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Complexity and Sliding-Block Decodability 
Jonathan J. Ashley, Member, IEEE, Razmik Karabed, and Paul H. Siegel, Senior Member, IEEE 

Abstract-A constrained system, or sofic system, S is the set 
of symbol strings generated by the finite-length paths through 
a finite labeled, directed graph. Karabed and Marcus, extend- 
ing the work of Adler, Coppersmith, and Hassner, used the 
technique of state-splitting to prove the existence of a noncatas- 
trophic, rate p : q finite-state encoder from binary data into S 
for any input word length p and codeword length q satisfying 
p/q 5 cap(S), the Shannon capacity. For constrained systems 
that are almost-finite-type, they further proved the existence 
of encoders enjoying a stronger form of decodability-namely, 
sliding-block decodability. In particular, their result implies the 
existence of a 100% efficient (rate 1/2), sliding-block code for 
the charge-constrained, runlength-limited constraint with param- 
eters (d ,  k ;  c) = (1, 3; 3), an almost-finite-type system with 
capacity precisely 1/2. In this paper, we describe two quite 
different constructions of such codes. The constructions highlight 
connections between the problem of determining sliding-block 
decodability of a finite-state encoder and certain problems of 
colorability for graphs and sets. Using these connections, we 
show that the problem of determining the existence of a block- 
decodable input tag assignment for a given rate p:q, finite-state en- 
coder is NP-complete, for p > 1. We also prove NP-completeness 
results for several related problems in combinatorics and coding. 

Index Terms- Complexity, sliding-block decoder, constrained 
system, NP-complete, graph coloring. 

I. INTRODUCTION AND BACKGROUND 
ONSTRAINED codes, often called modulation codes, C play an important role in the storage and transmission 

of digital information. The idea is to encode arbitrary user 
messages to a constrained set of messages which determine 
the signals that are actually recorded. In the most general 
terms, the purpose of a constrained code is to improve the 
performance of the system by matching the characteristics of 
the recorded signals to those of the channel. There are two 
classes of constraints over the binary alphabet A = (0, l} 
that have found wide use in digital recording systems. The 
class of runlength-limited (RLL) constraints are characterized 
by two parameters usually denoted by the pair (d ,  k ) .  The 
parameter d represents the minimum number of 0’s separating 
consecutive l’s, while k represents the maximum number. The 
(d,  k) constrained system is concisely described by the labeled 
graph in Fig. 1. 
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Fig. 1. RLL (d ,  I C )  constrained system. 
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Fig. 2. Charge-constrained system. 

The other class of constiraints are called spectral-null con- 
straints or charge constraints and are characterized by a 
parameter B. The sequenc1:s b = b l ,  ba, . . . in the system 
satisfy the inequality: 

I a=m I 
for all m, N 2 1. This condition ensures that the constrained 
sequences have no spectral icontent at zero frequency (at DC), 
and codes satisfying such al constraint are often referred to as 
DC-free. 

Constrained systems that combine the RLL and charge con- 
straints are sometimes described by the parameters (d ,  k ;  e ) ,  
where d and k are as above, and the parameter c corresponds 
to setting B = 2e in the running digital sum bound in 
the inequality above. A labeled graph describing the charge- 
constrained sequences for .E3 = 2c is shown in Fig. 2. 

Shift-invariant sets of sequences, as illustrated by the RLL 
and spectral-null constraints just described, have been studied 
in information theory, autornata theory, and symbolic dynam- 
ics, where they are called discrete noiseless channels, regular 
languages, and sofic systems, respectively. The fundamental 
problem is to design efficient, invertible, finite-state encoders 
from binary data to sequemces satisfying the constraint. The 
efficiency is measured by comparing the encoder rate p / q  to 
the Shannon capacity of the constraint which represents an 
upper bound on the achievable rate [15]. Since the pioneering 
work of Shannon, there lhias been tremendous progress in 
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tackling this design problem. We now summarize the key 
concepts and results in constrained coding that underlie and 
motivate this paper. 

A. Preliminaries on Constrained Systems and Encoders 

A labeled graph G = (V, E ,  L )  consists of a finite set 
of states V = VG; a set E = EG of directed edges, each 
edge e having initial state a(e)  in V and terminal state .(e) 
in VG; and an edge label function L: EG i C, where C is 
a finite symbol alphabet. The adjacency matrix of G, AG, is 
the I VG I x I VG I matrix that describes the underlying directed 
graph, and is defined by 

AG = { u t , 3 } t , ~ ,  1 5 i, j 5 lvGl 

where is the number of edges from state i to state j .  We 
will sometimes refer to G as simply a graph when use of this 
term is not ambiguous. 

