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Abstract

In this paper, we present a coding theorem for the

ensemble of Generalized Repeat Accumulate (GRAm)

codes. These codes are the serial concatenation of a

terminated convolutional code andm interleaved rate-1

�accumulate� codes. This theorem generalizes the re-

sults of [1] and [2] by considering outer codes with

dfree = 2 and multiple �accumulate� codes. For outer

codes with dfree≥2, it proves the Interleaver Gain Ex-

ponent Conjecture for GRAm codes. This leads to the

new result that GRAm codes will have vanishing word

error probability for outer codes with dfree= 2, if and
only if m≥ 2. Finally, we compute Eb/N0 thresholds

for selected GRAm codes on the additive white Gaus-

sian noise channel, and we observe that they are very

close to the Shannon limit for m≥3.

1. Introduction

It is well-known that long random codes achieve re-

liable communication at noise levels up to the Shannon

limit, but they provide no structure for e�cient decod-

ing. The introduction and analysis of Repeat Accu-

mulate (RA) codes by Divsalar, Jin, and McEliece [1]

shows that the concatenation of a repetition code and

a rate-1 code, through a random interleaver, can also

achieve reliable communication at noise levels near the

Shannon limit. A more general analysis of serially con-

catenated rate-1 codes [3] implies that using more than

one interleaved rate-1 code may yield further improve-

ment.

The coding theorem for the ensemble of RA codes

under maximum likelihood decoding, given in [1], states

that, for all Eb/N0 greater than a threshold which de-

pends only on the repeat order q≥3, the serial concate-
nation of a repetition code and a rate-1 �accumulate�

code will have vanishing word error probability as the

block length goes to in�nity. In [2], this theorem was
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extended to serial turbo codes, for outer codes with

dfree≥3.
In this paper, we consider Generalized Repeat Ac-

cumulate (GRAm) codes, which are the serial concate-

nation of a terminated convolutional code (TCC) and

m interleaved rate-1 �accumulate� codes [3]. Follow-

ing the approach pioneered in [1], we prove a coding

theorem for ensembles of GRAm codes on a memory-

less channel with maximum likelihood decoding. The

theorem states that if the outer code has dfree≥2 and

the channel parameter z is less than some threshold z∗,
then the probability of word error is O(Nν), where ν is

determined solely by m and dfree. The proof, based on

the union bound, also gives loose lower bounds on the

threshold z∗. A new tighter bound by Jin and McEliece

[4] allows us to compute very accurate Eb/N0 thresh-

olds for the additive white Gaussian noise (AWGN)

channel. For m= 3, many of these thresholds are vir-

tually identical to the Shannon limit.

2. Weight Enumerators and the Union Bound

In this section, we review weight enumerators for

linear block codes and the union bound on error prob-

ability for maximum likelihood decoding. The input

output weight enumerator (IOWE) Aw,h of an (N,K)
linear block code is the number of codewords with input

weight w and output weight h, and the weight enumer-

ator (WE) Ah is the number of codewords with output

weight h and any input weight. Using these de�nitions,

the probability of word error is upper bounded by

PW ≤
N∑
h=1

K∑
w=1

Aw,hz
h =

N∑
h=1

Ahz
h, (1)

and the probability of bit error is upper bounded by

PB ≤
N∑
h=1

K∑
w=1

w

K
Aw,hz

h =
N∑
h=1

Bhz
h. (2)

The term zh, which depends on the channel of inter-

est, represents an upper bound on the pairwise er-



ror probability for any two codewords di�ering in h
positions. The parameter z can be de�ned for any

memoryless channel; for the AWGN channel it is z =
e−(K/N)(Eb/N0).

