(5), then strained words [16], [112], [104]. Each inputblock has a
there exists a rate : ¢ finite-state (S, «)-encoder with a unique constraineg’-block representation, wherg < q. The
sliding-block decoder. encoder uses a look-up table for translating source words into
This result, sometimes called the ACH theorem, followsonstrained words of lengtlf plus some logic circuitry for
readily from the proof of the finite-state coding theoremdetermining they — ¢’ merging bits. Decoding is extremely
The constructive proof technique, based upon state-splittirgimple: discard the merging bits and translate ¢hbit word
is sometimes referred to as tWe&CH algorithm (see Section into the p-bit source word.
IV-F). For (d, k) sequences, the encoder makes use of the set
Sliding-Block Code ExampleThe (d, k) = (1,7) con- L(q;_d, k; r) of all (d, k)-constrg_inedz-blocks with at least!
straint has capacity’(1, 7) ~ 0.6793. Adler, Hassner, and leading zeroes and gt mosttrailing zeroes. The parameters
Moussouris [4] used the state-splitting algorithm to construc®€ assumed to satisty>k > 2d,d > 1, and r = k—d.
rate2 : 3, (d, k) = (1, 7) encoder with five states, representelfSiNg @ look-up table or enumeration techniques [102, p.
in tabular form in Table Ill. Entries in the “state” columnst1?]: [188], [42], the encoder maps each of thep-bit
indicate the output word and next encoder state. With the ingQPUt tags to a uniqug-block in L(g; d, k; k — d), where
tagging shown, the encoder is sliding-block decodable witt= 1082 |£(g; d, k; k—d)|]. The codewords it(q; d, k; k—d)
(m, a) = (0, 2). The decoder error propagation is limitecr® ot ne_cessarlly freely concatenable, hpwever. When_the
to five input bits. The same underlying encoder graph w&§ncatenation of the current codeword with the preceding
independently constructed by Jacoby [112] using “look-ahea@f® violates the(d, k) constraint, the encoder inverts one
code design techniques. Weathers and Wolf [112] applied tA&the firstd zeroes in the current codeword. The condition
state-splitting algorithm to design 4state, (m, a) = (0, 2) ¢>% = 2d guarantees that such an inversion can always
sliding-block-decodable encoder with error propagation ERSolve the constraint violation. In this case, the fifsbits
most 5 input bits. This encoder has the distinction of achieviij €ach codeword may be regarded as the merging bits.
the smallest possible number of states for this constraint andmMmink [106] gave a constructive proof thed, k) codes
rate [143]. with merging bits can be made for whidfi(d, k) — R<
A block-decodable encodes a special case ofm, a)- 1/(2q). As a result,(d, k) codes with a rate only 0.1% less
sliding-block decodable encoders where batanda are zero. than Shannon’s capacity can be constructed with codewords
Because of the favorable implications for error propagatiofif length ¢ ~ 500. Such long codewords could present an

a block-decodable encoder is often sought in practice. Theditional practical problem—beyond that of mapping the
following result characterizes these encoders completely. input words to the constrained words, which can be handled by

enumerative coding—because a single channel bit error could
. ) o corrupt the entire data in the decoded word. One proposal for
constrained system with a deterministic presentaficand let P Prop

T . resolving this difficulty is to use a special configuration of the
n be a positive integer. Then there exists a block deCOdakéﬁeror-correcting code and the recording code [22], [49], [106].

(S,_n)-gncoder if and only if there exists such an enCOderAnotherwell—known application of this method is that of the
which is a subgraph of:. Eight-to-Fourteen Modulation (EFM) code, a r&e 17 code

It has been shown that the general problem of decidinghich is implemented in the compact audio disc [96], [84],
whether a particular subgraph @fcan be input-tagged in such[109]. A collection of 256 codewords is drawn from the set of
a way as to produce a block-decodable encoder is NP-completegth14 words that satisfy théd, k) = (2, 10) constraint.
[8]. Nevertheless, for certain classes of constraints, and math this codebook, two merging bits would suffice to achieve
other specific examples, such an input-tag assignment canabrates : 16 block-decodabléd, k) = (2, 10) code. However,
found. in order to induce more favorable low-frequency spectral

Block-Decodable Encoder Characterizatiohet S be a
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characteristics in the recorded code sequences, the encodinghe state-splitting algorithm(or ACH algorithn) intro-
algorithm introduces an additional merging bit, yielding thduced by Adler, Coppersmith, and Hassner [3]. It implements
rate 8 : 17 block-decodable EFM encoder. the proof of the finite-state coding theorem and provides a
5) Extensions:In this section, we present strengthenetkcipe for constructing finite-state encoders that, for finite-type
versions of both the finite-state coding theorem and the AGténstraints, are sliding-block-decodable. The state-splitting
theorem. approach combines ideas found in Patel's construction of
A noncatastrophic encodes a tagged.S, n)-encoder with the Zero-Modulation (ZM) code [160] and earlier work of
finite anticipation and the additional property that, whenevé&ranaszek [62]-[64] with concepts and results from the math-
the sequences of output labels of two right-infinite paths diffematical theory of symbolic dynamics [138].
in only finitely many places, the corresponding sequences ofThe ACH algorithm proceeds roughly as follows. For a
input tags also differ in only finitely many places. A ratgiven deterministic presentatio® of a constrained system
p : q finite-state tagged.S, «)-encoder is noncatastrophic ifS and an achievable ragg'q < cap,(5), we iteratively apply
the corresponding taggéd?, o)-encoder is noncatastrophic.a state-splitting transformation beginning with tiita-power
Noncatastrophic encoders restrict error propagation in tgeaphG?. The choice of transformation at each step is guided
sense that they limit the number of decoded data errdrg an approximate eigenvector, which is updated at each
spawned by an isolated channel error. They do not necessaitdyation. The procedure culminates in a new presentation of
limit the time span in which these errors occur. The conceft with at leasta” outgoing edges at each state. After deleting
of noncatastrophicity appears in the theory of convolutionatiges, we are left with agS?, o)-encoder, which, when
codes, as well, where it actually coincides with sliding-bloctagged, gives our desired raie ¢ finite-state(S, «)-encoder.
decodability [137, Ch. 10]. (Note that, if S is finite-type, the encoder is sliding-block-
The following theorem is due to Karabed and Marcus [1204lecodable regardless of the assignment of input tags.)

Noncatastrophic Encoder Theorentet .S be a constrained In view of its importance in the theory and. pract|ce-of
.code design, we now present the state-splitting algorithm

< i . S ) .
system. pr/g < cap,(S), then there exists a noncatastrophw:n more detail. This discussion follows [144], to which we
ratep : ¢ finite-state(S, «)-encoder.

refer the reader for further details. The basic step in the
For the noncatastrophic encoders constructed in the prgobcedure is aout-splittingof a graph, and, more specifically,

of the theorem, the decoding errors generated by a single approximate-eigenvector consistent out-splittirapth of

channel error are, in fact, confined to two bursts of finiteehich we now describe.

length, although these bursts may appear arbitrarily far apart.An out-splittingof a labeled grapli/ begins with a partition
Karabed and Marcus also extended the ACH theorem db the setF, of outgoing edges for each staiein H into

almost-finite-type systems. N(u) disjoint subsets

Sliding-Block Code Theorem for Almost-Finite-Type Sys-
tems: Let S be an almost-finite-type constrained system. If E,=EYUE®@U...uEN®),
p/q < cap,(S), then there exists a ratg : ¢ finite-state
(S, a)-encoder with a sliding-block decoder.
The partition is used to derive a new labeled grafh

The proof of this result is quite complicated. Although itl'he set of stated/y: consists of N(u) descendant states
does not translate as readily as the proof of the ACH theorem) ) ., (v(w) for everyu € V. Outgoing edges from

into a practical encoder design algorithm, the proof do%fateu in H are partitioned among its descendant states and

|n'troduce new ar)d' powerful techniques thati n Comp'nat'%plicated inH’ to each of the descendant terminal states in
with the state-splitting approach, can be applied effectively He following manner. For each edgefrom u to v in H,

certain cases. we determine the partition elemeft” to which e belongs
For example, some of these techniques were used in the ae endowH’ with edgese™ from u® to v for r =

1 0, 1CI idi - -

sign of a 100% efficient, s!ldlng block decodaple encoderforfz ., N(v). The label on the edge(™ in H' is the same
(d, k; ¢) = (1, 3; 3) combined charge-constrained runlength: ) . .
- . as the label of the edgein H. (Sometimes an out-splitting
limited system [8]. In fact, it was the quest for such an encodgr D -
! - L I§ called around of out-splitting to indicate that several states

that provided the original motivation for the theorem. Severg o .
may have been split simultaneously.) The resulting gr&ph

of the ideas in the proof of this generalization of the ACH enerates the same systefn and has anticipation at most

theorem from finite-type to almost-finite-type systems ha . . i ,
also played a role in the design of coded-modulation scherr\%{sﬂ)Jr 1. Figs. 14 and 15 illustrate an out-splitting operation

X . . . On statew.
based upon spectral-null constraints, discussed in Section V- Given a labeled grapt, a positive integem, and an
(Ap,n)-approximate eigenvectow = [z,]yevy,, an z-
F. The State-Splitting Algorithm consistent partitionof H is defined by partitioning the set

] ) L, of outgoing edges for each stateén H into N () disjoint
There are many techniques available to construct effipsets

cient finite-state encoders. The majority of these construction
techniques employ approximate eigenvectors to guide the
construction process. Among these code design techniques E,=EDUE®@y...uEN®)
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Fig. 14. Before out-splitting.
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Fig. 17. After z-consistent out-splitting.

d We now summarize the steps in the state-splitting algorithm
a for constructing a finite-state encoder with finite anticipation
[144].

The State-Splitting Algorithm:

€

[ C
A ORI
Fig. 15. After out-splitting.

a
c d b
[
‘\f/
g
Fig. 16. Beforez-consistent out-splitting. 2)
3)
with the property that
4)
Z ‘TT(G) 2 n-TS), forr = 17 27 T 7N(u) (18)
ecEY
wherer(e) denotes the terminal state of the edger” are
nonnegative integers, and 5)

N(u)

> 2 =a.,
r=1

The out-splitting based upon such a partition is calledran
consistent splittingThe vectorz’ indexed by the states"

of the split graphH’ and defined by’ ., = 2 is called

the induced vectar An z-consistent partition or splitting is
called nontrivial if N(ux) > 2 for at least one state and

both 2 andz'? are positive. Figs. 16 and 17 illustrate an 6)
z-consistent splitting.

for everyu € V. (29)

Select a labeled graghi and integers andq as follows:

a) Find a deterministic labeled grajgh (or more gen-
erally a labeled graph with finite anticipation) which
presents the given constrained syst€nfimost con-
strained systems have a natural deterministic repre-
sentation that is used to describe them in the first
place).

b) Find the adjacency matrids of G.