The qth power of G, denoted Gq, is the labeled graph with 
state set V = VG, a directed edge from state U to state v for 
every path of length q in G, and the corresponding edge labels 
of length q.  We will also make use of the qth higher edge graph 
of G, denoted G[Q], which has a state for every path of length 
q - 1 in G, and an edge for each path of length q in G. The 
edge corresponding to the path e1e2 . . . e,  has initial state 
e1 . . . eq-l ,  terminal state e2 . . . ep, and edge label given by 
the length-q string generated by the path in G. Another useful 
object is theJiberproduct G* H of two labeled graphs, G and 
H .  The vertex set is given by 

VG*H = VG x VH = { ( U ,  uf)IU E VG,  U’ E VH} 

and an edge ( U ,  U’) &(w, w’) belongs to EG*H if and only 
if u a w  E EG and uf-%vf  E E H .  

A constrained system S = S(G) is the set of finite 
sequences generated by sequentially reading the labels from 
edges in paths in a labeled graph G. The labeled graph 
G is said to be a presentation of the system S. The con- 
strained system S is sometimes referred to as a constraint. 
The systems corresponding to GQ and G[Q] are denoted SQ 
and SLY], respectively. Note that the fiber product generates 
the intersection of the constraints S(G) and S ( H ) ,  that is, 
S(G * H )  = S(G)  n S ( H ) .  We will be concerned largely 
with irreducible constraints, meaning systems S that can be 
presented by a labeled graph G in which the underlying graph 
is irreducible (strongly connected). 

A labeled graph G is said to be deterministic when, at 
each state, the outgoing edges are distinctly labeled. Every 
constraint has a deterministic presentation. More generally, 
a graph G has jinite anticipation a if any pair of paths 
e l ,  . . . , e,+l and e;, . . . , eh+l of length a + 1 with the same 
initial state and generating the same sequence of labels must 
have the same first edge, that is, el = e;. A deterministic 
graph has anticipation a = 0. Finally, G is lossless if any 
two paths with the same initial state and final state generate 
distinct label sequences. 

The capacity of the system S, denoted cap(S), is the growth 
rate of the number N(1; S) of sequences of length Z in S. 

More precisely, 

cap(S) = lim logN(Z; s)/Z. 

If S is irreducible, and G is a lossless presentation of S, the 
capacity is given by the simple formula 

l+OO 

capa(S) = lOg,X(AG) 

where X(AG) is the largest eigenvalue of AG (which is 
guaranteed to be real and positive by the Perron-Frobenius 
Theorem). Since A G ~  = A:, it follows that cap(S4) = 

Given a constraint S and a positive integer n, we define an 
(S, n)  encoder as a lossless, labeled graph E in which each 
state has n outgoing edges and the corresponding constrained 
system satisfies S(E) C_ S. A tagged (S ,n )  encoder is 
obtained by assigning distinct input tags, drawn from an 
alphabet of size n, to the n outgoing edges from each state 
in V,. If an (S ,  n )  encoder has only one state, it is called a 
block encoder. A tagged ( S Q ,  n p )  encoder-where the input 
tags are the length-p, n-ary strings-will be referred to as a 
rate p:q finite-state n-aly encoder for S. 

Shannon [15] proved that the existence of a rate k p  : kq 
block encoder, for some positive integer k ,  implies that p/q 5 
cap(S). Conversely, he gave a nonconstructive proof that 
there exists a rate k p :  kq block encoder, for some k ,  when 

Adler, Coppersmith, and Hassner [ 11, using the technique 
of state-splitting developed by Marcus [lo] in the context 
of symbolic dynamics, proved that, for any p, q satisfying 
p/q 5 cap(S), there exists a rate p : q, finite-state encoder for 
S with finite anticipation. The latter condition ensures that the 
encoding is invertible by means of a state-dependent decoder. 
Moreover, the proof given was constructive. (An exposition of 
the state-splitting algorithm may be found in [12] and [13].) 
In this paper, we will be concerned with encoders that satisfy 
a stronger form of decodability, as we now describe. 

4 cap(S). 

P/4 < cap(S). 

B. Stronger Forms of Decodability 

Generally, constrained codes are applied’ in the context of 
noisy recording or communication channels. The decoder is 
therefore likely to be operating on a corrupted sequence which 
may or may not belong to the constraint S. In this setting, 
a state-dependent decoder may suffer catastrophic failure in 
response to even a single symbol error. Therefore, practical 
considerations require the design of encoders with stronger 
decodability properties. 