3. Generalized Repeat Accumulate Codes

3.1. Description

A GRAm code is the serial concatenation of a TCC

and m interleaved rate-1 �accumulate� codes, and the

ensemble of GRAm codes is formed by using uniform

random interleavers [5]. The ensemble averaged WE is

Ahm+1(N) =
(N,... ,N)∑

(h1,...hm)=(1,... ,1)

A
(o)
h1

(N)
m∏
i=1

P
(acc)
hi,hi+1

(N), (3)

where A
(o)
h is the WE of the outer TCC and P

(acc)
w,h is

the input output weight transition probability (IOWTP)

[3] of the �accumulate� code. Using the IOWE given in

[1], we have

P
(acc)
w,h (N) =

(
N−h
bw/2c

)(
h−1

dw/2e−1

)(
N
w

) for 1 ≤ w ≤ N. (4)

Our main result is a theorem which characterizes

the ensemble behavior of GRAm codes. The theorem

and proof make use of the asymptotic notation de�ned

in [6]. Speci�cally, we write O(f(n)) for functions of

order at most f(n), Ω(f(n)) for functions of order at

least f(n), and Θ(f(n)) for functions of order exactly

f(n). The notation o(f(n)) refers to functions that,

when divided by f(n), converge to zero as n goes to

in�nity.

Theorem. Consider the average performance of an

ensemble of GRAm codes, based on an outer TCC with

dfree ≥ 2, transmitted over a memoryless channel with

channel parameter z. Let ν = 1 −
∑m
i=1

⌈
dfree/2i

⌉
.

Then, there exists a positive threshold z∗ such that,

for any z < z∗, the probability of word error under

maximum likelihood decoding is PW = Θ(Nν). If the

outer code also has the property that, for all input-

output weight pairs, w ≤ th for some constant t, then
the probability of bit error is PB=Θ(Nν−1).

3.2. Proof of the lower bound PW (N) = Ω(Nν)
An important property of the �accumulate� code is

that it never maps an input word of weight w to an

output word of weight h < dw/2e. This property can

be seen mathematically by the fact that (4) is zero

whenever h< dw/2e. Let us consider the multiplicity,

or the number of codewords, generated by any distinct

weight path (h1, . . . , hm+1) in (3). It will be identically

zero if hi+1<dhi/2e for any i=1, . . . ,m.

We can use this property to �nd the minimum

distance, dmin, of the overall code and its multiplic-

ity, Admin . Minimizing hm+1, using the constraints

hi+1 ≥ dhi/2e, results in a weight path which starts

at h1 = dfree and continues with hi+1 = dhi/2e for

i = 1, . . . ,m. This path leads to the overall minimum

distance,

dmin=ddfree/2me . (5)

It is well-known that a TCC has Θ(N) codewords

with weight dfree. Using simple upper and lower

bounds for the binomial coe�cients, we can show that,

for �xed w, h≥1 satisfying N−bw/2c≥h≥dw/2e,
P

(acc)
w,h (N) = Θ(N−dw/2e).

Combining these results with (3) gives

Admin = Θ(Nν) with ν = 1−
m∑
i=1

⌈
dfree/2i

⌉
, (6)

and applying the union bound gives PUBW (N)=Ω(Nν)
and PUBB (N)=Ω(Nν−1).

Furthermore, it is possible to show that the proba-

bility that any code in the ensemble has a codeword of

weight dmin is Θ(Nν). The exact probability of decod-

ing error due to any particular �xed weight codeword

is Θ(1), so we can lower bound the exact probability of

decoding error with

PW (N) = Ω(Nν) and PB(N) = Ω(Nν−1).

3.3. Proof of the upper bound PW (N) = O(Nν)
Using a similar strategy to [1], we break the proof

into two parts. The �rst part considers the WE

A
≤hN
hm+1

(N) for output weights hm+1 ≤ hN and their

contribution, P≤hNW (N), to the probability of error.

The second part considers a weaker bound on the WE

Ahm+1(N) and the contribution, P>hNW (N), of output
weights hm+1 > hN to the probability of error. The

weight hN is a function of N , and can always be cho-

sen so that P≤hNW dominates the overall performance.

Both parts involve bounds on binomial coe�cients and

the WE derived using the methods of [7].