¢) Compute the capacityap,,(S) = log, AM(Ag).

d) Select a desired code ragte ¢ satisfying

cap.(5) > 2.

q

(one usually wants to keep and ¢ relatively small
for complexity reasons).

ConstructG.

Using the Franaszek algorithm of Section IV-E2, find an

(AL, of)-approximate eigenvectar.

Eliminate all states with z,, = 0 from G4, and restrict

to an irreducible sinke of the resulting graph, meaning

a maximal irreducible subgraph with the property that all

edges with initial states it/ have their terminal states

in H. Restrictz to be indexed by the states &f.

Iterate steps 5a)-5c) below until the labeled graph

has at least¥” edges outgoing from each state:

a) Find a nontriviake-consistent partition of the edges
in H. (This can be shown to be possible with a state
of maximum weight.)

b) Find thez-consistent splitting corresponding to this
partition, creating a labeled graghl and an approx-
imate eigenvector’.

c) ReplaceH by H' andx by z’.

At each state of, delete all bute” outgoing edges

and tag the remaining edges withry p-blocks, one for
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each outgoing edge. This gives a rate ¢ finite-state recently developed an approach, influenced by earlier work of
(S, o)-encoder. Immink [103], which combines the state-splitting method with
. . . o . . g generalized look-ahead encoding technique called bounded-
At every iteration, at least one state is split in a nontrivia : . .
) ) . ) . elay encoding, originally introduced by Franaszek [61], [63].
way. Since a state with weightz, will be split into at most . . . .
d dant states th hout the whole iterati In a number of cases, it was found that this hybrid code design

fh” escgn a?.ts at_es roug Odut ew otetlhera 'Ondprocz%}’hnique produced a sliding-block-decodable encoder with

€ number ol iterations required to generate the encoder 9rapily e window length than was achieved using other methods.

8f|sgn.o mtore th&m veVe (%_1)' 'II':her?r]:ore, the ant|C|pat|(t)rr]1 Several examples of such codes for specific constraints of
ot ¢ 15 al Mostacyy (@, — 1). For the same reason, epractical importance were constructed in [92].
number of states i€ is at mostY,cy,, z,.

For more extensive discussion of complexity measures and

The opera.ti(.)ns of taking higher powers a}nd OUt'S,p"ttingounds, as well as brief descriptions of other general code
preserve definiteness (although the anticipation may INCreast struction methods, the reader is referred to [144].
under out-splitting). Therefore, ifS is finite-type andG

is a finite-memory presentation of, any (5S¢, o®)-encoder
constructed by the state-splitting algorithm will §e:, «)-
definite for somem and a and, therefore, sliding-block- The guarantee of a sliding-block decoder weis finite-
decodable. type, along with the explicit bound on the decoder window

The execution of the sliding-block code algorithm can b€ngth, represent key strengths of the state-splitting algorithm.
made completely systematic, in the sense that a compu?é}Oth?r important property is its umvgrsahty. In this context,
program can be devised to automatically generate an encod§r think of the state-splitting algorithm as comprising a
and decoder for any valid code rate. Nevertheless, the apgf/éction of a deterministic presentatiéh of a constrained
cation of the method to just about any nontrivial code desigifStems, an(Ag, n)-approximate eigenvectar, a sequence
problem will benefit from the interactive involvement of thé®f Z-consistent out-splittings, followed by deletion of excess
code designers. There are some practical tools that can Hges: and finally an input-tag assignment, resulting in a
the designer make “good” choices during the constructi¢@99ed(S; n)-encoder. ,
process, meaning choices that optimize certain measures drof iNtégersn, a, and a functiorD from (m +a+1)-blocks
performance and complexity. Among them is state mergingh° t© then-ary alphabet (such as a sliding-block decoder),
technique that can be used to simplify the encoder produc‘@f@ defmeDg;“ to be the induced mapping on bi-infinite
by the ACH algorithm, as we now describe. sequences given by

Let GG be a labeled graph and letand«’ be two states in
G such thatFg(u) C Fe(u'). Suppose that is an(Ag, n)-
approximate eigenvector, and that = xz,.. The (u, v/)- where
merger of G is the labeled grapt obtained fromG by:
1) eliminating all edges i#,/; 2) redirecting into state all
remaining edges coming into stat& and 3) eliminating the For convenience, we use the notatibg, to denoteD™. For
statew'. It is straightforward to show thaf(H#) C 5(G), and g tagged(S, n)-encoderé with sliding-block decode®, we
the vectory defined byy, = x., for all verticesv of H is an  take the domain of the induced mappify, to be the set of
(Aw, n)-approximate eigenvector. This operation reduces th@ pi-infinite (output) symbol sequences obtained frémie
final number of encoder states hy,. The general problem say that a mappin®.. is asliding-block(S, n)-decoderif D
of determining when to apply state merging during the statg- 5 sliding-block decoder for some taggei »)-encoder.
splitting procedure in order to achieve the minimum number The universality of the state-splitting algorithm is summa-

of states in the final encoder remains open. rized in the following theorem due to Ashley and Marcus [9],
It is also desirable to minimize the sliding-block decodaghich we quote from [144].

window size, in order to limit error propagation as well as ) ) ) ) )
decoder complexity. There are several elements of the codé’niversality Theorem:Let 5 be an irreducible constrained
design that influence the window size, such as initial presen/Stém and lew be a positive integer.

tation, choice of approximate eigenvector, selection of out-a) Every sliding-block(S, n)-decoder has a unique mini-
splittings, excess edge elimination, and input tag assignment. mal tagged S, n)-encoder, where minimality is in terms
There are approaches that, in some cases, can be used during of number of encoder states.

the application of the state-splitting algorithm to help reduce b) If we allow an arbitrary choice of deterministic pre-
the size of the decoder window, but the problem of minimizing  sentation of S and(Ag, n)-approximate eigenvector
the window size remains open. In this context, it should &, then the state-splitting algorithm can find a tagged
be noted that there are alternative code-design procedures (S, n)-encoder for every sliding-blockS, n)-decoder.
that provide very useful heuristics for constructing sliding- If we also allow merging of states (i.€4, v)-merging
block-decodable encoders with small decoding window. They  as described above), then it can find the minimal tagged
also imply useful upper bounds on the minimum size of the (S, n)-encoder for every sliding-blockS, n)-decoder.
decoding window and on the smallest possible anticipationc) If we fix G to be the Shannon cover &f, but allow
(or decoding delay) [12]. In particular, Hollmann [92] has an arbitrary choice of A¢;, n)-approximate eigenvector

G. Universality of State Splitting

DI (- w_1mowy ) = -+ 5_15081 - -

$i =D (@imm + Tim1TiTig1 -+~ Ta).
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z, then the state-splitting algorithm can find a taggeand 0's—that is, abalancedor zero-disparity word—was
(S, n)-encoder for every sliding-blockS, n)-decoder published by Knuth [129] and Henry [85]. Let

D, modulo a change in the domain &, possibly »

with a constant shift of each bi-infinite sequence prior d(w) = Z w;

to applying D, (but with no change in the decoding i=1

function D itself). If we also allow merging of states,be thedisparity of the binary source word

then, modulo the same changes, it. can find the minimal w=(wy, - wp), w; € {—1,1}.

tagged (S, n)-encoder for every sliding-blockS, n)-

decoder. In particular, it can find a sliding-blogk, n)- L€t dx(w) be the running digital sum of the firdt, & < p,

decoder with minimal decoding window length. bits of w, or
k
Certain limitations on the use of the algorithm should be di(w) = Z w;
noted, however [9]. If we apply the state-splitting algorithm Py

to the Shannon cover of an irreducible constrained syste |etw® be the wordw with its first % bits inverted. For
S, it need not be able to find a sliding-blo¢l, »)-decoder

. o /- example, if

with smallest number of encoder states in its minimal tagged

(S, n)-encoder. w= (_17171717_1717_171717_1)
Similarly, if we start with the Shannon cover of an irrewe haved(w) = 2 and

ducible constrained systefhiand, in addition, we fix: to be a w® = (1,-1,-1,-1,-1,1,—1,1,1,~1).

minimal (A¢, n)-approximate eigenvector (i.e., with smallest ) .
eigenvector component sum), then the algorithm may fail thw is of even lengttp, and if we letoy,(w) stand ford(w™®),
find a sliding-block(S, n)-decoder with minimum decoding then the quantityrs(w) is

window length [119], [103], [9]. k P
The universality of the state-splitting algorithm is an at- or(w) I—Z w; + w;
tractive property, in that it implies that the technique can i=1 i=k+1
be used to produce the “best” codes. However, in order to k
harness the power of this design tool, strategies for making = —22 w; + d(w).
i=1

the right choices during the execution of the construction
procedure are required. There is considerable room for furthedt is immediate thabo(w) = d(w) (no symbols inverted),
research in this direction, as well as in the development ahd o, (w) = —d(w) (all symbols inverted). We may, there-
other code-construction methods. fore, conclude that every word can be associated with at
least onek, so thatoy(w) = 0, or w®) is balanced. The
H. Practical Aspects of High-Rate Code Design value of% is encoded in a (preferably) zero-disparity watd
i _ _ of lengthm, m even. Ifm andp are both odd, we can use
The construction of very high rat@l, #)-constrained codes 4 gimilar construction. The maximum codeword lengthuof
and DC-balanced codes is an important pracucal problem [7ig'governed by
[102], [208]. The construction of such high-rate codes is far
from obvious, as table look-up for encoding and decoding is < m )
an engineering impracticality. The usual approach is to sup- m/2
plement thep source bits withn = ¢ — p bits. Under certain, Some other modifications of the basic scheme are discussed
usually simple, rules the source word is modified in suchig Knuth [129] and Alon [5].
way that the modified word plus supplementary bits comply The sequence replacement technid@e2] converts source
with the constraints. The information that certain modification¥ords of lengthp into (0, k)-constrained words of length
have been made is carried by thesupplementary bits. The¢ = p + 1. The control bit is set tol and appended at
receiver, on reception of the word, will undo the modificationghe beginning of thep-bit source word. If this(p + 1)-bit
In order to reduce complexity and error propagation, tHgedquence satisfies the prescribed constraint it is transmitted. If
number of bits affected by a modification should be as small #¢ constraint is violated, i.e., a runlength of at ldast1 0's
possible. We now give some examples of such constructio®.cur, we remove the trespassing 1 0's. The position where
A traditional example of a simple DC-free code is called thée start of the violation was found is encodedkin- 1 bits,
polarity bit code[26]. Thep source symbols are supplementethich are appended at the beginning of thel -bit word. Such
by one bit called theolarity bit. The encoder has the option toa modification is signaled to the receiver by setting the control
transmit the(p + 1)-bit word without modification or to invert bit to 0. The codeword remains of lengtht-1. The procedure
all (p+1) symbols. The choice of a specific translation is mad#bove is repeated until all forbidden subsequences have been
in such a way that the running digital sum is as close to zeremoved. The receiver can reconstruct the source word as the
as possible. It can easily be shown that the running digital symsition information is stored at a predefined position in the
takes a finite number of values, so that the sequence generadkeword. In certain situations, the entire source word has
is DC-balanced. to be modified which makes the procedure prone to error
A surprisingly simple method for transforming an arbipropagation. The class of rate — 1)/q¢, (0, k)-constrained
trary word into a codeword having equal numbers1¢$ codes,k =1+ |¢/3)], ¢ > 9, was constructed to minimize
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Fig. 18. Probability that no sequence bfdrawings from a selection set of random sequences satisfig$) tfig constraint. Code rat& = 0.99. Upper
curve: codeword length = 200, selection set sizé. = 4; lower curve: codeword length = 400, selection set sizé, = 16.