A tagged, rate p : q encoder for S is noncatastrophic if it 
has finite anticipation and, in addition, whenever the output 
sequences generated by two right-infinite paths differ in only 
a finite number of positions, the corresponding input tag 
sequences also differ in only a finite number of positions. 
Karabed and Marcus [7] proved that, for any constrained 
system S and any positive integers p ,  q satisfying p/q 5 
cap(S), there is a rate p : q noncatastrophic encoder. 

An even stronger form of decodability-sliding-block de- 
codability-is the most important in applications and is defined 
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as follows. A tagged, rate p : q encoder for S is (m, a)-sliding- 
block-decodable if, for any two paths e-, ' .  . eo . . . e, and 
e\, . . . eh . . . e: that generate the same sequence, the edges 
eo and eh have the same input tag. For such an encoder, 
the sliding-block decoder V is given by a mapping from 
(C(Sq))m+afl  to the set of length-p, n-ary input tags, where 
C ( S )  denotes the symbol alphabet of the constraint S. The 
decoder mapping has the property that, if the codeword 
sequence c1c2 . . . is generated by the encoder from the input 
tag sequence blb2 . . . , then 

b, =D(c,-,, . . . ,  e,, . . . ,  c,+,), fo r i  > m. 

This property ensures that a single codeword error at the input 
to the decoder can corrupt at most m+a+l input tags, thereby 
limiting the extent of error propagation to a finite duration. 
An encoder that is (0, 0)-sliding-block-decodable is said to be 
block-decodable. 

In order to state existence results for sliding-block- 
decodable encoders, we must first introduce two classes 
of constrained systems-finite-type and almost-finite-type 
systems. A labeled graph G is said to be (m, a)-definite 
if, given any sequence w = w-, . . . W O  . . . w, in S(G) ,  the 
set of paths e-,  . . . eo . . . e,  that generate w agree on the 
edge eo. A constraint S is jinite-type if it can be presented 
by an (m, a)-dejinite graph, for some m and a. Finite-type 
constraints are also characterized intrinsically by the finite 
memory property: there exists an integer N such that, for any 
symbol c in the alphabet and any sequence w = w1w2 . . . w, 
in S of length n 2 N ,  the sequence wc is in S if and only if the 
sequence Wn-N+1 . . . w,c is in s. The (d ,  k )  RLL constraints 
are an important example of finite-type constrained systems. 
Adler, Coppersmith, and Hassner [1] showed that when their 
state-splitting algorithm is applied to a definite graph G that 
presents a finite-type constraint, the (untagged) encoder graph 
that is generated is also definite. This implies that, with any 
assignment of input tags, the resulting tagged encoder is 
(m, a)-sliding-block-decodable for some finite m and a. 

It is not difficult to see that the charge-constrained systems 
are not finite-type. They belong to the class of almost-finite- 
type systems, which can be characterized as systems having a 
presentation with finite anticipation and finite co-anticipation 
(the anticipation of the graph obtained by reversing the direc- 
tion of the edges). Finite-type constraints are a proper subclass 
of almost-finite-type constraints. Karabed and Marcus [7], 
building upon Marcus [ 111, improved upon the result in [ 11, 
showing that, for any almost-finite-type constrained system S 
and any positive integers p ,  q satisfying p / q  5 cap(S), there 
is a rate p : q ,  sliding-block-decodable encoder. 

The research leading to the coding theorems in [ l l ]  and 
[7] was motivated, at least in part, by the problem of de- 
termining the existence of a sliding-block-decodable encoder 
with rate equal to the capacity for the charge-constrained, 
RLL constraint with parameters (d ,  k ;  e )  = (1, 3; 3). This 
constraint is almost-finite-type [ 111, though not finite-type, and 
has capacity exactly equal to 1/2. Patel [14] had designed a 
rate 1 /2  encoder mapping for this constraint, but it required 
unbounded anticipation. By modifying the encoder, he was 
able to demonstrate a family of sliding-block-decodable codes 
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Fig. 3. (1, 0)-sliding-block-decoclable tagged encoder for (d ,  IC) = (1, 3 ) .  
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Fig. 4. (0,O)-sliding-block-decodable tagged encoder for ( d ,  IC) = (1, 3 ) .  

A 

Fig. 5. Encoder graph with no slliding-block-decodable tagging. 

with rates approaching from below, but not achieving, rate 1/2. 
The main theorem in [7] proves that there are, in fact, rate 1/2 
sliding-block-decodable encoders for the (1,3; 3) constraint. In 
this paper, we will describe the first explicit constructions of 
such encoders. 