3.3.1. Small output weights

The following two bounds, based on results taken

from [7], assume that hm+1 ≤ hN and that we have

chosen hN in such a way that lnhN/ lnN=o(1). Under
those conditions, the WE of a TCC is

A
(o)
h (N) = O

(
Nbh/dfreec

)
, (7)

and the IOWTP of the �accumulate� code is

P
(acc)
w,h (N) = O

(
N−dw/2e(1−O(lnh/ lnN))

)
. (8)



Using the constraint hi ≤ 2hi+1 for the limits of the

sum, and applying (7) and (8) to (3) gives

A
≤hN
hm+1

(N) =
(2mhN ,... ,2hN ,hN )∑
(h1,... ,hm)=(1,... ,1)

O
(
Nκ(h1,... ,hm+1)

)
,

where

κ(h1, . . . , hm+1)=bh1/dfreec−
m∑
i=1

dhi/2e (1−εi+1)

and εi = O(ln hi/ lnN) → 0. It is relatively sim-

ple to show that, ignoring the ε's, the weight path

of the overall minimum distance (5) also maximizes

κ(h1, . . . , hm+1). For each hm+1, there are multiple

weight paths which maximize κ(h1, . . . , hm+1) and, ig-
noring the case of dfree=2 and m=1, it is possible to
show that the number of such paths is O(1). For any

hm+1, let ν(hm+1) be the maximum of κ(h1, . . . , hm+1)
over all weight paths with non-zero multiplicity. Then

ν(hm+1) = ν +O(ln hm+1/ lnN)

where ν is de�ned by (6). This is because all of the

hi, for i = 1, . . . ,m, are constrained to be O(1) by this

maximization. Therefore all of the εi, for i = 1, . . . ,m,

can be included in the asymptotic constant. This leaves

hm+1, which is not constrained by the maximization,

whose εm+1 is retained as O(lnhm+1/ lnN). Also, we

can ignore all of the weight paths which do not max-

imize κ(h1, . . . , hm+1), because their total contribu-

tion is o(Nν) (at most O(hmN ) terms each contribut-

ing O(Nν−1)). Using the fact that NO(lnhm+1/ lnN) =
O(hkm+1) for some k, we have the WE

A
≤hN
hm+1

(N) = O
(
Nν(hm+1)k

)
. (9)

Assuming that z < 1, the substitution of (9) into the

union bounds (1) and (2) gives geometric sums which

result in P≤hNW (N)=O(Nν) and P≤hNB (N)=O(Nν−1).
For the case of dfree=2 and m=1, these arguments do

not hold, but as we will see in Section 3.3.3, the bounds

on PW (N) and PB(N) still do.
3.3.2. Large output weights

We derive upper bounds for the WE of GRAm codes

which are su�ciently tight, for large output weights,

to show that P≤hNW (N) and P≤hNB (N) are the asymp-

totically dominant terms of PW (N) and PB(N). The

bounds are inductive in the sense that we use a para-

metric bound on the WE of GRAm codes form=1, and
then show that each added �accumulate� stage leaves

the form of the bound unchanged.

Using bounds from [7], it is possible to show that

P
(acc)
w,h (N) ≤

(
5e2h/N

)dw/de
(10)

for any d≥2, and also that

A
(o)
h (N) ≤ (N/h)bh/dfreec gh (11)

where g is a constant which depends only on the partic-

ular code. For m= 1, we apply to (3) the bound (10),

with d=dfree, and the bound (11) . Using h1≤2h2 for

the limits of the sum gives

Ah2 (N) ≤
2h2∑

h1=dfree

(
Ngdfree

h1

5e2h2

N

)dh1/dfreee

.

Finally, we upper bound this sum by 2h2 times the

maximum value of its summand to get

Ah2 (N) ≤ 2h2a
h2 (12)

where ln a= 5egdfree/dfree. In general, this bound is

reasonably accurate for small h2 when dfree = 2, and
fairly weak otherwise.

Starting with Ahi(N) ≤ Chia
hi , a more general

form of (12), we consider the e�ect of adding another

�accumulate� code. We can write (3) in an incremental

form using the bound (10), with d=2, to see that

Ahi+1 (N) ≤
2hi+1∑
hi=1

Chia
hi
(
5e2hi+1/N

)dhi/2e
.

