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On Codes with Spectral Nulls  at Rational 
Submultiples of the Symbol Frequency 
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Abstract -In digital data transmission (respectively, storage systems), 
line codes (respectively, recording codes) are used to tailor the spectrum of 
the encoded sequences to satisfy constraints imposed by the channel 
transfer characteristics or other system requirements. For instance, pilot 
tone insertion requires codes with zero mean and zero spectral density at 
tone frequencies. Embedded tracking/focus servo signals produce similar 
needs. Codes are studied with spectral nulls at frequencies f = kf, /n, 
where f, is the symbol frequency and k, n are relatively prime integers 
with k I n; in other words, nulls at rational submultiples of the symbol 
frequency. A necessary and sufficient condition is given for a null at f in 
the form of a finite discrete Fourier transform (DFT) running sum 
condition. A corollary of the result is the algebraic characterization of 
spectral nulls which can be simultaneously realized. Specializing to binary 
sequences, we describe canonical Mealy-type state diagrams (directed 
graphs with edges labeled by binary symbols) for each set of realizable 
spectral nulls. Using the canonical diagrams, we obtain a frequency domain 
characterization of the spectral null systems obtained by the technique of 
time domain interleaving. 

I. INTRODUCTION 

S EVERAL applications in the realm of digital data 
transmission and storage require the use of codes which 

impart specific properties to the spectrum of the encoded 
symbol sequence. For example, pulse position modula- 
tion (PPM) digital magnetic recording channels employ 
run-length-limited (RLL) codes [14] to shape the signal 
spectrum, limiting low-frequency content to provide self- 
clocking and high-frequency content to reduce intersymbol 
interference. 

Line codes used in baseband pulse-amplitude modula- 
tion (PAM) digital transmission systems and recording 
codes for certain magnetic and optical channels require, in 
addition to RLL constraints, a zero-mean and vanishing 
spectral density at zero frequency (dc). We refer to this as 
a spectral null at dc. 

A necessary and sufficient condition for the existence of 
a null at dc is that the running digital sum at dc (denoted 
RDS,) for codestrings a = a,, a,, * * . , aN, defined by 

RDS,(a) = 5 aj, 
i=O 

(1.1) 
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takes values in a finite range [20], [13]. We call this the 
finite RDS, condition. 

In this paper, we investigate codes with spectral nulls at 
arbitrary rational submultiples /$,/n of the symbol 
frequency f,. These codes have applications in transmis- 
sion systems employing pilot tones for synchronization 
and recording systems with embedded tracking, focus, or 
timing servos [lo], [ll]. 

In Section II, we give background terminology and 
results on Markov models for constrained channel se- 
quences, spectral analysis of digital signals, and codes with 
spectral nulls at dc. In Section III, we extend the result for 
null at f = 0 (dc) to f = kfS/n by introducing a generaliza- 
tion of RDS,, namely the running digital sum at f (de- 
noted RDS,) based on the discrete Fourier transform 
(DFT). The RDS at f = kfS/n for a sequence a = 
a,; . -, aN is 

RDS,(a) = f a,,,e-i2nkm/n 
m=O 

(1.2) 

where i=m. 
We show that a necessary and sufficient condition for a 

spectral null at f = kf,/ n is that the encoded symbol 
sequences have a finite range of values of RD$. The 
condition also will be stated in the form of a “coboundary” 
equation for the encoded sequences (see Definition 4). 

Some applications, such as [lo], require simultaneous 
spectral nulls at distinct frequencies. In Section IV, using 
the finite RDSf condition, we give an algebraic characteri- 
zation of finite sets of spectral null frequencies which can 
be simultaneously realized. This generalizes a result of 
Gorog [9] for block codes. 

For codes with rational symbol values, the characteriza- 
tion is as follows. Associate the root of unity o = e-i2nk/n 
to the null frequency f = kfs/n. The spectral nulls at 
frequencies fit f2;. a, f, are simultaneously realizable if 
and only if the corresponding set of roots of unity oi; . . , oI 
forms a full set of roots of a polynomial with integer 
coefficients. 

Code construction techniques (see, for example, [l]) 
often make use of a Mealy-type finite state transition 
diagram (FSTD) to represent the system of constrained 
sequences. In Section V, we describe canonical diagrams 
Gpf for the set of binary sequences having a spectral null at 
frequency f. The diagrams are locally finite countable state 
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transition diagrams (CSTD) with the properties: 

1) every FSTD contained in Gpf generates a spectral 
null at f; 

2) every FSTD H, with period p, which generates a 
spectral null at f collapses to an FSTD in Gp/ via a 
label-preserving directed graph homomorphism. 

These canonical diagrams are based on states which lie 
naturally on an integer lattice with a simple algebraic 
description. Canonical diagrams for sets of simultaneous 
nulls are also described.’ 

The paper concludes in ‘Section VI with an application 
of the canonical diagrams to the study of constraints 
obtained by interleaving sequences having a null at speci- 
fied frequency f. Reference has been made in communica- 
tion theory applications to the fact that a null at j,/m can 
be produced by interleaving m sequences, each having a 
null at dc [6], [7]. We determine the set of nulls produced 
by interleaving a null at f = kf,/n, m times, and prove 
that the spectrum of an FSTD includes nulls at these 
frequencies if and only if the strings it generates are 
obtained by m-way interleaving of sequences with a null at 
f. This result provides an equivalent frequency domain 
characterization of the spectral dl systems obtained by 
the technique of time domain interleaving. 

composed of triples {(ui, 5, a(ui, ai))), and label a(ui, uj) 
on the state {(a,,~~, a(u,,u,))}. This representation in- 
cludes digital encoders based on a Moore FSSM model 
(see 1201). The Moore model is referred to as the edge 
graph of the Mealy model. For example, we represent the 
binary sequences with RDS, in the range [0,3] by the 
FSTD shown in Fig. 1. By going to the edge graph, one 
obtains the Moore-type presentation of the same con- 
straint, shown in Fig. 2. 

Cl 
AA- 

'bj- =---If =-I/ 

Fig. 1. FSTD for channel with RDS, values in range [0,3] (Mealy-type). 

+1.-.-, 
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I I +1 .=a -1 
Fig. 2. Moore-type presentation of channel in Fig. 1. 