error propagation [111]. Error propagation is confined to oremdes may produce sequences that violate the constraints with
decoded 8-bit symbol, irrespective of the codeword lergth probability P. It is argued that if the channel is not free
Recently, the publications by Fait al. [48] and Immink of errors, it is pointless to feed the channel with perfectly
and Patrovics [110] oguided scramblindgprought new insights constrained sequences. We illustrate the effectiveness of this
into high-rate code design. Guided scrambling is a membéea by considering the properties of two examples of weak
of a larger class of related coding schemes caftedtimode (0, k) codes. Fig. 18 shows the probabil#that no sequence
codes. In multimode codes, thebit source word is mapped taken from a selection set of sizé of random sequences
into (m + p)-bit codewords. Each source woeel can be obeys the(0, k) constraint. Let the code ratB = 99/100,
represented by a member of selection setconsisting of the codeword length = 400, and the size of the selection set
L = 2™ codewords. Examples of such mappings are tde= 16. Then we observe that with probabiliy = 1072
guided scrambling algorithm presented by Fafral. [48], @ codeword violates thé = 9 constraint. The alternative
the DC-free coset codes of Deng and Herro [43], and tf@Plementation [111] requires a rate & = 24/25—four
scrambling using a Reed—Solomon code by Kuetsa. [135]. tim_es the redundancy of the weakly .constralned code—to
A mapping is considered to be “good” if the selection séirictly guarantee the sane, 9) constraint.
contains sufficiently distinct and random codewords.

_ The encoder Fransml_ts t_he codeword that minimizes, aCCOKG- ~ 4\ sTRAINED CODES FORNOISY RECORDING CHANNELS
ing to a prescribed criterion, some property of the encoded

sequence, such as its low-frequency spectral content. In genp, gection lll-A, we indicated how the implementation

eral, there are two key elements which need to be ChosgNiming recovery, gain control, and detection algorithms
judiciously: a) the mapping between the source words afd recording systems created a need for suitably constrained
their corresponding selection sets, and b) the criterion Usedré%ording codes. These codes are typically used as an inner
select the “best” word. code, in concatenation with an outer error-correcting code.
The use of multimode codes is not confined to the generatigfe error-correcting codes improve system performance by
of DC-free sequences. Provided tit is large enough and jntroducing structure, usually of an algebraic nature, that
the selection set contains SUfﬁCientIy different COdewordﬁ)Cfeases the Separa‘[ion of code sequences as measured by
multimode codes can also be used to satisfy almost agyme distance metric, such as Hamming distance.
channel constraint with a suitably chosen selection method.A nhumber of authors have addressed the problem of endow-
For given rate and proper selection criteria, the spectral cont@fij constrained codes with advantageous distance properties.
of multimode codes is very close to that of maxentropic RD$4etrics that have been considered include Hamming distance,
constrained sequences. A clear disadvantage is that the encedgtr(or Levenshtein) distance, and Lee distance. These metrics
needs to generate all™ possible codewords, compute thearise in the context of a variety of error types, including
criterion, and make the decision. random-bit errors, insertion and deletion errors, bitshift errors,
In the context of high-rate multimode codes, there is irand more generally, burst errors. Code constructions, perfor-
terest inweakly constrained codg407]. Weakly constrained mance analyses, as well as lower and upper bounds on the
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achievable size of constrained codes with specified distance TABLE IV
properties are Surveyed in [144]' ERROR EVENT MULTIPLICITY GENERATING FUNCTIONS
It is fair to say that the application of constrained codes [ Channel G(2)

with random or burst-error correction capabilities, proposed | Dicode | 22%/(1 - 2%)
| : : = 27" 4+ 22° 4+ 220 + O(2M)
argely in the context of storage systems using symbol-by- o e

. . PR4 (222 + 42" — 22°) /(1 — 22° — 22* — 225 + 2%)
symbol detection such as peak detection, has been extremely — 222 4 82 4 1825 + O(2)
limited. However, the advent of digital signal processing [EPR4 | (5/2)2° + (41/8)2° + (417/32)2° + O(z7)
techniques such as PRML has created a new role for recording E*PR4 | (1/4)2° + (9/32)2° + (357/256)210 + O(z"%) i
codes, analogous to the role of trellis-coded modulation in | FPR4 | (1/4)22 + [1/16)210 + (3/16)2 + (21/128)2%
digital communications. In this section, we describe how PRI 32(21/1(433);):(212234 521222’1 2;(29%2?); +0(T)
appropriately constraineq code sequences can.improve PRML 7R3 T+ (3/2)7 + O() -
system performance by increasing the separation between the
channel output sequences with respect to Euclidean distance.

which in the assumed case of AWGN, yields

A. PRML Performance Bounds and Error Event Analysis d(E) 2
The design of distance-enhancing constrained codes for Fe < Z Q( 20 ) < )

events F

2
recording channels requires an understanding of the perfor- N _ _
mance of the PRML Viterbi detector, which we now briefljReorganizing the summation according to the error event
review. The detector performance is best understood in terglistanced(E), the bound is expressed as:

of error eventsFor a pair of input sequence$D) andz’(D), d(E)
define the input error sequeneg(D) = z(D)—2'(D) and the P. <> Ky Q<7>
output error sequence, (D) = h(D)e,(D). A closed error d(E)

eventcorresponds to a polynomial input error sequence  \yhare the valueg K4}, known as theerror event distance

spectrum are defined by

ko
-y O

wherek; andk, are finite integerss, x, # 0, ande, x, # 0. E:d(E)=d
A closed error event is said to bsample if the condition 5 moderate-to-high SNR, the performance of the system is
Exk = Exktl = -+ = Epktr—1 = 0 iS NOt true for any

largely dictated by error events with small distan&é’). In
particular, the events with the minimum distang,, will be

the dominant contributors to the union bound, leading to the
frequently used approximation

integerk; < k < ko — v, wherer is the memory of the
channel. Anopen error eventcorresponds to a right-infinite
input error sequence of the form

oo

Em(D) = Z Eac,ka Pe, ~ Kd‘“i“ Q <dmin>'
k=Fk; 20
where infinitely manye, , are nonzero, but the Euclidean For a number of the PR channel models applicable to
norm is finite recording, the error event distance spectrum values, as well as
the corresponding input error sequences, have been determined
e =D leyl® < oe.

for a range of values of the distanegFE) [7], [198], [6].

The calculation is made somewhat interesting by the fact,
mentioned in Section II-C2, that the PR trellises support closed
error events of unbounded length having certain specified,
finite distances. For channels with limited ISI, analytical
dQ(E) = ||5y(D)||2_ methods may be applied in the characterization of low distance

events. However, for larger distances, and for PR channel

The number of channel input-bit errors corresponding t0 &y nomials of higher degree, computer search methods have
error eventE is given by been more effective.

we(E) :E : |ea.il Table IV gives several terms of the error event multi-
Z T, .. . .
f plicity generating functions?(z) = Y, Kq2* for several

The ML detector produces an error when the selected treffi&} channels. Tables V and V1, respectively, list the input

path differs from the correct path by a sequence of error everfts O sehquen(iesh folr simple ccljoggd events on thbel PR4 and
The union boundprovides an upper bound to the probabilit PR4 channels having squared-distaifte) < 6. Table VI

of an error event beginning at some tirhdy considering the dhescEgbes thilnputler:ror_ sequence(sj fg_r 3|rrral§le clo<sed events on
set of all possible simple error events the E'PR4 channel having squared-distante£) < 10. In

the error sequence tables, the symbef is used to designate
P, = Pr(first event at timet) < Y Pr(E) “1,”* —"is used to designate-*1,” and a parenthesized string
events E (s) denotes any positive number of repetitions of the stsing

In general, for an error event, with corresponding input
error sequence, (D) and output error sequeneg (D), the
squared-Euclidean distance is defined as
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TABLE V TABLE VII
CLOSED ERROR EVENTS (PER INTERLEAVE) FOR PR4 GHANNEL, d? < 6 CLOSED ERROR EVENTS FOR EZPR4 GHANNEL, d? < 10
d2 €y d2 [
2 | +(0+)00 6 | +—40000
4 | +(04)+(+)0(40)0 8 | +-400+-40000
+(0+) (+ )0 00 +—+—(+ )0000
+(04+)—(+-)+0(+0)0 +=+—=(+-)+0000
6 | +(0+)+{+)0{+0)++(+)0(+0)0 10 | +—+0-+ 0000
+(0+4)+(+)0(+0)+-(+-)0(-0)0 + +00+—+00+ +0000
F(04)~(+-)+0(+0)+—(+-)+0(+0)0 +-+00+00+ +0000
+(04) (+)0(-0)- (-)0(-0)0 +00+—+-0000
+(0+)~(+-)0(-0)—+(—+)-0(-0)0 + +004+—+-(+-)+0000
+(0+)+(+)0(+0)+=(+-)+0(+0)0 + +00+—+—(+-)0000
H(0+)=(+)+0{+0)+-+(+)0(+0)0 + +000+—+0000
+(04)~(+-)+0(+0)+ (+ )(+ )0( 0)0 + +004-0000
+(04)-(+-)0( 0) +( +)0(+0)0 +0000
+(0+)0-(0-)00 + - (+-)+00++0000
+ +-(+-)00—+-0000
TABLE VI
2 a . . .
CLOSED ERROR EVENTS FOREPRA4 GiaNNEL, d” < 6 those that can generate the best practical distance-enhancing
d? €z ] codes—uwith a specified coding gain, high-rate, simple encoder
1 :(L)EJ(F’OJ;())SUO and decoder, and low-complexity sequence detector—remains
+-+(-+)-000 open. .
6 | +-000 The code constraint€ and the PR channel memory are
F=+( +)00+-+(-+)-000 then incorporated into a single detector trellis that can serve
+ +)030(0+)000 000 as the basis for the Viterbi detector. The final step in the design
B rocedure is to construct an efficient code into the constraints
T e proced t truct an efficient code into th traint
10(10)1 -+{ +) 000 C. This can be accomplished using code design techniques
F0(+0)0+-+(-+)000 such as those discussed in Section IV.
*0(+°)0;8(+0)00 00 It is useful to distinguish between two cases in implementing
i ig 30010(1(0)0)0 this strategy for the PR channels we have discussed. The
F—+(—+) 00-+—(+-)-+000 cases are determined by the relationship of the minimum
+ +(~+)-0-(0-)000 distanced,,;, to the matched-filter-bound (MFB) distance,
+0(40)+—+(—+)000 dyvrg, Where
+0(+0)-++0+(0+)000
+0(0)0++( +)-000 drp = [[M(D)]|%,