C. Input Tag Assignments 

In view of the existence results for sliding-block-decodable 
encoders, a problem that arises naturally during the code 
construction procedure is the choice of input tag assignment to 
achieve sliding-block decodability and to minimize the length 
of the sliding-block decoder window. 

To illustrate some of llie issues involved in input tag 
assignment, consider the rate 1 : 2 encoder for the (d ,  k )  = 
(1, 3) constraint shown in Fig. 3. It is not difficult to see that 
the encoder is (1, 0)-sliding-block-decodable. The alternative 
assignment shown in Fig. 4, however, is (0, 0)-sliding-block- 
decodable, or block-decodable. 

In contrast, the graph in Fig. 5 is an untagged rate 1 : 1 
encoder for the constraint S that it presents. One can show 
easily that there is, in fact, nio input tag assignment that induces 
block decodability [16], [7]1. However, the higher edge graphs 
&[q ]  of the encoder graph in Fig. 5 will also be rate 1 : 1 
encoders for the corresponding higher edge constraints S[41, 
and there is an input tag assignment in the case q = 2 that 
yields a (0, 1)-sliding-block-decodable encoder, as shown in 
Fig. 6.  On the other hand. there is no input tag assignment 
for any higher edge graph of the encoder graph in Fig. 7 that 
produces an (m, a)-sliding-block-decodable tagged encoder, 
for any finite values of m and a [7]. 

Given a particular choice of assignment, there is an efficient 
algorithm for testing whether the tagged encoder is (m, a)- 
sliding-block-decodable, which we outline here [ 121. Let E be 
a tagged (S, n)-encoder graph. Let AE*E be the adjacency 
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Fig. 6 .  Edge -graph encoder with ( 0 ,  1)-sliding-block-decodable tagging. 

Fig. 7. 
graph. 

Encoder with no sliding-block-decodable tagging of any higher edge 

matrix of the fiber product E * E.  Define the matrix BE*& to 
be the lV,I2 x lV,12 matrix, with rows and columns indexed 
by the states of E * €, such that for states U ,  U’, v, U’, the 
entry B&*E((u, U’),  (v, d)) is equal to the number of pairs 
of distinct edges U i v and U’ -+ v/ with the same (output) 
label but distinct input tags. Then, the tagged encoder E is 
(m, a)-sliding-block-decodable if and only if 

A;”*& . BE*& . A&& = 0. 

For an encoder graph with even moderate size, however, it 
is impractical to apply this test to every possible input tag 
assignment. Therefore, it would be very desirable to have an 
efficient algorithm to solve the following problem: 

Encoder Input Tag Assignment: Given an (S ,  n)-encoder 
graph €, does there exist an input tag assignment 
such that the tagged encoder is (m, a)-sliding-block- 
decodable? 

In view of the fact that the construction of an (S, n)-encoder 
graph via state-splitting often generates a graph with out- 
degree at least (and possibly greater than) n, it is natural to 
consider the following more general problem: 

Subgraph Encoder Input Tag Assignment: Given a la- 
beled graph G having out-degree at least n at every state, 
does there exist an assignment of input tags to the edges 
of G such that the tagged (S, n)-encoder obtained by 
restricting the assignment to an (S, n)-encoder E C G 
is (7n, a)-sliding-block-decodable? 

We will establish connections between the input tag as- 
signment problems stated above and problems relating to 
colorability of graphs and sets. The techniques used in the two 

constructions of 100% efficient, sliding-block codes for the 
(1,3; 3 )  constraint that are presented in this paper draw upon 
these connections. We will also use the connections to address 
the complexity of the two input tag assignment problems. 

D. Outline of the Remainder 

In Section 11, we consider the problem of assigning input 
tags in a consistent manner in order to produce a sliding- 
block-decodable tagged encoder graph. We first show that the 
Encoder Input Tag Assignment problem is related to the well- 
known combinatorial Graph n-Coloring problem. We then 
show that the more general problem of Subgraph Encoder 
Input Tag Assignment is related to a combinatorial problem 
that we will refer to as Set n-Coloring. 

In Sections I11 and IV, we describe in some detail two con- 
structions of rate 1/2, sliding-block codes for the (d ,  k ;  e)  = 
(1, 3;  3) constraint. These code designs represent, to the best 
of our knowledge, the first 100% efficient sliding-block codes 
for this constraint, thereby realizing the promise of the theorem 
of Karabed and Marcus [7]. 