A. Markov Models for Constrained Channel Sequences 

II. SPECTRAL ANALYSIS OF MARKOV 
DRIVEN SIGNALS 

In this section, background terminology and results are 
established. 

We are interested in the spectral analysis of digital 
sequences which represent a finite memory function of a 
Markov chain. It will be convenient to describe the se- 
quences in terms of a finite state transition diagram. 

Definition I: An FSTD G  is a directed graph with, state 
set Y = { ua; * ‘, a,, } and edges labeled with symbols from 
an alphabet d (usually an alphabet consists of numbers). 
Without loss of generality, we can assume at most one 
edge connects ui to uj, and we denote the edge label by 
a(uj, ‘j). 

Definition 2: An FSTD G is irreducible if for every pair 

B. Spectral Atialysis of Digital Signals 

of states ui and ,uj there is a path in G  from ui to uj. The 
period of G  is the greatest common divisor (gcd) of cycle 
lengths in G . Here the length of a cycle is the number of 

There is a substantial literature on the spectral analysis 

edges traversed. G  is said to be aperiodic if it is irreducible 

of digital signals which are a finite-memory function of a 

and has period 1. We say that (G; P) is irreducible (respec- 
tively, aperiodic) if G  is irreducible (respectively, aperiodic) 

Markov chain. For example, see [2]-[8]. Let G  be an 

and the transition probability pij is positive if and only if 

FSTD describing a constrained channel, with underlying 

G  contains an edge from state ui to state uj. 

Markov chain P. 

Assume that (G, I’) is irreducible in the following defini- 
tion. 

Paths through the graph underlying G  give rise to sym- 
bol sequences obtained by reading off the labels of edges 
as they are traversed. By associating to G  a matrix of state 
transition probabilities, P = ( pij), the state sequences 
{(So)} of paths through G  become a Markov chain P, and 
the symbol sequences ((a,)} are a function of the Markov 
chain a,, = a(s,, s,, J. We remark that this description 
encompasses digital encoders based on a Mealy finite-state 
sequential machine (FSSM) model, when driven by inde- 
pendent identically distributed input symbols. The output 
sequences can also be represented as a memoryless func- 
tion of a Markov chain by defining an FSTD with state set 

‘We are indebted to Jonathan Ashley for contributions to this section. 

Definition 3: The average power spectral density Q(f) 
associated to (G, r) is defined as 

(2.1) 

where the expected value is over the set of sequences (a,), 

i 2 0, generated by paths through G , with respect to the 
measure induced by I. The limit should be interpreted in 
the distribution sense. The frequency f, is the symbol rate. 
Closed-form expressions for Q(f) are given in [2], [4], [8]. 
We say that (G, I) has a null at frequency f if Q(f) = 0. 
In particular, if Q(O)  = 0, there is a null at dc. 
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C. RDS, &boundary Conditions and Spectral Null at DC 

The following well-known result gives a sufficient condi- 
tion for a spectral null at dc. 

Lemma I: Let (G, I) be an FSTD G  with underlying 
Markov chain I. If G  generates sequences which assume 
only a finite number of RDS, values, then the spectral 
density of (G, I) vanishes at dc. That is, Q(O)  = 0. 

Proof: For any sequence {a,} generated by G , we 
have 

IB,forsomeB<m. 

so, 

and 

for all Markov measures P. 
Pierobon analyzed the closed form matrix expression for 

@p(f), to prove the interesting converse to Lemma 1. 

Theorem I [20], [13, Theorem 311 If (G, I) is aperiodic 
and has vanishing average power spectrum at dc, Q(O)  = 0, 
then the range of values of RDS, produced by G  is finite. 

In the course of his proof, Pierobon actually shows that 
(G, I’) satisfies what we will call a “coboundary condition,” 
implying the finite RDS, result. In fact, the condition is 
equivalent to the finite RDS, property. Because of its 
relevance to later sections, we formalize the definition of 
the coboundary condition and prove this equivalence. 

Definition 4: The FSTD G  satisfies a coboundary condi- 
tion at dc if there is a function x: Sp + C from the state 
set Y of G  to the complex numbers such that 

where aij = a( ui, uj). 
Remark 1: The terminology “coboundary condition” 

derives from the theory of cohomology of simplicial com- 
plexes, in particular, graphs. Many references can be found 
in the ergodic theory literature to similar cohomological 
concepts (see, for example, [17, p. 131). Note that the 
function x, if it exists, is unique only up to an additive 
constant. 

Remark 2: Theorem 1 was first stated by Justesen in 
[13] with reference to a coboundary formula for the output 
symbols. The approach given there is very natural, but the 
proof does not seem to be complete. Theorem 1 can also 
be proved by applying Theorem 3 and Theorem 1 of 
Leonov [15] to obtain a coboundary formula for the output 
symbols 

ahd,+d = cp(n +I)- cp(n), 

where ‘p is a function of the state sequence generated by 
the Markov chain. It can then be shown that q(n) de- 
pends only on the state at time n, by application of [17, 
Corollary 42, p. 291.’ 

Remark 3: Theorem 1 requires G to be a finite state- 
transition diagram for the conclusion to hold. The count- 
ably infinite state transition diagram (CSTD) G ’ shown in 
Fig. 3 has the property that for every infinite sequence 
a=a a,;.-,a,,-.. generated by G ’, there exists an 
integg M(a) such that for N > M(a), 

N>IRDSo(ao,a,;..,a,)13. 

This inequality implies that for each sequence a, 

With the appropriate choice of Markov measure, the power 
spectral density of (G’, I”) at dc is zero, O(O)  = 0. How- 
ever, it is easy to see that the range of RDS, values is not 
finite. 

Fig. 3 
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. 
CSTD with spectral null at dc, but unbounded RDS, values. 

Theorem 2: Let G  be an irreducible FSTD with underly- 
ing Markov chain I. The following are equivalent: 

1) every cycle in G  has RDS, = 0; 
2) G  satisfies the finite RDS, condition; 

‘We are indebted to M. Ratner for pointing out the relevance of results 
in [15]. 
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3) G satisfies a coboundary condition; 
4) (G, I’) has a spectral null at dc. 

Proof (3)j(2): Let a = (a,;.., aM) be a sequence 
produced by following the state sequence so, sr,. . . , sM+i. 
Then 

RDS,(a) = 5 a, = I? [xb,+d- x(hJl 
m=O m=O 

= xhf+,)- xbo). 
The RDS, values therefore lie in the finite set {x( uj) - 
XC”i>>? ‘i> uj E sp. 