the energy in the channel impulse response.
The first case pertains to those channels which are said to
The characterization of error sequences provides a baahieve the MFB
for the design of constrained codes that eliminate events with 2 =2
a small Euclidean distance, thereby increasing the minimum min — EMEB
distance and giving a performance improvement [123], [183hcluding PR4, EPR4, and PR1. For these channels, the set of
[122], [154]. This operation is similar in nature to expurgatiominimum-distance input error sequences includgsD) =
in the context of algebraic codes. +1, and so any distance-enhancing code constraint must
More specifically, the design of distance-enhancing coprevent this input error impulse from occurring.
strained codes for PRML systems is based upon the followingThe second case involves channels which do not achieve
strategy. First, we identify the input error sequenegs)) = the MFB
z1(D) — z2(D) with d?*(e,) < d?, whered? is the target N N
distance of the coded channel. Then, we determine a list Dinin < dyipB-
L of input error strings that, if eliminated by means of ghjs case applies to £PR4, for all M > 2, as well as
code constraint, will prevent the occurrence of error eveng$/pRr2  for all M > 0. Note that, in this situation, a
with d* < d7. We denote the set of ternary error sequenceginimum-distance input error sequence—in fact, every er-
satisfying this constraint byv*=". ror sequence satisfying®(e,) < d3;ry—has length strictly
In order to prevent these error strings, we must next dgreater tharl, where event length refers to the span between
termine a code constraiit with the property that the corre- the first and last nonzero symbols. These events can often be
sponding set of input error sequendB&C) satisfies eliminated with constraint§ that are quite simply specified
E(C) C ploE} (20) and for which practical, efficient codes are readily c_:onst_ructed.
£ For the latter class of channels, we can determine distance-
There are many choices for the error strinilsas well as enhancing constraints that increase the minimum distance to
for constraintsC satisfying (20). The problem of identifying dyrgs, yet are characterizable in terms of a small IStof

B. Code Design Strategy
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relatively short forbidden code strings. (We will sometimeBC of the sequence is defined as
denote such constraints b&’}o’l}.) This permits the design "

of high-rate codes, and also makes it possible to limit the Mék)(:l‘) — Z k.
complexity of the Viterbi detector, since the maximum length

of a forbidden string may not exceed too significantly, or

at all, the memory of the uncoded channel. Consequentl?, analogy to the characterization of (first-order) spectral
and perhaps surprisingly, the design of high-rate, distand®dll sequences, one can show_that an ensemble of sequences
enhancing codes with acceptable encoder/decoder and Vitéiierated by freely concatenating a set of codewords of finite
detector complexity proves to be considerably simpler fdgngthn will have an orderK” spectral null at DC if and only if

the channels in the second group, namely, the channels with *), N o
relatively larger intersymbol interference. My (e) =0, k=0, K-1 (21)

we now twrn to. a discussion of some specific d|stanc%-r all codewordse. In other words, for each codeword, the
enhancing constraints and codes for partial-response channgls.. ;. 1. oments at DC must vanish fér —= 0. --- K — 1

A sequence satisfying this condition is also said to hzae®
C. Matched-Spectral-Null Constraints disparity of order K — 1.

As mentioned above, spectral-null constraints, particularly Finally, we remark that a length- sequence withD-
those with DC-nulls and/or Nyquist-nulls, are well-matcheffansform
to the frequency characteristics of digital recording channels,
and have found application in many recording systems prior

to the introduction of PRML techniques. In [121] and [46], i35 an ordei spectral null at DC if and only ife(D) is
was shown that, in addition, constraints with spectral nulls Blvisible by (1 — D)K. This fact plays a role in bounding the
the frequencies where the channel frequency response hasgiagnce-enhancing properties of spectral-null sequences.
value zero—matched-spectral-null (MSN) constraiat&an in- - £qr more details about high-order spectral null constraints,
crease the minimum distance relative to the uncoded chann@licyjarly constraints with high-order null at DC, we refer the
An example of this phenomenon, and one which sevggarested reader to Immink [99], Monti and Pierobon [153],
historically to motivate the use of matched-spectral-null codg8, abed and Siegel [121], Eleftheriou and Cideciyan [46], and

is the rate1/2 biphase code, with binary codewordd R siegel, and Vardy [165], as well as other references cited
and 10, which, one can easily show, increases the minimufRerein.

squared-Euclidean distQance of th2e binary-input dicode channely,o original proof of the distance-enhancing properties of
WD) =1-D, fromd® =2tod” = 6. . MSN codes was based upon a number-theoretic lower bound
To state a more general bound on the distance-enhanciifithe minimum Hamming distance of zero-disparity codes,
properties of MSN codes, we generalize the notion of &ie to Immink and Beenker [108]. They proved that the
spectral null constraint to include sequences for which highgfinimum Hamming distance (and, therefore, the minimum
order derivatives of the power spectrum vanish at specifigdcjigean distance) of a block code over the bipolar alphabet

frequencies, as well. More precisely, we say that an ensemgl, order& spectral-null at DC grows at least linearly I
of sequences has amder-K spectral density null afy if the Specifically, they showed that, for any pairy of lengths
power spectral densitg(f) satisfies sequences in the code

=0

z(D)=xo+x1 D+ +x, 1DV}

d* d(z,y) > 2K
— S =0, k=0,1,---,2K—1. =

We will concentrate here upon those with high-order spectral

null at DC. Sequences with high-order spectral nulls can Bes result for block codes can be suitably generalized to any
characterized in a number of equivalent ways. The high-ordgfnsirained system with ordéé- spectral null at DC. The
running-digital-sums of a sequenee= {x;},0 < ¢ < n, at (gt also extends to systems with an oréiespectral null at

d*(z,y) > 8K.

DC can be defined recursively as any rational submultiple of the symbol frequency, in particular,
n at the Nyquist frequency.
RD%I)(-'IJ) =RDS(z) = Z % In [121], this result was extended to show that the Lee

= distance, anda fortiori the squared-Euclidean distance, be-
n tween output sequences of a bipolar, input-constrained channel
RDSM (z) = Z RDS* ™ (o, - - -, 2:), k> 1. is lower-bounded by8M if the input constraint and the
i=0 channel, with spectral nulls at DC (or the Nyquist frequency)
of orders K and L, respectively, combine to produce a
Sequences with orddk- spectral null at DC may be char-spectral null at DC (or Nyquist) of orde¥/ = K + L. This
acterized in terms of properties of R@féx),k =1,---,K. result can be proved by applying Descartes’ rule of signs to
Another characterization involves the related notion of higlthe D-transform representation of these sequences, using the
order moments (power-sums), where threler-k moment at divisibility conditions mentioned above [121].
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This result can be applied to the PR4, EPR4, ad@HA4 the references therein, as well as more recent results in, for
channels, which have a first-order null at DC and a Nyquiskample, [151] and [147].
null of order L = 1,2, and 3, respectively. If the channel When implementing MSN-coded PR systems, the complex-
inputs are constrained to be bipolar sequences with an ordéy-of the trellis structure that incorporates both the PR channel
K Nyquist null, the channel outputs will satisfy the followingmemory and the MSN constraints can be an issue, particularly
lower bound on minimum squared-Euclidean distance: for high-rate codes requiring larger digital sum variation.
Reduced-complexity, suboptimal detection algorithms based
25 d 8K 12) for EPRA upon a concatenation of a Viterbi detector for the PR channel

min = ’ ) and an error-event post-processor have been proposed for a
8(K +3), for E°PR4. DC/Nyquist-free block-coded PR4 channel [128] and EPR4

Comparing to the minimum distance of the uncoded bipolgh@nneél [184]. In both schemes, DC/Nyquist-free codewords
channels, we see that the MSN constraint with — 1, @re obtained by interleaving pairs of DC-free codewords, and

corresponding to a first-order Nyquist null, provides a Codin(gjscrepancies_in the first-order moments of the interleaved
gain (unnormalized for rate loss) of at least 3, 1.8, and 19deword estimates produced by the PR channel detector
dB, respectively. Using the observation made in Section &€ utilized by the post-processors to determine and correct
A3, one can design codes with first-order null at DC an@oSt-probable minimum-distance error events. _
Nyquist by twice-interleaving a DC-free code. When such a !t Should be pointed out that aspects of the code design
code is applied to the PR4 channel, which has an interleaviptegy described above were foreshadowed in an unpublished
dicode decomposition, the implementation of the MSN-cod&@@Per of Fredrickson [66] dealing with the biphase-coded
system becomes feasible. Code-design techniques suchdi§8de channel. In that paper, the observation was made
those described in Section IV have been used to desigift the input error sequences corresponding to the minimum
efficient MSN codes. For analytical and experimental resuff§uared-distance” = 6 were of the form

pertaining to a ratel/5, MSN-coded PR4 system, the reader
is referred to [164] and [169]. Experimental evaluation of a

spectral-null coded-tape system is described in [27] il?ad those corresponding to the next-minimum distadfce-

8(K +1), for PR4

ex(D)=+10---

For these examples of MSN-constrained PR channels,
A . . were of the form
error event characterization discussed above provides another

confirmation, and a refinement, of the coding gain bounds. The co(D)=+1-10---.
verification makes use of the moment conditions satisfied by ‘
closed input error sequences= co, - - -, ¢y satisfying spectral preqrickson modified the encoding process to eliminate

null properties, a.generaliza}tion of the moment cqnditions inimum-distance events by appending an overall “parity-
(21) above. Specifically, a first-order DC null requires that -heck” bit to each block of input bits, for a specified value

N of k. The resulting raté:/(2k + 2) code provided a minimum
Z e; =0 (22) squared-Euclidean distaneB, = 10 at the output of the
i—o dicode channel, with only a modest penalty in rate for large

k. The Viterbi detector for the coded channel was modified to
incorporate the parity modul®-and to reflect the even-parity