Specifically, in Section 111, motivated by the connections 
established in Section 11, we develop an out-splitting heuristic 
that we apply to construct a 20-state, rate 4 : 8 encoder graph 
for the (d ,  k ;  e)  = (I, 3; 3 )  constraint which, with a specified 
input tag assignment, is (3,5)-sliding-block-decodable. This 
code was originally announced in [SI. 

Section IV describes a new code construction approach 
based upon a matrix generalization of the state-splitting algo- 
rithm. The problem of determining the existence of a (0, U)-  

sliding-block-decodable input tag assignment for a subgraph 
encoder generated by a rounds of matrix-based out-splittings is 
recast in terms of a constrained integer programming problem 
that can, in tum, be interpreted as a Set n-Coloring problem. 
We then apply the matrix-based state-splitting technique to 
construct another rate 4 : 8 encoder that has a larger number 
of states than the encoder of Section 111, namely 104, but 
which we endow with an input tag assignment that ensures 
(0,2)-sliding-b1ock decodability. 

Section V addresses computational complexity issues as- 
sociated with the design of sliding-block-decodable encoders, 
making use of the connection to coloring problems. We begin 
the section with a very brief review of the theory of NP- 
completeness. 

In Section V-A, we provide a polynomial-time reduction 
of the Graph n-Coloring problem to the Encoder Input Tag 
Assignment problem. Since the Graph n-Coloring problem 
is known to be NP-complete, this proves that the general 
problem of determining the existence of an (m, a)-sliding- 
block-decodable input tag assignment for a given (S, n) 
encoder is NP-complete. It also follows that even for fixed 
n, the problem remains NP-complete for n 2 3. 

In Section V-B, we polynomially reduce the Satisfiabil- 
ity (SAT) problem-the original NP-complete problem-to 
the Set n-Coloring problem, proving that the latter is NP- 
complete. We then reduce Set n-Coloring to the input tag 
assignment problem, representable as a cofistrained integer 
programming problem, that arises in the matrix-based code 
construction, proving that these are both NP-complete. In 
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ba bc bb 
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Fig. 9. Edge-coloring graph for the second encoder. 

C 

Fig. 8. Edge-coloring graph for the first encoder. 

fact, we also conclude that for fixed n, the problems are 

Graph n-Coloring (or chromatic number) problem is specified 
as follows. 

Graph n-Coloring: Giwn an undirected graph H = 
(VH, E H )  and a positive integer n, does there exist an 
n-coloring of H? 

NP-complete for n 2 2. 
Finally, in Section V-C, we consider a natural mapping 

problem for graph edge systems called 1-Block Surjection. By 
a reduction of Set 2-Coloring to an instance of this problem, 
we show that 1-Block Surjection is NP-complete. 

11. COLORING PROBLEMS AND INPUT TAG ASSIGNMENT 

In this section, we establish an elementary relationship 
between the Encoder Input Tag Assignment problem and 
the combinatorial Graph n-Coloring problem. The connection 
is clarified by the introduction of an object we refer to as 
the edge-coloring graph. We then draw a simple connection 
between the Subgraph Encoder Input Tag Assignment problem 
and a more general coloring problem that we call Set n- 
Coloring. 

We first introduce a relation on the edges of a labeled graph 
(G, L).  Two edges e and e’ are (m, a)-adjacent if there exist 
two paths 

e-, . . . e-leoel . . . e,  

e;, . . eLlehe: . . . eI, 

in G, such that eo = e, eh = e’, and 

L(e-, . . . e-leoel . . . e,) = L(e’_, . . . eylebe; . . . eh). 

It is easy to verify that the transitive closure of (m, a)- 
adjacency is an equivalence relation. We call this equivalence 
relation (m, a)-connectedness and we denote the equivalence 
class of e by [e]. From the definition, it follows that a tagged 
encoder E is (m, a)-sliding-block-decodable if and only if the 
following two conditions are satisfied: 

1) Edges that are (m, a)-connected receive the same input 

2) Edges with the same initial state receive distinct input 

The (m,a) edge-coloring graph Cc(m, a) is defined as 
follows. Let the vertices V be the set of equivalence classes 
for the connectedness relation. There is an undirected edge 
connecting two verticeq U and v whenever U = [e] and v = [f], 
where e # f and o(e) = a( f ) .  The coloring graph for the 
encoder graph in Fig. 5 is shown in Fig. 8, and that for Fig. 6 
is shown in Fig. 9. 