(2) * (1): Consider any cycle a = (a,, a,, . . ., aM), with 
running sum RDS,(a) = c. Then the sequences obtained 
by r concatenations of a will have running sum rc. Since 
G satisfies the finite RDS, condition, { rclr 2 l} must be a 
finite set. This forces c = 0. 

(I) 3 (3): We construct the coboundary function as fol- 
lows. Pick an arbitrary state u and define x(u) = 0. The 
idea is to push the definition of x along, edge by edge, and 
verify that no inconsistencies arise. More precisely, for 
each state 7, choose a path with underlying state sequence 
s=(u=SO,S1;.. , s,-i, s, = 7) from u to r. Define ~(7) 
to be the running sum along the path, 

n-1 

x(r) =c= C a(s,,s,+,). 
m=O 

The resulting function x will be well-defined. To see this, 
let s’= (a = s& s;; . . ,s; = 7) be another state sequence 
underlying a path from u to 7, with running sum c’. By 
irreducibility of G, we can find a path back from r to u, 
say with state sequence t = (r = to, t,; . ., ti = a), with 
running sum d. Let st denote the concatenation of se- 
quences s and t. Then st and s’t both correspond to cycles 
beginning and ending at u, with running sums c + d and 
c’ + d, respectively. Since the cycles have RDS, exactly 0 
by hypothesis, we conclude 

‘-zc’=-d 

so x( 7) = c is independent of the state sequence s from u 
to 7 chosen. This shows that (1) CJ (2) = (3). Lemma 1 
shows (2) * (4). Finally, Theorem 1 proves (4) * (2) (see 
remark below). This completes the proof. 

Remark: The proof of (4) * (2) given in Pierobon as- 
sumes aperiodicity of G. The periodic case can be reduced 
to the aperiodic case as follows. First, we need to introduce 
the pth power of an FSTD. 

Definition 5: Let G be an FSTD. The pth power of G, 
denoted GP, is the FSTD with state set identical to that of 
G, and an edge from ai to uj for each path of length p in G 
from ui to uj. The corresponding edge label will be the 
p-tuple of symbols generated by following the path in G. 
See Fig. 4. To satisfy the property that at most one edge 
connects ai to uj in GP, it may be necessary to replace GP 
by the edge graph. 

If G has period p, each irreducible component of GP 
will be aperiodic, with edge labels consisting of p-tuples of 

+-&. 

11 
cp---- 

1 
(+/oo 

01 1' 

Fig. 4. Channel S and second power of S, S2. 

symbols a = [a,; * a, appl 1. Fix a component of GP. Con- 
struct a new FSTD H with the same underlying directed 
graph as this component but with edge labels obtained by 
adding the symbols in the p-tuple labels, say 

P--l 

b= c ai. 
i=O 

(2.2) 

Then H is aperiodic and has a Markov chain structure I’ 
induced by I. From Definition 2 and the fact that E { b} 
= pE{ a }, we conclude that if (G, I) has a spectral null at 
dc, then so does (H, I’). By Theorem 1, the RDS, for 
sequences produced by H takes values in a finite range. 
From (2.2), it follows that the values of RDS, for se- 
quences generated by G also fall into a finite range. 

III. SPECTRALNULLSAT f= kfs/n 

We now extend the results of Section II to the general 
case of a spectral null at f = kf,/n, where gcd (k, n) =l. 
The key tool will be the running digital sum at f, RDS,, 
defined in (1.2). We have the following generalization of 
Lemma 1. 

Lemma 2: Let (G, I?) be an FSTD G with underlying 
Markov chain I?. If G generates sequences which assume a 
finite number of RDS, values for f = kf,/n, then the 
power spectral density of (G, I’) vanishes at f, Q(f) = 0. 

Proof: The proof is a straightforward generalization of 
the proof of Lemma 1. 

As in the case of a spectral null at dc, we will see that 
this sufficient condition is also necessary. First we define a 
coboundary condition at f in analogy to Definition 4. 

Definition 6: The FSTD G satisfies a coboundary condi- 
tion at f = kfs/n if there is a function x: 9 --+ Q= from the 
state set 9’ of G to the complex numbers such that 

aij = e -i2~“‘“x(uj)-x(ui) 

where aij = a(ui, uj). , 

Theorem 3: Let (G, P) be an irreducible FSTD G with 
underlying Markov chain P. The following are equivalent: 

1) every cycle in G of length a multiple of n has 
RDS, = 0; 

2) 
3) 

G has a finite range of RDS, values; 
G satisfies a coboundary condition at f; 

4) (G, P) has a spectral null at f. 

Proof: As in the proof of Theorem 2, we first show 
(3) * (2) * (1) * (3). We then use Theorem 1 to prove 
(4) * (3), which, along with Lemma 2, completes the proof 
of equivalence. 
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(3) * (2): Let a = a,, . * a, aMel be a sequence produced 
by the state sequence s = so, sr; . ., So. Let w = e-i2nk/n. 
Then 

M-l M-l 

RDSf(a) = c a,,$” = C Wm[WX(Sm+l)-X(Sm>l 
m=O m=O 

= w”xbMM)- xhd. 

(2) * (1): Let a = a,, a,; + ., aMpl be a sequence gen- 
erated by a cycle of length M, a multiple of n, with 

Since { ti”IM 2 0} is a finite set (u is an nth root of 

RD!$(a) = c. Then the sequence obtained by r concatena- 

unity), the RDS, values lie in a finite set { w”x(uj)- 
X(Ui)lUi,Uj E Y, ME {0,1,2, * * * }}. 

tions of a will have running sum at f equal to rRDSJa). 
The finite RDSf condition implies RDS,(a) = 0. 

(1) = (3): We consider 2 cases corresponding to possi- 
ble cycle lengths in G . 

corresponding to the first k, - 1 subcycles and the last 
k, - 1 subcycles, we get 

~(~l-l)qRDS,(b)+ ok14RDS,(c) = &-‘)qRDSj(c) 
+ W((k,-%7+r)RDfj’,(b) 

or, dividing by u(~I- l)q, 

RDS,(b)[l- w’] =RDS,(c)[l- 041. 