This sum can be upper bounded by twice the sum of

the terms with even hi, so we let b = 5e2a2 and take

the dominant terms to get

Ahi+1 (N) ≤


4Cbhi+1/N

(1−bhi+1/N)2 if bhi+1 < N

2C(h2
i+1+hi+1) if bhi+1 = N

4Chi+1(bhi+1/N)hi+1+2

(1−bhi+1/N)2 if bhi+1 > N

,

which, for large enough N , can be weakly upper

bounded by

Ahi+1 (N) ≤ C̃hi+1ã
hi+1 . (13)

for ã = b and some C̃. This is the same bound we

started with, so by induction this bound holds for

any �xed number of �accumulate� stages. In fact, this

bound shows that the WE of GRAm codes, with m>1,
is O(1) for all hi+1 ≤ N/b, which gives us hope that

choosing interleavers carefully could give a minimum

distance that grows like O(N).
Now we upper bound P>hNW (N) by combining (1)

and (13) to get

P>hNW (N) ≤
N∑

hm+1=hN+1

Chm+1a
hm+1zhm+1 .



Rate γ∗ γ1 γ2 γ3 ρ1 ρ2 ρ3

1/3 -0.495 0.739 -0.478 -0.495 0.50 1.65 3.76

1/4 -0.794 -0.078 -0.790 -0.794 0.12 2.20 4.61

1/5 -0.964 -0.494 -0.962 -0.963 0.06 2.69 5.31

1/6 -1.073 -0.742 -1.072 -1.073 0.11 3.13 5.90

1/7 -1.150 -0.905 -1.149 -1.150 0.19 3.52 6.41

Table 1: Eb/N0 thresholds in dB for RAm codes.

For all z satisfying az < 1, we can upper bound the

geometric sum to get

P>hNW (N) ≤ C(hN + 1)(az)hN

(1− az)2
.

Letting hN =(lnN)2 and δ=ln az<0, we have

P>hNW (N) = O
(
(lnN)2

)
N δ lnN = o(Nν−1). (14)

So our threshold z∗ = 1/a and, for any z < z∗,

this proves that P≤hNW (N) dominates P>hNW (N) for

all GRAm codes. Combining (14) with the fact that

PB≤PW also makes it clear that P≤hNB (N) dominates

P>hNB (N).
3.3.3. The special case of dfree=2 and m=1

It turns out that GRAm codes with dfree = 2 and

m = 1 have a WE (12) which grows exponentially in

h2. The WE is not growing with N , however, and is

O(1) for �xed h2. Applying the union bound (1) to

(12) gives

PW (N) ≤
N∑

h2=1

(
2h2a

h2
)
zh2. (15)

Even as N→∞, this sum is upper bounded by a con-

stant if az < 1. So our threshold z∗= 1/a and, for all

z < z∗, we have PW (N) =O(1). This bound is trivial

though, because all probabilities are upper bounded

by a constant. Examining (15) more carefully, how-

ever, shows that the constant will be less than 1 for

su�ciently small z. Using the input-output weight

pair condition from the theorem and the inequality

hi ≤ 2hi+1, we have the bound w≤ th1≤2th2. Apply-

ing the union bound (2), we get

PB(N) ≤ O
(
N−1

) N∑
h2=1

h2

(
2h2a

h2
)
zh2 .

Once again, if az < 1, the sum is upper bounded by a

constant for all N . So, for all z<z∗, we have PB(N)=
O(N−1). This completes the proof of the theorem.

4. The IGE Conjecture

The IGE conjecture considers the growth rate of the

WE Ahm+1(N) in N for �xed hm+1 as the block length

goes to in�nity. Following [1], we de�ne

Rate γ∗ γ1 γ2 γ3 ρ1 ρ2 ρ3

1/2 0.187 3.419 0.327 0.188 3.42 1.23 2.72

4/5 2.040 4.388 2.206 2.044 4.39 2.62 3.36

8/9 3.033 5.034 3.187 3.037 5.03 3.49 4.04

12/13 3.591 5.425 3.736 3.596 5.43 3.99 4.46

16/17 3.971 5.700 4.109 3.976 5.70 4.33 4.77

Table 2: Eb/N0 thresholds in dB for PAm codes.