A well-known combinatorial problem whose complexity 
has been studied is that of graph n-colorability, which we 
now describe. Let C, denote the alphabet { 1, 2, . . . , n}. An 
n-coloring of an undirected graph H = (VH, E H )  is an 
assignment P:V, --+ E, such that P(u) # P ( v )  whenever 
the states U ,  v E VH are connected by an edge e E EH.  The 

tag. 

tags. 

For an ( S ,  n) encoder I:, the following theorem identifies 
the relationship between input tag assignments that are (m, a)- 
sliding-block-decodable and n-colorings of the (m, a) edge- 
coloring graph C E ( ~ ,  a). 

Theorem 2.1: Let E be an ( S ,  n) encoder, with (m, a) 
edge-coloring graph Cf(m, a ) .  There is a one-to-one cor- 
respondence between n-ay input tag assignments yielding 
(m, a)-sliding-block-decodlable encoders and n-colorings of 

Proof: Let P be an n-coloring of CE(m, a). The cor- 
responding input tag assignment Z: EE --+ C, is defined by 
Z(e) = P([e]). Since P defines an n-coloring, the n outgoing 
edges from each state in (t’ will have distinct input tags, as 
required. The decoder mapping 2): (E(S))m+u+l + C, is 
defined as follows. Let w = w-, ... WO ... w, be a string 
in S generated the path e =: e- ,  . . . eo . . . e,  in 1. Denoting 
eo by e, we define D(w) =: Z(e). Note that if w is generated 
by another path e’ = e:,, . . . eh . . . e: in E,  with eh = e’, 
then e and e’ are (m, a)-connected, so [e] = [e’]. Thus 

c&(m, a ) .  

Z(e) = P([e])  = P([e’]) = T(e’) 

so the decoder function 2) is well-defined. Conversely, 
suppose that Z is an n-ary input tag assignments yielding 
(m, a)-sliding-block-decodable encoder E,  with decoder 
2). If e and e’ are (m, (%)-adjacent, then there are paths 
e-, . . . e-leel . . . e, ant3 e!-, . . . eL,e’ei . . . el, in E that 
generate the same word W. So 

Z(e) = D(w) = Z(e’). 

Next if f and f ’  are edges of E in the same (m, a)- 
connectedness equivalence class [f] = [ f ’ ] ,  then there is 
a chain of such pairs (e, e’) “connecting” f to f’. Thus 
Z(f) = Z(f’). Hence wle can define a coloring P of the 
vertices of C&(m, a )  by P ( [ e ] )  = Z(e). By definition, if [ f ]  
and [ f ’ ]  are connected by ;in edge in CE ( r n ,  a), then there are 
distinct edges e E [f] and t“ E [f’] having the same initial state 
~ ( e )  = ~ ( e ’ )  and, therefoit:, distinct input tags, T ( e )  # Z(e’). 
We conclude that 

P([fI) = Z(E) # Z(e’) = P([f’ l ) .  

Thus P is an n-coloring of CE(m, a). 0 
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If the graph G is not an (S, n) encoder, then the problem 
of determining whether it supports an (m, a)-sliding-block- 
decodable (S, n)  encoder is related to another combinatorial 
problem, which we call Set n-Coloring, defined as follows. 

Set n-Coloring: Given a collection of finite subsets 
SI, Sz, . . . , Sm of a set U ,  does there exist a coloring 

m 

1: U SI, -+ (0, 1, . . . , 72 - I} 
k = l  

such that: for each 1 5 IC 5 m, and for each color 
0 5 j 5 n - 1, the set SI, has at least one element of 
color j ?  

Theorem 2.2: Let G be a labeled graph presenting the 
constrained system S .  Then the graph G can be labeled with 
input tags in such a way that a tagged subgraph E forms an 
(m, a)-sliding-block-decodable (S, n) encoder if and only if 
the following two steps can be performed. 

1) Solve the following instance of the Set n-Coloring 
problem. The set U is defined to be the set of vertices 
of the edge-coloring graph C G ( ~ ,  a). For each state s 
of 6, define a subset S, C U by 

S, = { U  E U : u  = [e] where .(e) = s}. 

Use the solution 2: U, S, + (0, 1, . . . , n - 1) to define 
an input tagging of G by setting T ( e )  = 2 ( [ e ] ) .  

2) Define the (S, n)-encoder E by deleting edges from G 
so that the remaining graph has, at each state s, and for 
each input label 0 5 j 5 n - I, exactly one edge e with 
.(e) = s and T(e)  = j. 