Since n divides neither q nor r, then the last equation 

Finally, we check that b = a(ui,uj) = wx(u,)- ~(a,), if 
yields (3.3). 

there is an edge from ui to uj. Let c be the symbol 
sequence of a path of length m from 0; to ui, where m + 1 
is not a multiple of n. Then bc is the symbol sequence of a 
cycle of length m + 1 based at ui, and cb is the symbol 
sequence for such a cycle at uj. See Fig. 5. By the defini- 
tion of x(u), (3.2), 

Case 1: All cycles in G  are of length a multiple of n. 
The proof is very similar to the proof of (1) * (3) in X(“i>= 

RD$(bc) b + wRDS,(c) 

Theorem 2. Pick a state u and define x(u) = 0. Now w 
m+l-1 = Wm+l-l 

extend the definition of x by “pushing along” paths in G . and 
Specifically, if s = (a = so,. * . , So = 7) is the state se- 
quence associated to a path from u to 7, define 

RDS,(cb) RD$(c)+ w”b 
X('j)= Wm+l-l = (Jr?+1 -1 . 

M-l 

x(7) = C a(s,, s,+l)d-M. 
(3 1) Therefore, 

m=O 

The proof that x is well defined is identical to the argu- 
ment used in Theorem 2, and one can see that if there is an 
edge from ui to uj, then a(u,, uj) = wx(uj)- ~(a,). 

Case 2: Some cycle a has length not a multiple of n (of 
course, this implies f # 0). 

By irreducibility, every state u has a cycle which has 
length q not a multiple of n, corresponding to state 
sequence s = (a = sO;. a, sq = a), and symbol sequence 
b=b,;.-, b4- V Define 

x(u) = (RDS,(b))/(~q-l). (3.2) 

To see that x is well defined, suppose c is another symbol 
sequence associated to a cycle at u of length r not a 
multiple of n. We must show that 

RD$(b) RDSf(c) = 
04-l w’-1 . (3.3) 

Choose positive integers k,, k, such that nlk,q and nlk,r. 
Consider the cycle concatenations 

x= b...b c...c 

ks kzs 

and 
y= b.. .b cb c...c . 

k,xes k,xmes 

Both x and y have length equal to a multiple of n, so 

RDSf( x) = RDS,( y) = 0. 

By cancellation of the terms in RD$(x) and RD$( y) 

wX(“j)- Xt”i> = 
b(wm+l -l)-RD$(c)[w-w] 

Wm+l -1 
= b. 

Fig. 5. Cycle bc at a, and cycle cb at a,. 

Remark: When the period of G  is a multiple of n (in 
particular when f = 0), then there is one parameter of 
freedom in the definition of x, namely the choice of x( uO) 
in the proof of (1) * (3), Case 1. O therwise, x is uniquely 
determined. 

(4) * (3): The proof follows from Theorem 1. In the 
case of aperiodic G , construct the n th power of G , G ”, 
having edges labelled by n-tuples a = [a,; * *, a,-,]. De- 
fine FSTD H with the same underlying graph as G ”, but 
with edge labels 

n-l 

b= c a,,+? = RDS,(a). 
m=O 

(3.4) 

Then H is aperiodic, and with its induced Markov struc- 
ture, it has a spectral null at dc, as seen from Definition 2. 
Therefore, the values of RDS, for G ” fall in a finite range, 
by Theorem 1. It follows from (3.4) that for G  the values 
of RDS, fall in a finite range. The periodic case reduces to 
the aperiodic case as it did for f = 0. 
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IV. SIMULTANEOUSNULLS 

Certain applications, such as embedded tim ing and 
track-following servos in digital data recording, require 
simultaneous nulls in the coded spectrum at a set of 
frequencies fi, f2, * * . , f,. 

We assume in this section that the symbol alphabet of 
the FSTD is a subset of the rational numbers. Theorem 3, 
(1) * (4), permits an algebraic characterization of the set 
of frequencies { kifs/ni } i = 1, * * *, I at which nulls can be 
achieved simultaneously by a constrained system (G, I’). 

Lemma 3: Let fi= k,f,/nI;.., f,= k,f,/n, be the set 
of rational submultiple null frequencies < f, in the spec- 
trum @  of the constrained channel (G, I), assuming Cp is 
not identically 0. Let wj = e-i2nkj/nJ. Then { ol;. ., aI} 
forms a full set of roots of an integer polynomial; that is, if 
we define p(x) = (x - wJ(x - w2). . . (x - w,), then p(x) 
is a polynomial with integer coefficients. 

Proof: It suffices to prove that if (G, I’) has a null at 
f = kf,/n, with gcd (k, n) =l, then it must have nulls at 
all frequencies f = qf8/n where gcd (q, n) = 1. Then p(x) 
will be a product of cyclotomic polynomials (that is, 
irreducible integer polynomials whose roots are complex 
roots of unity). 

By Theorem 3, (4) * (l), a null at f = kfs/n implies 
that every cycle a = a,, * * +, amn- I of length a multiple of 
n satisfies 

RDS&z) = 0; 

Fig. 6. Structure of underlying graph for a block code with three 
codewords of length 6 symbols. 

Definition 7: A null in the power spectral density Q(f) 
at frequency fO, 0 I f0 < f,, is called unique if Q(f) # 0 for 
f #fcl>O~f <f,* 

Corollary 1: The only possible unique nulls in the spec- 
trum of (G, I’) are f0 = 0 and f0 = f,/2. 

Proof: By Lemma 3, a unique null corresponds to a 
root of unity w whose m inimal polynomial is of degree 1; 
that is, a rational root of unity. Therefore, o = 1 or w = - 1, 
corresponding to f0 = 0 or f0 = f,/2, respectively. 

Example I: This example illustrates a unique null at 
f = 0. Let G  be as shown in Fig. 7, with associated Markov 
chain I? of maximal entropy, that is, the Markov chain 
supported on the given graph having maximal entropy. 

+l +l 
@=@=a 

-1 -1 

i.e., 
t?Zn-1 

C aid=0 

Fig. 7. FSTD which has unique null at f = 0, with measure of maximal 
entropy. 