N condition at the codeword boundaries. It was also shown that
> (=1)e; =0. (23) both thed? = 6 and thed” = 10 events can be eliminated
i=0 by appending a pair of bits to each block kfinput bits in

Examination of the error events for PR4 in Table V showOrder to enforce a specific parity condition modaloThe

fesulting ratek/(2k + 4) code yieldedd2. = 12 at the
that each error event with? < 4 fails to satisfy at least one g /(2F + 4) y

of these conditions. Similarly, for EPR4, the error events iglCs?ﬁtzl;Sa::ﬁéﬁgézu;’e?gg;?estcr:l?gtlﬂrgegam was realized with
Table VI with % < 6 are forbidden by the moment conditions. '
In the case of BPR4, the error event characterization not onl )
confirms, but also improves, the lower bound. Table VIl showd: Runlength Constraints
that the moment conditions cannot be satisfied by any errorCertain classes of runlength constraints have distance-
sequence withd? < 10, implying a nominal coding gain of enhancing properties when applied to the magnetic and optical
2.2 dB. MSN coding based upon Nyquist-free constraints BR channels. For example, the NRZE 1 constraint has been
applicable to optical PR channels, and error-event analysis @gplied to the EPR4 and thé FR4 magnetic channels, as well
be used to confirm the coding gain bounds in a similar manres the PR1 and PR2 optical channels; see, for example [152]
[152]. and the references therein. On the EPR4 and PR1 channels,
There have been a number of extensions and variatighe constraint does not increase minimum distance. However,
on MSN coding technigues, most aimed at increasing codaloes eliminate some of the minimum distance error-events,
rate, improving intrinsic runlength constraints, or reducinthereby providing some performance improvement. Moreover,
the implementation complexity of the encoder, decoder, atttk incorporation of the constraint into the detector trellis for
detector. For further details, the reader should consult [68] aB®R4 leads to a reduction of complexity from eight states
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TABLE VIII 1 1
INPUT PAIRS FOR FORBIDDEN ERROR STRINGS IN £ 0 :@—»

0
e + -4 -4 -  +04 -0 -
X1 10 1 01 0 151 0 b o0 0
1 1 1 b 1 b1 _ .
2 0 0 0 0 0 Fig. 19. Labeled graph for MTR; = 2 constraint.
TABLE IX
to six states, eliminating those corresponding to the NRZ CapaciTy OF MTR k1 = 2

. Se \Y k
channel input€010 and 101. FOR SELECTED VALUES OF fo

In the case of BPR4, Behrens and Armstrong [17] showed Z" Cg‘ég%’y
that thed = 1 constraint provides a 2.2-dB increase in 51 08579
minimum squared-Euclidean distance. To see why this is 6 | 0.8680
the case, observe that forbidding the input error strings 7| 08732
{+—+,— + -} will prevent all closed error events with fi 8'2,7(32
d? < 10. Forbidding, in addition, the strings+0+, —0—} pre- 101 08782
vents all open events witl* < 10, as well. Table VIl depicts oo | 0.8791
pairs of binary input strings whose corresponding error strings
belong to£; = {+ -+, —+—, + 0+, —0—} The symbolb TABLE X
represents an arbitrary binary value common to both strings in INPUT PAIRS FOR FORBIDDEN ERROR STRINGS IN £
a pair. Clearly, the elimination of the NRZ string81 and010
precludes all of the input error strings. The precoded 1 e 0+ - 4 0 — 4+ —
constraint precludes the NRZ strings = {101, 010}—that
is, the NRZ constraint isX{[f(ﬁ} oroy—confirming that the X1 b1 0 1 b0 10
; X3 b 0 1 0 b1 0 1

constraint prevents all events witld> <10. When the
constraint is incorporated into the detector trellis, the resulting
structure has only 10 states, substantially less than the 1@he NRZI MTR constraint withk; = 2 corresponds to
states required by the uncoded channel. an NRZ constrainf{ ‘[{gig Lo10y- The error-event characteriza-
The input error sequence analysis used above to confirm tleg in Table VII shows that the forbidden input error list
distance-enhancing properties of tle= 1 constraint on the £, = {0+ —+,0 — 4+—} suffices to eliminate the closed
E2PR4 channel suggests a relaxation of the constraint tRator events on R4 with d? < 10, though not all the open
nevertheless still achieves the same distance gain. Speeifients. Analysis of input pairs, shown in Table X, reveals that
cally, the X‘[{fg)ll}i constraint and the complementaw‘[{gig the MTR constraint indeed eliminates the closed error events
constraint are sufficient to ensure the elimination of closedth d? < 10. The detector trellis that incorporates théFR4
and open events with? < 10. The capacity of this constraint memory with this MTR constraint requires 14 states.
satisfiesC' = 0.8113, and a rate4/5, finite-state encoder A rate 4/5 block code is shown in Table XI [154]. It is
with state-independent decoder is described in [122]. Th#eresting to observe that the MTR = 2 constraint is the
corresponding detector trellis requires 12 states. Thus withtsymbol-wise complement of théi, &) = (0, 2) constraint,
modest increase in complexity, this code achieves essentiahyd the ratel/5 MTR codebook is the symbol-wise comple-
the same performance as the r&g3 (1, 7) code, while ment of the ratet/5 Group Code Recording code, shown in
increasing the rate by 20%. Table 1. With this code, all open error events with< 10 are
This line of reasoning may be used to demonstrate tkéminated.
distance-enhancing properties of another class of NRZIThe MTR constraint supports codes with rates approaching
runlength constraints, referred to as maximum-transition-rits capacity,C = 0.8791 [154], [155]. However, in practical
(MTR) constraints [154]. These constraints limit, sometimespplications, a distance-enhancing code with &dteor higher
in a periodically time-varying manner, the maximum numbes considered very desirable. It has been shown that higher rate
of consecutivel’s that can occur. The MTR constraintstrellis codes can be based upon time-varying MTR (TMTR)
are characterized by a parametfar, which determined the constraints [67], [23], [123], [52]. For example, the TMTR
maximum allowable runlength of's. These constraints canconstraint defined by$Ye® = 2, which limits the maximum
be interpreted as a generalization of ttie= 1 constraint, runlength ofl’s beginning at an even time-index to at most
which is the same as the MTR constraint with= 1. 2, has capacityC' = 0.916. The constraint has been shown to
The MTR constraint withk; = 2 was introduced by support a rates : 9 block code.
Moon and Brickner [154] (see also Soljanin [181]). A labeled Graph representations for the TMT&R*" = 2 constrained
graph representation is shown in Fig. 19. The capacity of thigstem are shown in Fig. 20. The states in the upper graph
constraint isC = 0.8791. Imposing an additional constraint, i are depicted as either circles or squares, corresponding
which we now denoté,, on the maximum runlength afs to odd time indices and even time indices, respectively. The
reduces the capacity, as shown in Table IX. numbering of states reflects the numberlts seen since the
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TABLE XI and complexity offered by high-rate distance-enhancing codes

ENCODER TMA%E E?gCiATCEOg/E& ki =2 for high-order PR channels, there is currently great interest in
deploying them in commercial magnetic data-storage systems,

'()”(i;‘ot %(‘;B%‘;t and further research into the design of such codes is being

0001 | 00101 actively pursued.

0010 | 01001 Finally, we remark that, for optical recording, the= 1

8‘1)(1)(1] (1’(1)(1)81 constraint and the TMTRY*® = 1 constraint increase the

0101 | 10101 minimum distance taf},.; on the PR2 and EPR2 channels,

0110 | 00010 yielding nominal coding gains of 1.8 and 3 dB, respectively.

ULLL | 00100 A simple, rate3/4 code for the TMTRESY® = 1 constraint

1000 | 00110 . . .

1001 | 01000 may be used with a four-state detector to realize these coding

1010 | 01010 gains [29], [152].

1011 | 01100

1100 | 10000 ,

1101 | 10010 E. Precoded Convolutional Codes

el ot An alternative, and in fact earlier, approach to coded-

modulation for PR channels of the fori(D) = (1 £ DY)

was introduced by Wolf and Ungerboeck [204] (see also [30]).
Consider first the cas&’ = 1, the dicode channel. A binary
input sequence = zg, 21, - - - is applied to an NRZI precoder,
which implements the precoding operation characterized by
the polynomialp(D) = 1/(1 & D). The binary precoder
outputse = vy, v, -- - are modulated to produce the bipolar
channel inputaw = wq, w1, -+ according to the ruley;, =
(=1)¥. Let z,2' be precoder inputs, with corresponding
channel outputg, %'. Then the Euclidean distand8(y,y’) at

the output of the channel is related to the Hamming distance
df(z,2') at the input to the precoder by the inequality

d*(y,y) > 4d" (2,7'). (24)

Now, consider as precoder inputs the set of code sequences
in a convolutional code witR” states in the encoder and free
Fig. 20. Labeled graphs for TMTR{¥*® = 2 constraint. Hamming distancell .. The outputs of the PR channel may

be described by a trellis witk¥+! or fewer states [212], which

last 0. In the upper grap}'H’ each state represents a uniqug'lay be used as the ba.SiS for Viterbi detection. The inequality
such number. The lower graghi is obtained by successively(24) leads to the following lower bound af,. of the coded

merging states with identical follower sets. system:
The TMTR £{¥*" = 2 constraint eliminates all closed error AdH it JH is even
events withd? < 10 on the EPR4 channel by preventing the 2 > free” free
H free =
input error sequences AdE+1), it df_is odd.