Pro03 One only has to observe that if e-, . . . eo . . . e,  
and e / ,  . . . eh . . . e; are paths in G that generate the same 
label sequence, then the edges eo and e& represent the same 
vertex U in the set U in the statement of the theorem. Thus 
an input tagging of G that yields an (m, a)-sliding-block- 
decodable ( S ,  n )  encoder I C G produces a set coloring as 

0 in the statement of the theorem, and conversely. 

111. A 2o-sTATE, RATE 4:8, 
(3,5)-SLIDING-BLOCK-DECODABLE (1,3; 3) ENCODER 

In this section, motivated to sQme extent by the discussion 
in the previous section, we develop a heuristic for choosing 
out-splittings in order to achieve an encoder that, with an 
appropriate input tag assignment, is sliding-block-decodable. 
We then describe in full detail the construction of a rate 
4 : 8,  20-state encoder graph for the (d,  k ;  c) = (1, 3; 3 )  
constraint. We specify a consistent input tag assignment for 
which the resulting tagged encoder is (3,5)-sliding-block- 
decodable. This code was first announced in [SI. 

A. A Heuristic for Out-Splitting to Achieve Sliding-Block 
Decodability 

Suppose that we start with a graph G(O) = G presenting a 
constrained system S, and perform a rounds of out-splitting 
leading through graphs G(l), G(’), and so on, up to G(”) so 
that G(”) has out-degree exactly n. We would like to label 

the edges of G(”) with input symbols so that we obtain an 
(m, a)-sliding-block-decodable (S, n) encoder. 

We will now develop a heuristic to guide the sequence of 
out-splittings when the objective is to produce such a tagged 
encoder. We first introduce an auxiliary graph H(G;  m, a), 
defined to be the subgraph of the fiber product G * G of G 
with itself that is determined by restricting the edge set to edge 
pairs ( e ,  f )  where e and f are (m, a)-adjacent. 

We remark that the graph W(G; m, a) has the following 
easily verified properties: 

a) H(G; 0, 0) is equal to the fiber product G * G. 
b) A(G; m, a + 1) may be obtained from W(G; m, a) by 

first eliminating from N(G; m, a) all edges terminating 
in states having no outgoing edges and, then, eliminating 
those states. 

c) Similarly, H(G; m + 1, a) may be obtained from 
A(G;  m, a) by first eliminating from H(G; m, a) all 
edges originating in states having no incoming edges 
and, then, eliminating those states. 

These properties yield a recursive procedure for constructing 
the graph H(G; m, a), beginning with the original fiber 
product graph G * G. 

An arbitrary out-splitting of two states s and s’ of the graph 
G, yielding a graph G‘, induces an out-splitting of the state 
(s, s’)  of H(G; m, a) in G * G as follows. For each atom 
A in the partition of the outgoing edges from s, and for each 
atom A’ in the partition of the outgoing edges from s’, we 
define the subset 

{ ( e ,  .’):.((e, e’)) = ( s ,  s’) and e E A and e’ E A’}. 

The collection of such subsets that are nonempty form a 
partition of the edges following state ( s ,  s’) that we can use 
to define an out-splitting of ( s ,  s’). Although we do not prove 
it, the resulting graph is actually H(G’; m, a). We prove a 
special case as Lemma 3.1. 

Suppose that (s, s’) is a state of H(G; m, a), and that 
(e, e’) and ( f ,  f ’ )  are two edges in H(G; m, a) emanating 
from state (s, s’). Suppose that we out-split the graph G in 
such a way that the partition defining the splitting of state s 
has edges e and f in a single atom (defining a descendant 
state t in the resulting graph G’) while in the partition that 
defines the splitting of state s’, the edges e’ and f ’  are in 
distinct atoms (defining distinct descendant states t( l)  and 
t(’) in G’). Then in the induced splitting on H(G;  m, a), 
among the descendants of state ( s ,  s’) are two states: ( t ,  d’ ) )  
and (t, t(2)). Among the descendants of any incoming edge 
(9 ,  9’) into state (s, s’) are two edges: (h ,  h ( l ) )  terminating at 
(t ,  t(’)) and (h, h(2) )  terminating at ( t ,  Thus the edges 
h(l)  and h(’) of G’ represent the same vertex of C ~ f ( m ,  a), 
which then has a self-loop since o(h(’)) = o(h(’)), so there 
is no input tagging of G’ that defines an (m, a)-sliding-block- 
decodable encoder. Thus the separation of the edges e’ and f’  
into distinct atoms must eventually be mirrored in subsequent 
rounds of out-splitting by the separation of (the descendants 
of) the edges e and f .  