The state name represents the RDS, value beginning 
from state 0; that is, the values of the function x referred 
to in the coboundary condition of Theorem 2. The maxi- 
mal entropy of this system is C = log, A = l/2, with transi- 
tion probabilities p. +1 = p,,, -1 = l/2, P+~,~ = p-I,0 = 1. 
With these probabilities, the spectrum of (G, r) is given by 
the Fourier transform of the autocorrelation function R(T), 
which is easily computed to be 

j=O 

where W=e- . i2nk/” Clearing denominators of the-rational 
coefficients aj yields an integer polynomial q(x) = Zq,xj 
with w as a root; q(o) = 0. 

The polynomial must be divisible by the m inimal in- 
tegral polynomial g(x) belonging to o, that is, the poly- 
nomial g(x) of smallest degree such that g(o) = 0 (see, 
for example, [12, p. 1201). Since w is a primitive nth root 
of unity, the polynomial g(x) is a cyclotomic polynomial 
with roots .%’ = { 0411 I q < n, gcd (q, n) = l}, that is, the 
set of all primitive n th roots of unity. This implies that the 
elements of .5% are roots of q(x) also, so 

I 1, if 7=0 

ifr=+l 

I 0, otherwise. 
WV-1 

C ajwqj= 0, all wqE .%?. Therefore, S( f ) = 1 - cos2rf/fs. Note S(0) = 0 and S( f ) 
j=O # 0, for 0 < f < f,. See Fig. 8. 

Theorem 3, (1) j (4) then shows that (G, I) has a spectral 
nullat f=qfs/n,foralll<q<n,gcd(q,n)=l. 

Remark: Gorog [9] mentions this result in the context of S(f) 
memoryless block codes, which correspond to (G, I’) in 
which G consists of distinct cycles of fixed length a multi- 0 
ple of n, based on one state u, each cycle corresponding to 0 f 

f , 

a codeword. See Fig. 6. Fig. 8. Spectrum with unique null at f = 0. S(f) = 1 - cos(2lrf/f,). 



MARCUS AND SIEGEL: CODES WITH SPECTRAL NULLS 563 

Example 2: This example shows a unique null at f = 
f,/2. Let (G, I) be the constrained channel corresponding 
to the FSTD in Fig. 9. It has the same transition probabili- 
ties for the measure of maximal entropy as the previous 
example. The state names correspond to the values of the 
function x in the coboundary of Theorem 3. Here 

(1, if 7=0 

R(T)= ;, 
i 

ifr=$_l 

\o, otherwise 

and S( f ) = 1 + cos2?rf/f#. Note S( f,/2) = 0, and S( f ) Z 
0,O 5 f _< f, where f f f,/2. See Fig. 10. 

Fig. 9. FSTD which has unique null at /,/2, with measure of maximal 
entropy. 

S(f) 

0 ILL- f 
0 f,/2 f s 

Fig. 10. Spectrum with unique null at f = f, /2. S(f) = 1 + cos(2nf/f). 

Remark: The graph in Fig. 7 describes the constrained 
sequences generated by the “biphase” modulation code, 
also known as Manchester code, which has been used in 
data recording and transmission applications. The binary 
code power spectra shown in Figs. 8 and 10 are also 
encountered in pseudoternary line coding using partial 
response with system polynomials (1 - D) and (1 + D), 
respectively. See, for example, Croisier [6]. 

V. CANONICALSTATEDIAGRAMSFORSPECTRAL 
NULL CONSTRAINTS: BINARY ALPHABET {*l} 

Applications in magnetic and optical digital recording 
often utilize the binary signal alphabet ~2 = { f l}. In this 
section we present a result on the structure of a con- 
strained channel (G, I?) with output alphabet &’ which 
produces a spectral null at f = kf,/n. 

Specifically, for each p = 0, 1, . . . , n - 1, we define a 
countable state diagram Gpf which has the property that 
any finite state diagram contained in Gpf generates a null at 
f, and, moreover, any finite-state diagram of period q = p 
(mod n) which produces a null at f collapses to a subgraph 
of Gpf via a label-preserving directed graph homomor- 
phism. In this section, graph homomorphisms are taken to 
be directed. 

The set of states 2’ of Gpf is defined to be the ring Z[w] 
where o = eM211ikln. Elements of Z[o] are polynomials in 
w with integer coefficients of degree less than +(n), the 
Euler +-function, which is defined as the number of posi- 
tive integers less than and relatively prime to n. This is a 

consequence of the fact that the minimal polynomial of w 
has degree +(n) (see [12, p. 2081). When n =1 or 2, then 
Zf = h. When n = 4, .Pf = Z[i], the Gaussian integers, 
which form a square planar lattice, and when n = 3 or 6, 

zf=Z L+i!!? 1 1 2 2’ 

a hexagonal planar lattice. For other values of n, Yf has 
dimension > 2. 

The state transition rule for Gpf is defined by means of a 
modified coboundary formula. Specifically, for each u E 8f 
and bEd= {$l}, we have a unique transition which 
starts at state u, is labeled b, and ends at state /~,(a, b) 
defined as follows: 

$,(a, b) = w(u + b), 

and 

for p = 0 

$,(a, b) = G(u +(W”-l)b), forp=l;*.,n-1. 

(5 *2) 

Here W denotes the complex conjugate of w, namely, 
73 = ei2nk/n. The transition rules ((5.1) and (5.2)) corre- 
spond to translations (by ( WP -1)b in (5.2), for example) 
followed by rotation by W about the origin. For w # 1, any 
such motion can be expressed as a pure rotation about 
some point. When b = + 1, this point is c, = W( WP -l)/ 
(l- W) for p # 0 and c+ = O /(1 - W) for p = 0. When 
b = - 1, this point is c- = - c+. (This interpretation was 
pointed out to us by J. Ashley.) 

Definition 8: A state-transition diagram G is period p 
canonical for a spectral null at f if 

1) every FSTD contained in G  generates a spectral null 
at f; 

2) every FSTD H with period p which generates a 
spectral null at f collapses to a subgraph of G  via a 
label-preserving graph homomorphism. 

The next proposition shows that the graph Gpf previously 
defined is in fact period p canonical for spectral null at f. 

Proposition 1: Gpf is period q canonical for a spectral 
null at f, for all q = p (mod ti). In particular, the n-fold 
trellis presentation of any constrained binary system gen- 
erated by an FSTD H and having a spectral null at f 
collapses to a subdiagram of Gd via a label-preserving 
graph homomorphism. 