L={0+-4+00,0—4+—-00,0+ -+ —,0—+ — +}. . . . . . .
{0+ —+00, + Ot =+ -+ This coding scheme achieves coding gains on the dicode

As with the MTR k; = 2 constraint, it can be shown thatchannel by the application of good convolutional codes, de-
all open error events witli?> < 10 can be eliminated by an signed for memoryless Gaussian channels, and the use of
appropriately designed ratg/9, TMTR block code [123], a sequence detector trellis that reflects both the structure
[23], [21] [24], [52]. The time-varying trellis used by theof the convolutional code and the memory of the channel.
detector for the rate/9 coded EPR4 channel requires 16Using a nontrivial coset of the convolutional code ensures the
states, no more states than the uncoded system. It has tsmisfaction of constraints on the zero runlengths at the output
shown that these constraints and codes also may be apptédhe channel.
to the EPR4 channel to increase the minimum distance tolt is clear that, by interleavingV convolutional encoders
the channel MFB, that is frord? = 12 to d> = 28 [152]. and using a precoder of the forp{D) = 1/(1 & D), this
Time-varying constraints for the?PR4 channel that supporttechnique, and the bound on free distance, may be extended
distance-enhancing codes with rates larger théhhave also to PR channels of the form(D) = (1 £ DY), N > 1. In
been found [52]. particular, it is applicable to the PR4 channel corresponding to
Fig. 21 shows a computer simulation of the bit-error-rate(D) = 1— D?. The selection of the underlying convolutional
performance of four distance-enhancing constraints on tbede and nontrivial coset to optimize runlength constraints,
E2PR4 channel, assuming a constant channel bit rate [15Rge distance, and detector trellis complexity has been in-
As a result of the favorable tradeoff between performaneestigated by several authors. See, for example, [89], [90],
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Uncoded

d = 1 NRZI coded
X{101} NRZ coded
k1 = 2 NRZI coded
k1°¥¢" = 2 NRZI coded| |

Channel Bit Error Probability

SNR/dB

Fig. 21. Performance of uncoded and codetPR4 systems.

and [212]. For the PR4 channel, and specified free Euclidearecoded convolutional code and the MSN code is therefore
distance at the channel output, the runlength constraints aapproximately 5.5-6 dB. This estimate of the SNR gap can be
complexity of precoded convolutional codes have been foundmpared with that implied by the continuous-time channel
to be slightly inferior to those of matched-spectral-null (MSNgapacity bounds, as discussed in Section II-B.
codes. For example, a rafig5 precoded convolutional code
was shown to achieve 3-dB gain (unnormalized for rate loss)
with constraintg0, G/I) = (0, 44/22) and a 16-state detector
trellis with 256 branches (per interleave). The comparablen this section, we describe in more detail selected properties
MSN code with this gain achieved the equivalent of constrain®$ constrained systems that have played a prominent role in
(0, G/I) = (0, 10/5) and used a six-state detector trellis witifligital recording systems. The classes (of %) runlength-
24 branches (per interleave). limited constraints and spectral-null constraints have already
Recently, a modified version of this precoding approadien introduced. In addition, there are constraints that generate
was developed for use with a ratgs turbo code [168]. The SPectral lines at specified frequencies, called pilot tracking
detection procedure incorporated anposteriori probability tones, which can be used for servo tracking systems in
(APP) PR channel detector, combined with an iterative, turlféf€otape recorders [118], [115]. Certain channels require a
decoder. Performance simulations of this coding scheme gfjnPination of time and frequency constraints [128], [157],
a PR4 channel with AWGN demonstrated a gain of 5.3 dg60l; specifically DC-balanced RLL sequences have found
(normalized for rate loss) at a bit-error ratelof>, relative to Videspread usage in recording practice. In addition, there are
the uncoded PRML channel. Turbo equalization, whereby tHEY other constraints that play a role in recording systems;
PR detector is integrated into the iterative decoding procedugge’ _for example, [102], [196]’ [146], [1_77]’ and [_178]' Table
was also considered. This increased the gain by another églves a survey of recording constraints used in consumer

dB. Thus the improvement over the previously proposed ra%laectromcs products.

4/5 codes, which achieve 2-dB gain (normalized for rate loss)

is approximately 3.3-3.8 dB. The remaining gapfp/N, A- Runlength-Limited Sequences

between the rate/5 turbo code performance at a bit-error We have already encounteréd k)-constrained binary se-
rate of 10~° and the upper bound capacity limit (3) at ratgjuences wher® < d < k < co. We are also interested in the
4/5 [172] is approximately 2.25 dB [168]. The correspondingasek = co. Fig. 22 illustrates a graph representifig cc)
gap to the upper bound capacity limit at rat¢> for the constraints.

VI. COMPENDIUM OF MODULATION CONSTRAINTS
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TABLE XII TABLE XIV
SURVEY OF RECORDING CODES AND THEIR APPLICATION AREA CAPACITY OF ASYMMETRICAL RUNLENGTH-LIMITED
- SEQUENCES VERSUS MINIMUM RUNLENGTH
Device Code Type Ref.
Compact Disc EFM RLL, DC-free [84] dy | Co(do,0)
DVD EFMPlus RLL, DC-free [105] 1} 08114
R-DAT 8-10 DC-free [156] 2| 0.6942
floppy and hard disk (2,7) or (1,7) RLL [57] 31 0.6125
DCC ETM DC-free [97] 41 0.5515
Scoopman LDM-2 RLL, DC-free [86] 5| 0.5037
DVC 24 —25 DC-free with pilot tones [118]

B. Asymmetrical Runlength Constraints

Asymmetrical runlength-limited sequences [75], [194],
[186] have different constraints on the runlengthsOf and
1's. One application of these constraints has been in optical
recording systems, where the minimum size of a written
pit, as determined by diffraction limitations, is larger than

Fig. 22. Shannon cover for @, co) constraint. the minimum size of the area separating two pits, a spacing
determined by the mechanical positioning capabilities of the
TABLE XIiI optical recording fixture.
CapaciTy C(d, k) VERSUSRUNLENGTH PARAMETERS d AND k Asymmetrical runlength-limited sequences are described by
E |d=0|d=1|d=2|d=3|d=4 four parameterédy, ko) and(dy, k1), do,d1 > 0 andko > do,
; '233? 1057 k1 > dy, which describe the constraints on runlengths)'sf
3 | 0468 | 5515 | 2878 and 1's, respectively. An allowable sequence is composed
4 | .9752 | .6174 | .4057 | .2232 of alternate phrases of the forti, = 0°, ¢ = doy + 1,
5 | .9881 | .6509 | .4650 | .3218 | .1823 do+2, -+, ko+1,andS. =17, j=di+1, d+2,---, k1 +1.
6 ].99421.6690 | .4979 | .3746 | .2669 Let one sequence be composed of phrases of durations
7 |.9971 | 6793 | .5174 | 4057 | .3142 S d let th q h h f
8 | 0086 | 6853 | 5203 | 4251 | 3432 tm € S,, and let the second sequence have phrases o
9 |.9993 | .6888 | .5369 | .4376 | .3620 durationst; € S.. The interleaved sequence is composed of
10 | .9996 | .6909 | .5418 | .4460 | .3746 phrases taken alternately from the first, odd sequence and the
o0 | 1.000 | .6942 | 5515 | .4650 | .4057 second, even sequence. The interleaved sequence is composed

of phrases of duratiort; = ¢; + i, tm € So, t; € Se,

For (d, ~) sequences we can easily derive the characteris'tri?:plylng that the characteristic equation is

equation
—J -ml —q
27 4t =) JES, mesS,
or equivalently, which can be rewritten as

d+1 d __ ko+1 k141

z -z =1. ) .

< Z z_z> Z 277 | =1 (25)
Table XIII lists the capacityC(d, k) for selected values of i=dg+1 j=d1+1

the parameters and . . . ._If we assume thaty = k; = oo, then (25) can be written as
RLL sequences are used to increase the minimum separation

between recorded transitions. The quanfify;,, called the lotdit2 _ g dotditl | odotdi _ 1 _

density ratioor packing densityis defined as
As an immediate implication of the symmetry iy and d;,

Tonin = (1 4+ d)C(d, k). we find for the capacity of the asymmetrical runlength-limited
. . o _ sequences
It expresses the number of information bit intervals within
the minimum separation between consecutive transitions of an Co(do,d1) = Co(do + di1,0) (26)

RLL sequence. It may be shown that the density ratig, can
be made arbitrarily large by choosimbsufficiently large [3].
The minimum increment within a runlength is called the timin
window or detection window, denoted W#,,. Measured in
units of information bit intervalsZ,, = C(d, k). Sequences
with a larger value ofl, and thus a lower capacit¢(d, k),
are penalized by an increasingly difficult tradeoff between the 2dot2 _gadotl | odo _ g .
detection window and the density ratio. Practical codes have

typically used constraints witld < 2. Results of computations are given in Table XIV.

where C,(dy,d;) denotes the capacity of asymmetrical
nlength-limited sequences. Thus the capacity of asym-
é:etrical RLL sequences is a function of the sum of the
two minimum runlength parameters only, and it suffices to
evaluateC,(dy,0) by solving the characteristic equation



IMMINK et al. CODES FOR DIGITAL RECORDERS 2291

TABLE XV
0 @ 0 G\ Q @ 9 7 CaraciTy C(d, o0, 8) FOR SELECTED VALUES OF d AND s

d|s | Cldoo,s)
1 1 012 0.6042
_ _ 212 04057
Fig. 23. Labeled graph fofd, k, s) = (2, 6, 2) constraint. 312 0.3471
4]27 03063
We can derive another useful relation with the following ? g 828});
observation. Letly = dy, i.e., the restrictions on the runlengths 93l 03333

of 0’s and 1’s are again symmetric, then from (26)
Ca(d07 dO) = Ca(2d07 0) 20T T T T T T T T T T T T T T T

so that we obtain the following relation between the capacity
of symmetrical and asymmetrical RLL sequences:

Ca(2d0, 0) = C(do, OO) 15

T T T
(L
1

| X
[ )
N —
1

T T T T

C. RLL Sequences with Multiple Spacings

Funk [72] showed that the theory of RLL sequences ig 1g
unnecessarily narrow in scope and that it precludes certain
relevant coding possibilities which could prove useful in i
particular devices. The limitation is removed by introducing L
multiple-spaced RLL sequenceghere one further restriction 05
is imposed upon the admissible runlengthsOtd. The run-
length/spacing constraints may be expressed as follows: for
integersd, k£, ands, wherek —d is a multiple ofs, the number
of 0’'s between successivies must be equal ta + ¢s, where 0.0 05 10 15 2.0
0 < ¢ < (k—d)/s. The parametersl and &k again define T,
the.mlmr.num. and m(.:lXImum allowable runlength_. A squenr&%' 24. Relationship betweéh,;, and windowT,. The operating points
defined in this way is called aRLL sequence with multiple of various (d, . s) sequences are indicated.
spacing(RLL/MS). Such a sequence is characterized by the
parametergd, k, s). Note that for standard RLL sequences

we haves = 1. Fig. 23 illustrates a state-transition diagra his relationship (ijs plotted, fok; :I 03’. in Fig. 2.4' With hi
for the (d, k, s) = (2, 6, 2) constraint. d,00) constrained sequences, only discrete points on this

curve are possible. RLL sequences with multiple spacing,
however, make it possible, by a proper choicedofnd s,

to approximate any point on this curve.