α(hm+1) = lim sup
N→∞

logN Ahm+1(N) (16)

and

βM = max
hm+1≥1

α(hm+1). (17)

The IGE Conjecture [1] predicts that there exists a

threshold channel parameter z∗ such that, for any

z < z∗, the probability of word error is PW = O(NβM ).
Another commonly cited variation of the IGE Conjec-

ture also predicts that, under the same conditions, the

probability of bit error is PB = O(NβM−1).
For GRAm codes, it follows from (6), (9), (12), and

the de�nitions (16) and (17) that

βM = max
hm+1≥1

lim sup
N→∞

logN A
≤hN
hm+1

(N) = ν.

Therefore, the IGE Conjectures for PW and PB of

GRAm codes are corollaries of the theorem.

5. Computing the Threshold

The results of Section 3.3.2 give an analytical

method to compute the threshold z∗ for GRAm codes,

but the thresholds computed are quite loose. In this

section, we outline a method which computes tight

bounds on the spectral shape of an ensemble of GRAm

codes. Using these bounds, we apply the techniques of

[8] and [4] to calculate very accurate Eb/N0 thresholds

for the AWGN channel.

5.1. Tight bounds on the spectral shape

Let us consider the spectral shape of the WE,

rN (x) = (logAbNxc)/N , as de�ned by [8]. For TCCs

with no memory, we can use the method of [9, p. 15]

to compute tight bounds on the spectral shape of the

outer code. Using similar bounds on (4), we can track

the evolution of the spectral shape of the WE as it

passes through each �accumulate� encoder. Let r
(0)
N (x0)

be the spectral shape of the outer code's WE, and let

r
(i)
N (xi) be the spectral shape of the WE after the ith
�accumulate� encoder. Then, we can show that

r
(i+1)
N (xi+1) ≤ O(logN)

N
+ max

0≤xi≤1

[
r

(i)
N (xi) + f(xi, xi+1)

]
where

f(x, y) = (1− y)H
(

x

2(1− y)

)
+ yH

(
x

2y

)
−H(x).



5.2. Thresholds for typical pairs decoding

In Section 3.3.2, we bounded P>hNW (N) using the

union bound for maximum likelihood decoding. This

allows us to compute loose lower bounds on the thresh-

old z∗ for a wide variety of memoryless channels. The

methods in [4] and [8], based upon an analysis of the

�typical pairs� decoder, yield very good threshold es-

timates for binary linear codes on memoryless, sym-

metric channels, including the BSC and AWGN chan-

nel. Using the results of Section 5.1, we applied these

methods to compute Eb/N0 thresholds for Repeat Ac-

cumulate (RAm) and Parity Accumulate (PAm) codes.

Tables 1 and 2 show the results for m = 1, 2, and 3.
In the tables, γ∗ denotes the Shannon limit and

γm denotes the typical pairs decoding threshold. Note

that the thresholds are very close to the Shannon limit

for m= 3. The value ρm denotes an upper bound to

the iterative decoding threshold using a message pass-

ing decoder. The iterative decoding analysis, based

on [10], holds for all asymptotically long GRAm codes

that have an asymptotically large number of indepen-

dent decoding iterations.

6. Concluding remarks

In this paper, we proved a coding theorem for the

ensemble of Generalized Repeat Accumulate (GRAm)

codes. This theorem extends the results of [1] and [2] to

serial concatenations that incorporate outer codes with

dfree= 2 and multiple interleaved �accumulate� codes.

As a corollary, we con�rmed the validity of the In-

terleaver Gain Exponent (IGE) Conjecture for GRAm

codes where the outer code satis�es dfree≥2. We also

computed Eb/N0 thresholds for selected GRAm codes

on the AWGN channel.

The theorem implies that, for suitably high Eb/N0,

GRAm codes will have vanishing word error probability

for outer codes with dfree=2, if and only if m≥2. As
an illustration of this result, Figure 1 compares word-

error-rate (WER) simulation results for a rate 1/2 RA

code and a rate 1/2 RA2 code. The m=1 code shows

no interleaving gain, while the m=2 code clearly does.
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