Remark: The n-foZd trellis presehtation is the FSTD with 
states {(u, i) Iu is a state in H, 0 I i I n - l} and edges 
from (u, i) to (7, (i + 1) mod n) corresponding to each edge 
from u to r in H. 

Before giving the proof, we illustrate the concept of 
canonical graphs with three examples, for a null at dc, a 
null at f,/2, and a null at f,/6. In the figures, solid arrows 
have label + 1 and dotted arrows have label - 1. 

Example 3: Canonical graph for null at dc. 
In this case, f = 0, and w = 1 and Zf = Z[w] 3 Z. The 

canonical graph G i with labeled state transitions given by 
(5.1) is shown in Fig. 11. 
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+1 +1 +1 +1 +1 +1 

. . . 0 -3 ~@~@~@~iJ-@~@.** 
-1 Y---- -1 -1 -1 -1 

Fig. 11. Gt. 

It is not hard to see that any FSTD contained in G$’ has 
bounded RDS, and so produces a spectral null at dc. 
Moreover, if H is an irreducible FSTD with binary labels 
and a null at dc, Theorem 2 shows that H satisfies a 
coboundary condition. Namely, there is a function 
(p: 9’ + C from the states 9’ = { uo, * * a, u,} of H such 
that, for any transition from ui to uj, 

aij='P("j)-cP(ui)- (5 -3) 
Since q is defined only up to an additive constant, we can 
assume that q(u) E Z for some and hence all states u. 
Now, cp can be viewed as a map from the states Y of H to 
the states of Gz. Since (5.3) is consistent with the transi- 
tion rule (5.1) for Gt, the map ‘p naturally extends (by 
defining it on edges) to a label-preserving graph homomor- 
phism from H into Gt. The proof of Proposition 1 will 
proceed along similar lines, using the results of Theorem 3. 

Example 4: Canonical graphs for null at f = f,/2. Here 
w = - 1. Therefore, LZ’& I2 I Z[ 01 = Z. The two canonical 
graphs G&/2 and Gfi/” are shown in Figs. 12 and 13. Note 
that Gof,12, the canonical grap h for FSTD’s with even 
period, is isomorphic to a subdiagram of Go/‘, shown by 
the heavy edges. We will discuss the general nesting rela- 
tionship among canonical graphs Gpf in Proposition 2. 

Fig. 12. G&‘*. 

Fig. 13. G:‘*. 

Note also that the trivial graph 
+1e 

has a null at f,/2 but cannot collapse onto a subgraph of 
G&l2 since Gof,12 has no self-loop. 

Example 5: Canonical graph for null at f = f,/6. 
Here o = (l/2)- i(fi/2). Figs. 14-16 show regions of 

the canonical graphs Gpf”16, p = O,l, 2. Again, there are 
nesting relationships, with Gof,i6, Gt/“, and Gsf,16 isomor- 
phic to a subdiagram of each of the canonical graphs with 
p 2 1. In fact, these three diagrams are isomorphic. Also, 

Gzf,/6 and GJ/6 are isomorphic to subdiagrams of each 
other. 

. 

. 

Fig. 14. G$‘6. 

Fig. 15. Gf,‘6. 

. 

. . 

. 

. 

. 

* 

. 

Fig. 16. G,/,‘6. 

Proof of Proposition 1: 1) We define functions q*: 
LZ’/+@ forp=O;..,n-1. Forp=O, 

cPob) = 0 (5.4) 
while for p # 0, 

cp,b> =&. (5.5) 
For any FSTD G contained in Gpf, the transition rules (5.1) 
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and (5.2), together with (5.4) and (5.5), yield a coboundary 
condition at f: 

for every state u in G . By Theorem 3, G  has a spectral null 
at f. 

2) Let H be any FSTD which generates a null at f. The 
period of H is congruent, modulo n, to some p, with 
0 I p < n. First, suppose p = 0. The solution to the 
coboundary equation x(a) defined in Theorem 3, (1) * (3), 
case 1, can be viewed as a map from states of H into states 
of G& The map x naturally extends to a label-preserving 
directed graph homomorphism (by defining it on edges) 
from H into G ,$ because the coboundary equation is 
consistent with the transition rule (5.1). Now, if p # 0, 
then we use the mapping 

ul+ (W”-1)x(u) 
(where x is the solution to the coboundary equation in 
Theorem 3, (1) * (3), case 2) to define a graph homomor- 
phism from H into G /. This works because the coboundary 
is consistent with the transition rule (5.2). 

Since the n-fold trellis presentation of any constrained 
system with a spectral null at f has period p = Omod n, it 
follows from the above that the trellis collapses to a 
subdiagram of Gof. 

The graphs Gpf satisfy a natural nesting relationship, a 
special case of which we saw in Example 4. The general 
relationship is given by the following. 

Proposition 2: Gpf is label-preserving graph isomorphic 
to a subdiagram of G4f in either of the following situations: 
1) p = 0 and 4 is arbitrary; 2) q f 0 and 4 = mp mod n for 
some m. 

Proof: 1) The state mapping 
rp: (II + (wq-1)u 

extends to a graph homomorphism of Gd into G4f because 
the Gd transition rule (5.1) is translated into the Ggf transi- 
tion rule (5.2) by multiplication by ( Wq - 1): 

v CT- (Z-l), 
G,f - transition 

I I 
G{ - transition 

w(u + b)T z((z-1)u +(z-1)b). 

Since we may assume q # 0 (otherwise the result is trivial), 
we have 09 # 1 (recall that 4 < n), and thus the homomor- 
phism is 1 - 1. Thus the mapping of Gd into G4f is actually 
a label-preserving graph isomorphism between G i and a 
subdiagram of G{. 

2) If q = mp mod n, then WP - 1 divides Wq - 1 in Z[w]. 
Specifically, 

p-l=o”P-l 
= (W” -l)(u,(OP)) 

where urn(x) = x”-’ + xmd2 + * . * + 1. 
The state map 

(5.7) 

‘p: ul-3 uu,( is) 

extends to a graph homorphism of Gpf into G4f as before. 
The Gpf transition rule (5.2), as the reader can check, is 
translated into the G{  transition rule (5.2) by multiplica- 
tion by u,( OP). Since W4 # 1 by assumption, we must also 
have that u,(Wp) f 0 by (5.7) and hence the mapping of 
Gpf into G4f defines a label-preserving graph isomorphism 
of Gpf into G4f. 