C(d, k, s) =logy A A multiple-spaced RLL code with parametdgs 18, 2) has
been designed and experimentally evaluated in exploratory
magnetooptic recording systems using a resonant bias coil

T

T T T T

The capacityC(d, k, s) can simply be found by invoking
Shannon’s capacity formula

where ) is the largest root of the characteristic equation

(k—d)/s ‘ direct-overwrite technique [167], [200].
Z Z*(d+zs+l) =1. (27) d [ ] [ ]
i=0 D. (0, G/I) Sequences

Note that if s and d + 1 have a common factop, then

k + 1 is also divisible byp. Therefore, a(d, k, s) sequence
with the above condition oni, &, and s is equivalent to a
((d+1—p)/p,(k+1—p)/p,s/p) sequence. Fot = oo, we

obtain the characteristic equation

The (0, G/I) constraints for partial-response maximum-
likelihood systems were introduced in Section II-C2. Recall
that the parameters stipulates the maximum number of
allowed 0's between consecutivé's, while the parameterf
stipulates the maximum number @6 betweenl’s in both the
PR e even- and odd-numbered positions of the sequence.

Table XV sh th Its of tai Withi To describe a graph presentation of these constraints, we

avle shows the results of computations. WIthin a9y yafine hree parameters. The quangtydenotes the number
adjacent bit periods, there is only one possible location for tla? 0's since the lastl. The quantitiess and b denote the
next1, given the location of the last The detection window number of0’s since the last in the even and odd subsequence
for an RLL/MS sequence is therefolle, = sC(d, k, s), and respectively. It is immediate that '
the minimum spacing between two transitioff$,;,, equals '
(d+1)C(d, k, s). 2a+1, ifa<bd

S . . . gla,b) = .
By rewriting (27) we obtain a relationship betwegn, Ti.in 2b, if a>b.

and Trnax, NaMely, Each state in the graph corresponds t2-@ple (a, b), with

27 Tw 4 97 Tmin _ 97 Tmax—Tw — 1, 0 < a,b < I and g(a, b) < G. Wherever permitted, there
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TABLE XVI TABLE XVII
CAPACITY FOR SELECTED VALUES OF (G AND [ CAPACITY AND SUM VARIANCE OF MAXENTROPIC RDS-CONSTRAINED
SEQUENCESVERSUS DIGITAL SuM VARIATION N

G | I | Capacity
1 4] 09614 N C(N) | o2(N)
4 13 0.9395 3 | 0.5000 | 0.5000
316 0.9445 4 10.6942 | 0.8028
3 15| 09415 5 10.7925 | 1.1667
3 14| 09342 6 | 0.8495 | 1.5940
313 09157 7 | 0.8858 | 2.0858
8 1 0.9103 | 2.6424

is an edge from statéa, b) to state(b, a + 1) with a label

0, and an edge from state:, b) to state(b, 0) with a label For spectral-null constraints with(f) = 0, however, every

1. By computing the maximum eigenvalue of the adjacen@gquence in the constraint has a well-defined average power

matrix corresponding to the graph, we obtain the capacity dénsity atf, and the magnitude is equal to zero [145]. As

the (0, G/I) constraint . Results of computations are listed ihas already been mentioned, the spectral null frequencies

Table XVI. of primary interest in digital recording are zero frequency
For all of these constraints, rat®/9 codes have been(DC) and the Nyquist frequency. (Further general results on

constructed [146]. As mentioned earlier, a rag®, (0, 4/4) spectral-null sequences are given in [145], [100], and [102],

block code was used in early disk drives employing PRMfor example.)

techniques. Current disk drives make use of more relaxedChien [38] studied bipolar sequences that assume a finite

constraints, such a$, 6/6) and (0, 6/7), which can support range of N consecutive running-digital-sum (RDS) values,

codes with even higher rates, such as f#t¢17 [161], [51]. that is, sequences with digital-sum variation (DS¥) The

range of RDS values may be used, as in Fig. 7, to define a
E. Spectral-Null Sequences set of N allowable states. The adjacency matrbg for the

. . . RDS-constrained channel is given by
Frequency-domain analysis of constrained sequences

is based upon thewerage power spectral densitpr, as 4, (i +1,4) = Ax(é,i+ 1) = 1, i=1,2--,N—1
it is often called, thepower spectrumIn order to define
the power spectrum, we must endow the ensemble of
constrained sequences with a probability measure. Generallygor most constraints, it is not possible to find a simple
the measure chosen is the maxentropic measure determipeded-form expression for the capacity, and one has to rely
by the transition probabilities discussed in Section 1ll-Byy numerical methods to obtain an approximation. The RDS-
The autocorrelation function is the sequence nah-order .onstrained sequences provide a beautiful exception to the rule,
autocorrelation coefficientsi(n)}, —oo <n < oo, defined by 55 the structure ofiy allows us to provide a closed-form
expression for the capacity of an RDS-constrained channel.

R(n) = Elagay] We have [38]

An(i,5) =0, otherwise.

where {a;} represent channel input symbols and the expec- A= 2cos —
tation is with respect to the given measure. According to N+l
the Wiener—Khinchin theorem, the average power spectrgid thus the capacity of the RDS-constrained channel is
is given by the discrete-time Fourier transform of the autocor-

. . m
relation function _ C(N) =log, A = 1+ log, cos N1l

—j27nf i i
S(f) = FR(n)] = Z R(n)e™ Table XVII lists the capacityC(N), for 3 < N < 8. It
nETee can be seen that the sum constraint is not very expensive in

where, as beforej = /—1. Alternatively, we can expressterms of rate loss whedV is relatively large. For instance,

N >3 (28)

S(f) as a sequence that takes at maximuvn= 8 sum values has a
Y 9 capacityC(8) = 0.91, which implies a rate loss of less than
1 ; 10%.
_ . il —j27mmf
S = A}linoo E M z;o m® Closed-form expressions for the spectra of maxentropic

RDS-constrained sequences were derived by Kerpez [126].

The computation of the power spectrum of an ensemble IBig. 25 displays the power spectral density function of max-
Markov-chain driven sequences is well-studied and has beammtropic RDS-constrained sequences for various values of the
carried out for many families of runlength-type constraints, agital sum variation/v.
well as for the subsets of constrained sequences generated byet S(w) denote the power spectral density of a sequence
specific finite-state encoders; see [75] and references thereiith vanishing power at DC, whete = 2= f. The width of the

It is important to note that for a particular sequence, trspectral notch is a very important design characteristic which
average power density at a particular frequerficyf it exists is usually quantified by a parameter called thoff frequency
at all, may differ significantly fromS(f) if S(f) # 0. The cutoff frequency of a DC-free constraint, denoted.gy
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Fig. 26. Sum variance versus redundancy of maxentropic RDS-constrained
Fig. 25. Power density functior$, (w) of maxentropic RDS-constrained sequences.
sequences against frequencywith digital sum variationV as a parameter.
For the caseV = 5, we have indicated the cutoff frequency.

These approximations, coupled with (28) and (30), lead to
is defined by [65] a fundamental relation between the redundaheyC'(N) and
1 the sum variance of a maxentropic RDS-constrained sequence,

H(wo) = 5 namely,

It can be observed that the cutoff frequengy becomes
smaller when the digital sum variatiotv is allowed to 0.25 > (1 = C(N))oZ(N) >
increase.

Let »; denote RDSxy, - - -, z;). Justesen [116] discovered
a useful relation between the sum variande= E{»?} and
the width of the spectral notclyy,. He found the following
approximation of the cutoff frequenayy:

72/6—1
() =0.2326. (31)
Actually, the bound on the right is within 1% accuracy for

N >9. Equation (31) states that, for large enough the
product of redundancy and sum variance of maxentropic
RDS-constrained sequences is approximately constant, as was
ngwo ~ 1. (29) suggested by Fig. 26.

Extensive computations of samples of implemented channel

codes, made by Justesen [116] and Immink [98] to validate the VIl. FUTURE DIRECTIONS
reciprocal relation (29) between, ands?, have revealed that
this relationship is fairly reliable. The sum variangdz2} of

a maxentropic RDS-constrained sequence, denoted by ),
is given by [38]

As digital recording technology advances and changes, so
does the system model that serves as the basis for information-
theoretic analysis and the motivation for signal processing and

coding techniques. In this section, we briefly describe several
) 2 zf\: <N +1 k>2 i L technology developments, some evolutionary and some revo-

m

S(N) = N+l 9 N+1 (30) lutionary, that introduce new elements that can be incorporated

k=1 into mathematical models for digital recording channels.
Table XVII lists the sum variance?(N) for 3 < N < 8.
Fig. 26, which shows a plot of the sum variance versus the Improved Channel Models
redundancyl — C(NV), affords more insight into the tradeoffs _ o - . .
in the engineering of DC-balanced sequences. It presents th&eflecting the continuing, rapid increase in areal density of
designer with a spectral budget, reflecting the price in terrf@nventional magnetic recordlr_lg, as well as the characteﬂsucs
of code redundancy for a desired spectral notch width. It al9hthe component heads and disks, channel models now incor-
reveals that the relationship between the logarithms of the sfigyate factors such as asymmetry in the positive and negative

variance and the redundancy is approximately linear. step responses of _magnetoresistive _read heads_;_ qleviations
For large digital sum variationV, it was shown by A. from Ilngar sgpgrposmpn; spectral colormg, nonadditivity, and
Janssen [114] that nonstationarity in media noise; and partial-erasure effects and
other data-dependent distortions [20], [21], [32], [33].
2 _(1 1 2 1 The evaluation of the impact of these channel characteristics
aZ(N)_<———)(N+1) +O<7) p . ' .
12 272 (N +1) on the performance of the signal processing and coding
and similarly techniques dicussed in this paper is an active area of research,
) ) ) as is the development of new approaches that take these
O(N)=1- i +O< ) channel properties into account. See, for example, related
2In(2) (N +1)? (N+1) papers in [192].