Remark: Fix f = kf,/n. If n is prime, then Proposition 
2 implies that for each p, Gpf imbeds in G f. So, in this case, 
G f is period p canonical for all p. From Example 5, the 
reader can check that this is not true for n = 6. 

However, for general n, one can construct a natural 
graph G f which is period p canonical for all p. Namely, 
the state set of the graph Gf is again Z[w]. The transition 
rule is given by 

where r~ is the least common multiple of { WP - l} 1 s p < n 
in the ring Z[w]. The point here is that each Gpf imbeds in 
Gf. We leave it to the reader to check this. (This was 
pointed out to us by J. Ashley.) 

The graph Gd can be used to investigate the maximum 
possible code rate for binary codes having RDS at f which 
is bounded by a constant c. Specifically, let G& c Gd be 
the subgraph obtained by restricting to the set of states 
p& = {u E gl] ]u] < c}, where the states u are viewed as 
complex numbers. 

Forf =kfs/n, n=1,2,3,4,6,thegraphG&,isanFSTD, 
the Shannon capacity of which defines the maximum pos- 
sible code rate. This capacity can be computed for n = 1 
and n = 2 using the formula derived by Chien [5]. For 
other values of n and c sufficiently large, G& is a count- 
able state transition diagram. The Shannon capacity of 
these “disk systems” has been studied by Petersen [18] and 
more recently by Ashley [22]. 

There is a straightforward extension of the definition of 
a period p canonical diagram for a spectral null at a 
frequency f (Definition 8) to the case of simultaneous 
nulls. To understand the state sets of canonical diagrams 
for simultaneous nulls, we first describe the state set 
A?f = L[o], above, in a slightly different manner. Namely, 
Z[ w] = Z[x]/( g( x)), where the latter is the “quotient ring” 
of Z[x], the ring of polynomials with integer coefficients in 
one indeterminate x, by the “ideal” generated by g(x), the 
minimal polynomial of o. Elements of b[x]/( g(x)) are 
equivalence classes of polynomials, where two polynomials 
are regarded as equivalent if they differ by a multiple (as 
polynomials) of g(x). Letting [u(x)] denote the equiv- 
alence class of a polynomial u(x), the identification of 
Z[w] with Z[x]/(g(x)) is given by [u(x)] t) u(W). Each 
class [u(x)] is represented by a polynomial u(x) of degree 
less than G(n)-= order of o. 

From this point of view, the transition rule for Gpf given 
in (5.1) and (5.2) takes the form 

h,([u(x)l,b) = [x(u(x)+b)l, forp=O, (5.8) 

h,(b(x)l, b) = M(x)+ b” -WI > 
forp=l;**,n-1. (5.9) 



566 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 4, JULY 1987 

Now, Gpfi.fz, the period p canonical graph for nulls at 
both fi = k,fs/ n, and fi = k,f,/n,, has state set 

Sffl , f2 = ~[xl/ lcm(g,(x), g*(x)); 

that is, the quotient ring of Z[x] by the ideal generated by 
the least common multiple of gi( x) and g2( x), the m inimal 
polynomials of epi2akl/nl and e-i2nkz/nz. Setting n = 
lcm( n,, n,), we define state transition rules for Gpfi,fz ex- 
actly as in (5.8) and (5.9). Namely, use the rules (5.8) and 
(5.9) where [u(x)] is the equivalence class of u(x) defined 
by the relation that regards two polynomials as equivalent 
if they differ by a multiple (as polynomials) of 
lcmMx), g2W). 

. . . . . 

. . . . . 
Fig. 18. G$~J/~, 

There are natural label-preserving graph homo- 
morphisms 7~~: Gpfisfz + Gpfi and ?r,: Gpfi,fz + Gpf2, which 
coincide on the state sets with the natural ring homo- 
morphisms CUWsl(x)~ g2(xN -+ ~[xl/(g,(xN and 
W W lcm(gdx>, g2W) + Z[x]/(g*(x)). For a period p 
FSTD H with nulls at ji, f2, we can construct a commuta- 
tive diagram of labeled graph homomorphisms as shown in 
Fig. 17, where JIi, $2 are labeled graph homomorphisms 
defined in Proposition 1. 

Fig. 17. Commutative diagram. 

The generalization to more than two nulls is similar. By 
the universal map extension property of fibered products 
[16, p. 1171 and by Proposition 1, we conclude the follow- 
ing. 

Corollary 2: A period p canonical graph Gpfiv..‘yfl for 
spectral nulls at ji; . a, f, is the diagram with states 
LYfl~~~~,~ = Z[x]/lcm( gi(x), . . . , g,(x)) and transition rules 
given by (5.8) or (5.9). (Here g,(x) is the m inimal poly- 
nomial for the root of unity corresponding to fi.) 

Example 6: Canonical graph (G$hj2) for nulls at dc 
and f/2. 

For fi = 0, f2 = f,/2, we have 

s?“,f,‘2 = z[x]/(x -1)(x +1) 

= Z[x]/(x2-1), 
which is a square planar lattice. The state transitions are 
shown in Fig. 18, with states labeled by corresponding 
elements of S?“,~J/~, and transition rule (5.8). 

The representation shown in Fig. 18 points out that any 
string generated by a finite subdiagram of G$fJ2 consists 
of two interleaved sequences, each having finite RDS at 
dc, and therefore a null at dc. In other words, by Corollary 
2, any FSTD which has a spectral null at dc and j/2 must 
produce sequences which consist of two interleaved se- 
quences, each having a null at dc. This observation is 
generalized in the following section. 

Remark: The developments here have concentrated on 
the binary alphabet { + l} because of its practical signifi- 
cance. The construction and results may be generalized in 
a straightforward manner to any finite alphabet contained 
in the rational numbers. 

VI. SPECTRAL NULLS OBTAINED BY INTERLEAVING 

The possibility of generating sequences with spectral 
nulls by interleaving NZ sequences each with a spectral null 
at dc has been mentioned in [6], [7], and [19]. Generation 
of spectral nulls by interleaving sequences with spectral 
nulls at frequencies other than dc is described in [21]. 

In this section, we first calculate, by a simple application 
of the triangle inequality, the set of spectral nulls produced 
by interleaving m  sequences, each having bounded RDS at 
j,/n. We then apply the construction of canonical di- 
agrams (and Proposition 1 of Section V) to prove that any 
FSTD which produces nulls at these frequencies must 
generate sequences which are obtained by interleaving m  
sequences each with bounded RDS at j,/n. 

Proposition 3: Suppose a sequence a = a,. . f aj.. . 
consists of m  interleaved sequences each, with bounded 
RDS at j,/n. Let I,; * a, I,,,, be the +(n) positive num- 
bers less than and relatively prime to n. Then a has 
bounded RDS at frequencies 

(pn+l,)&, O<p<m-l,l<j<$(n). (6.1) 

Proof: Write the sequence a as the interleaving of m  
sequences b,, r=O;**,m-1: 

a = b, ,b, o.. . bm~,,obo ,b, 1 . . . b,-, 1 f. . . 3 > 3 , (6.2) 
Now 

RDS~~p.+,,)(i,,m,,(a) = ~aqe-i2nq(pn+~)/mn 
4 

m-l 
= rFo ~b~~e-i2s(sm+~)(Pn+i,)/mn 

(6.3) 

(6.4) 

m-l 
= ,Fo e-i21ir(Pn+l,)/mnCb~~e-12~s(Pn+~)/n (6.5) 

s 
m-l 

= rFo a,~b,.,e-i2”“~/” (6.6) 

where a, = e-f274P:+5)/mn. 
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By the triangle equality, we can upper bound ]RDS(a)] Since H contains a finite number of states, there are only 
as follows: finitely many polynomials uj(x) which can appear. The 

]RDS(a)]< ~~11a~~b,e-i2~~‘~/“l. 
state transition corresponding to a symbol b is obtained 

(6.7) by reference to (5.8): 
r=O s 

By assumption the sequences b, have bounded RDS at 
f,/n and so, by Lemma 3, they have bounded RDS at 

[u(x)] : [uo(xm)+x(uo(xm)+b)+x2(u,(xm)) 

+ . * * + Xm-1U,-2(Xm)] 

68) where 

for some constant c,. uO(xm) = xm~m-i(xm)modg,(x”). 
Since ]a,.] = 1, the bound on RDS(a) then becomes 

In other words, the polynomial representing the coefficient 
of x0 is incremented by b, and the coefficient polynomials 
are then “shifted” cyclically, with the term x~u,-~(x*) 
getting reduced modulo g,(x”) during the shift to take the 
position of the coefficient of x0. 

m-1 

IRDS,,,+,,,,,mn(a)l~ c ct., 
r=O 

(6.9) 

giving our bound on the RDS. 
The canonical diagram Gp for the set of nulls identified 

in Proposition 3 is determined by the least common multi- 
ple g(x) of minimal polynomials for the corresponding 
roots of unity. In fact, it is not hard to see that 

ax> = dx”) (6.10) 
where gi(x) is the minimal polynomial of epi2?r/“. To 
verify this, note that e-i2nc/n, 1 I j I q(n) is the full set 
of q,(n) roots of gi(x), and 

[e-’ r2n(pn+l,)/mn] m  = e-i21ipe-i2nl,/n 

=e -i2n[//n (6.11) 
Therefore, e-i2n(~n+~)~mn, 0 < p s m - 1,l I j 2 q(n) are 
mcp(n) distinct roots of g(x). Since 

degree g(x) = m degree gi( x) 

= v(n), (6.12) 
they form a full set of roots of f(x) as desired. Therefore, 
sp has states 8 = Z[x]/(g(x)), and transition rule (5.8) 
or (5.9). Using the structure of G  implied by (6.10), we 
now prove the converse to Proposition 3, thereby provid- 
ing a frequency domain characterization of spectral null 
systems obtained by time-domain interleaving. 

Theorem 4: If an FSTD (H, I) has nulls at the set of 
frequencies (6.1), then every sequence it generates consists 
of m interleaved sequences, each with bounded RDS at 
fs/n- 

Proof: By Corollary 2, it sufcices to prove the theorem 
for an FSTD H contained in Go. Represent a sequence 
generated by H as in (6.2), namely, 

a=boobl,o,*-. b _ b b ) m  l,o 0,l 1.1 -. . b,-,,, . . . , 

with the interleaved substrings called b,., r = 0, ’ . ., m - 1. 
Each state in G , can be represented in a unique way as 

[u(x)] = [uo(x”)+xul(x”)+ *** +Xw4,~1(X~)] 

where u(x) is a polynomial of degree less than cp(n)m, 
and each ui(x) is a polynomial of degree less than q(n). 

Now let [u~(x)],[u’(x)], . . . be a state sequence in H 
which generates a sequence a. It then follows that, for 
fixed r, the sequence of coefficient polynomials 

{u gm+r(xm)}, p = O ,l, * * * ) 

viewed as polynomials in y = xm, describes a state se- 
quence on G&l” that generates b,. Since only a finite 
number of states can occur in the sequence, it follows that 
b, is a sequence generated by an FSTD contained in G&l”, 
and therefore b, has bounded RDS at fs/n. 

Example 7: Suppose the binary FSTD G  generates a 
spectral null at j,/4. By Lemma 3, it must generate a null 
at 3f,/4. By Theorem 4, each string produced by G  must 
be composed of a pair of interleaved substrings, each 
having bounded RDS at j,/2. 

VII. CONCLUSIONS 

This paper has investigated constrained channels with 
spectral nulls at rational submultiples of the channel sym- 
bol frequency f,. For channels defined by a finite state 
transition diagram we prove that a necessary and sufficient 
condition for the channel to have a spectral null at f = 
kf,/n is that all channel sequences possess a uniformly 
bounded finite running digital sum at f (RDSf), or, equiv- 
alently, that the channel satisfy a coboundary condition at j. 
The achievable sets of simultaneous nulls are then de- 
termined. For any set of spectral nulls, we define period p 
canonical graphs into which every period p channel with 
the prescribed set of nulls collapses via a labeled graph 
homomorphism induced by the coboundary condition. We 
use the canonical graphs to study the technique of gener- 
ating spectral nulls by interleaving channels with a spectral 
null at dc. We prove that the existence of certain sets of 
spectral nulls is equivalent to an interleaved structure, in 
which the interleaved subchannels themselves possess 
specific spectral nulls. The canonical graphs also provide 
information about the Shannon capacity of channels with 
spectral nulls. This application is under investigation. 
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