2294 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

B. Nonsaturation Multilevel Recording one-dimensional case, where the capacity of Katt2) and

At various times during the past, the possibility of abarl2: 4) constrained binary sequences are both nonzero and, in

doning saturation recording, “linearizing” the digital magnetic@ct: are equal. Lower bounds on the capacity of some two-
imensional(d, k) constraints are presented in [124], [179],

recording channel, and incorporating nonbinary signaling hd ; i k :
been examined. In all such studies. however. the potenl‘?’é]d other constraints relevant to two-dimensional recording

increase in recording density that might accrue from tfé€ analyzed in [11], [187], and [199].

application or adaptation of coded-modulation techniques de-

veloped for digital communications has been outweighed by VIII. SHANNON'S CROSSWORDPUZZLES

the increase in detector complexity and, more fundamentally,

the cost in signal-to-noise ratio that accompanies the Ilnean%ﬁ— Existence of Multidimensional Crossword Puzzles

tion process. However, several novel storage technologies _ _ _ _ o _

can support multilevel alphabets, such as electron-trappingAS mentioned in the preceding section, multidimensional
optical memories ETOM [148], [31] and optical recording wittffonstrained codes represent a new challenge for information

multivalued magnetooptic media [176]. theorists, with potentially important applications to novel,
high-density storage devices. We feel it is particularly fitting,
C. Multitrack Recording then, to bring our survey to a close by returning once more

. . to Shannon’s 1948 paper [173] where, remarkably, in a short
Ar_lother avenue toward Increasing _the _sto_rage capac ¥ssage addressing the connection between the redundancy of
OT d|sk_and tape systems s t(.) gxplon their inherent twg; language and the existence of crossword puzzles, Shannon
dimensional naturr—_z. Runlength-limited codes, such-#ck anticipated some of the issues that arise in multidimensional
(d, k) codes, that increase the per-track code rate by shar strained coding.
the timing constrglntk across multiple tracks have been Specifically, Shannon suggested that there would be cases
analyzed and designed [140], [185], [47]. where the capacity of a two-dimensional constraint is equal

Using models of signal-to-noise ratio dependence upeg zero, even though the capacity of the constituent one-

track. W'dth’ as -well as mtertrack. mterfergnce (T, ONBimensional constraint is nonzero, a situation illustrated by
can investigate information-theoretic capacity bounds as 8tain two-dimensionald, k) constraints. We cite the fol-
function of track density. Multitrack recording and multihea owing excerpt from Shar;non’s 1948 paper:

detection techniques based upon partial-response equalization,

decision-feedback-equalization, and sequence detection havédhe ratio of the entropy of a source to the maximum
been studied [13], along with coding schemes that can improvevalue it could have while still restricted to the same sym-
their performance. See, for example, [183] and referencesbols will be called itselative entropy. .. One minus the

therein. relative entropy is theedundancy. .. The redundancy
of a language is related to the existence of crossword
D. Multidimensional Recording puzzles. If the redundancy is zero any sequence of

letters is a reasonable text in the language and any two-

New, exploratory technologies, such as volume holographic ; .
dimensional array of letters forms a crossword puzzle.

data storage [80] and two-photon-based three-dimensional : : .
. . . : If the redundancy is too high the language imposes
(3-D) optical memories [95], have generated interest in page- '
. . too many constraints for large crossword puzzles to be
oriented recording and readback. Models of these processes ~ . : . .
. ) L ossible. A more detailed analysis shows that if we
have generated proposals for two-dimensional equalization an . .
. . . ) assume the constraints imposed by the language are
detection methods [82], [158], along with two-dimensional ;
codes [81], [195] of a rather chaotic and random nature, large crossword

; . . . : . puzzles are just possible when the redundancy is 50%.

This has generated interest in two-dimensional constrained ; . .
: : If the redundancy is 33%, three-dimensional crossword
systems and modulation codes. As an example, consider a two- :
" ; ) : puzzles should be possible, etc.

dimensional binaryd, k) constrained array as an (row) by
n (column) binary array such that evelnhas no less tha#0’s To the best of our knowledge Shannon never published a
and no more thah 0's above it, below it, to the right of it, and more detailed exposition on this subject. This led us to try to
to the left of it (with the exception of’'s on or near borders). construct a plausibility argument for his statement. We assume
The capacity of such an array is equal to the limitpaandm  that the phrase “large crossword puzzles are just possible”
approach infinity, of the ratio of the logarithm of the numbeshould be taken to mean that the capacity of the corresponding
of distinct arrays satisfying the constraints to the product tfo-dimensional constraint is nonzero.
m times n. Little is known at this time about finding the Let A denote the number of source symbol$, denote
capacity of such two-dimensional binary constrained arraythe source binary entropy, anH* = H/log, (4) denote
A notable exception is that it has been proved that the twthe relative entropy. We begin with alk™” m by n arrays
dimensional capacity of such two-dimensiordl k) binary that can be formed froml symbols. We eliminate all arrays
arrays is equal to zero if and onlyif= d+1 andd >0 [124]. that do not have all of their rows and columns made up
Thus the two-dimensional capacity of the, 2) constraint is of a concatenation of allowable words from the language.
equal to0, while the two-dimensional capacity of tH@, 4) The probability that any row of the array is made up of a
constraint is strictly greater thah This is in contrast to the concatenation of allowable words from the language is equal
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to the ratio of the number of allowable concatenations @fith Shannon’s bound, we tried to modify the argument by
words with n letters, 2", to A™. Thus assuming statistical more accurately approximating the probability of a column
independence of the rows, the probability thatrallows are satisfying the specified row constraint, as follows.
concatenations of allowable words is this ratio raised to theAlthough the one-dimensional capacities of the two con-
mth power, or(2" /A™)™ or (2mnH /4mn) The identical straints are equal, the one-dimensional constraints have dif-
ratio results for the probability that all columns are made ferent first-order entropie#d;. In particular, H; =~ 0.9777

up of concatenations of allowable words. Now assuming thiatr the (1, 2) constraint andH; ~ 0.8281 for the (2, 4)

the rows and columns are statistically independent, we see tbatstraint, since the relative frequency0ds is higher for the

the probability for an array to have all of its rows and all of2, 4) constraint than for thél, 2) constraint. In the previous

its columns made up of concatenations of allowable wordsptausibility argument for Shannon’s result, once one chooses
equal to(22mnH / A2mn) The assumption of independence ofhe rows of the array to be a concatenation of allowable words,
the rows and columns is made with the sole justification thtte relative frequencies of the symbols in each column occur
this property might be expected to be true for a language thataccordance with the relative frequency of the symbols in the
is “of a rather chaotic and random nature.” Multiplying thisvords of the language. Thus the probability that any column is
probability by the number of arrayd™" yields the average a concatenation of allowable words is equal 261 /2m 1),
number of surviving arrays2”(2H—log; (4)) which grows Proceeding as above, we find that the average number of
exponentially withmn provided thatH* >0.5. A similar surviving arrays grows exponentially wittvn provided that
argument for three-dimensional arrays yields the conditiqd//H;) > 0.5 for two-dimensional arrays, ¢ /H;) > 0.667
H*>0.667. This is Shannon’s result. (The authors thank Kor three-dimensional arrays.

Shaughnessy [174] for contributions to this argument.) We However, for both the one-dimensionél, 2) and (2, 4)
remark that for ordinary English crossword puzzles, we woulthnstraints, we find H/H;) < 0.5. Therefore, this modified
interpret the black square to be a 27th symbol in the alphabahalysis still does not satisfactorily explain the behavior of
Thus to compute the “relative entropy” of English, we divid¢hese two constraints. A possible explanation is that a further
the entropy of English biog, (27). In this context, we would refinement in the argument is needed. Another possibility is
propose using an unusual definition of the entropy of Englistihat these(d, k) constraints are not “chaotic and random”
which we call H’, based upon the dependencies of letteenough for Shannon’s conclusion, and our plausibility argu-
within individual words, but not across word boundaries, sincaents, to apply.

the rows and columns of crossword puzzles are made up of

unrelated words separated by one or more black squares.GFoCOOla

compute H’ for the English language, we can proceed as As this paper was undergoing final revisions, one of the
follows. Assume that; is the number of words in an Englishauthors (JKW) received a letter from E. Gilbert pertaining to
dictionary with: letters, fori = 1,2, .- -, L. We lengthen each Shannon’s crossword puzzles [77]. The letter was prompted
word by one letter to include the black square at the end obg a lecture given by JKW at the Shannon Day Symposium,
word and then add one more word of lendtho represent a held at Bell Labs on May 18, 1998, in which the connection
single black square. (This allows more than one black squayetween the capacity of two-dimensional constraints and Shan-
between words.) Following Shannon, the number of distinabn’s result on crossword puzzles was discussed. In the letter,
sequences of words containing exactlysymbols,N(n), is  Gilbert recalls a conversation he had with Shannon 50 years
given by the difference equation ago on this subject. Referring to Shannon’s paper, he says:

N(n)=N(n-1)+aN(n-2) | didn’t understand that crossword example and tried to
+a;N(n—3)+-+a.Nn—L—1). (32) reconstruct his argument. That led to a kind of hand-
waving “proof,” which | showed to Claude. Claude’s
Then, H' is given by the logarithm of the largest real root of own argument turned out to have been something like
the equation mine. .. . Fortunately, | outlined my proof in the margin
_1 9 _3 —(I41 of my reprint of the paper (like Fermat and his copy of
X+ X 40X P 4 o XTI =1 (39) Diophantos). It went like this: .. .

The distribution of word lengths in an English dictionary the argument that followed is exactly the same as the one
has been investigated by Lord Rothschild [166]. (See also h.sented in Section VIII-A above, with the small exception

discussion in Section VIII-C.) that arrays were assumed to be square. In fact, in a subsequent
) _ ) _ e-mail correspondence [78], Gilbert describes a calculation
B. Connections to Two-Dimensional Constraints of the redundancy of English along the lines suggested by

Unfortunately, a direct application of Shannon’s stateme(®#2) and (33). Thus we see that the study of multidimensional
tothe(d, k) = (1, 2) and(d, k) = (2, 4) constraints leads to a constrained arrays actually dates back 50 years to the birth of
problem. Their one-dimensional capacities and, therefore, thigiformation theory. A great deal remains to be learned.
relative entropies, are equal, with* = H~0.4057. However,
we have seen that the capacity of the two-dimensighal)
constraint is zero, while that of the two-dimensiorial 4) In this paper, we have attempted to provide an overview
constraint is nonzero. In order to resolve this inconsistency the theoretical foundations and practical applications of

IX. SUMMARY



2296

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

constrained coding in digital-recording systems. In keepirngi]

with the theme of this special issue, we have highlighte
essential contributions to this area made by Shannon in
landmark 1948 paper. We described the basic characteristics

i

of a digital-recording channel, and surveyed bounds on tHe!
noisy-channel capacity for several mathematical channel mod-

els.

We then discussed practical equalization and detectio#

techniques and indicated how their implementation imposes
constraints on the recording-channel inputs. Following a rgs)
view of Shannon’s fundamental results on the capacity &bl

discrete noiseless channels and on the existence of efficient

codes, we presented a summary of key results in the thegry
and practice of efficient constrained code design. We then
discussed the application of distance-enhancing constraiq?g
codes to improve the reliability of noisy recording channels,

and compared the resulting performance to estimates of k&l
noisy-channel capacity. Finally, we pointed out several nirgo]
directions that future research in the area of recording codes
might follow, and we concluded with a discussion of thé&ll

connection between Shannon’s remarks on crossword puzzles

and the theory of multidimensional constrained codes. Throug]
the inclusion of numerous references and indications of open
research problems, we hope to have provided the reader with
an introduction to this fascinating, important, and active branch

of information theory, as well as with some incentive an&?
encouragement to contribute to it.

The authors are grateful to Dick Blahut, Brian Marcu5{[27]
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