This motivates the following heuristic out-splitting condi- 
tion. Say a round of out-splitting of a labeled graph G is 
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(m, a)-label consistent if for each state (s, s’) of H(G; m, a ) ,  
and for any two edges ( e ,  e’) and ( f ,  f ’ )  emanating from 
state ( s ,  s’), the edges e and f are in the same atom of the 
partition defining the out-splitting of state s if and only if 
the edges e’ and f ’  are in the same atom of the partition 
defining the out-splitting of state s’. The next lemma shows 
that, when we perform a round of (m, i)-label-consistent out- 
splittings on G, there is a simple procedure for determining 
the (m,2 + 1)-adjacent pairs of edges in the split graph G’ 
from the (m,i)-adjacent pairs in G. 

Lemma 3.1: Suppose that G is a labeled graph and that G‘ 
is obtained from G by one round of (m, i)-label-consistent 
out-splitting. Then the graph H(G’;  m, i + 1) is obtained from 
the graph H(G;  m, i )  in the following two-step operation. 

1)  Eliminate from H ( G ;  m, i )  all states having no outgo- 
ing edges, along with their incoming edges. This leaves 
the graph H ( G ;  m, i + 1). 

2) Out-split H(G; m, i + 1) according to the following 
partitions. For each state (s, s’) of H(G;  m, i + l ) ,  
declare that two edges ( e ,  e’) and (f, f ’ )  emanating 
from state (s, s’) be in the same atom of the partition of 
its outgoing edges if and only if the edges e and f are 
in the same atom of the partition that defines the out- 
splitting of state s in G (which happens if and only if 
the edges e’ and f ’  are in the same atom of the partition 
that defines the out-splitting of state s’ in G). 

Proofi Step 1)  is simply a restatement of property b) 
above. 

To prove that step 2) yields the desired graph, we first 
introduce some notation. Suppose K‘ is a graph obtained by 
out-splitting a graph K .  Any edge e of K belongs to a unique 
atom of the partition used to define the splitting of the state 
.(e). Denote by a ( e )  the state of K’ corresponding to this 
atom. If a state t of K’ results from out-splitting state s of K ,  
then for each edge e of K with 7 ( e )  = s, there is a unique 
edge g of K’ with 7 ( g )  = t that maps onto e by the graph 
homomorphism from K’ to K defined by the out-splitting. 
We denote g = ( e ,  t ) .  

Now let H’ be the graph obtained by out-splitting 
H ( G ;  m, i + 1) according to the partitions defined in 2).  
We must show that H’ and H(G’; m, i + 1) are isomorphic 
as labeled graphs. Define a mapping 4, from the states of 
H(G’;  m, i + 1) to the states of N’ as follows. Let (t ,  t’) be 
a state of H(G’;  m, i + 1). The state t of G’ is the result of 
out-splitting some state s (its parent) in G. Similarly, t’ has a 
parent s’. Any label sequence L(gPm . . . g-lgOg1 . . . gz+l)  
generated by a path in G’ with T ( g - 1 )  = t is also generated 
by a path e-, . . . e-leoel . . . e,+l in G with T ( e - 1 )  = s. 
The same can be said of t’ and its parent s’. Thus (s, s’) is 
a state of H ( G ;  m, i + 1). Because the out-splitting leading 
from G to G’ is (m, 2)-label-consistent, the state a ( ( e ,  e’)) of 
H’ is independent of the choice of edges e and e’ for which 
a(.) = t ,  a(.’) = t’, and a ( ( e ,  e’)) = ( s ,  s’). Thus we can 
define @((t ,  t’)) = a ( ( e ,  e’)). It also follows from the fact 
that the out-splitting from G to G’ is (m, i)-label-consistent 
that the state a ( ( e ,  e’)) of H’ uniquely determines the states 
a ( e )  and &(e’) of G’. Thus Q, is a one-to-one map. 

1931 

( 2 0 )  (1.0) (0,O) (-1.0) (-2.0) 

t 

-2 -1 0 1 2 a 
S 

Fig. 10. Shannon cover of ( d ,  k ;  c) = (1, 3;3) system. 

Define a mapping 9 from the edges of H(G’; m, i + 1) 
to the edges of H‘ as follows. Any edge of H(G’; m, i + 1) 
preceding the state (t ,  t’) can be expressed as ( ( e ,  t ) ,  (e’, t’)), 
where e is an edge of G preceding the parent state s of the 
state t ,  e’ is an edge of G preceding the parent state s’ of the 
state t’, and ( e ,  e’) is an d g e  preceding the state (s, s’) of 
H ( G ;  m, i + 1). Define 

Q ( ( ( e ,  t ) ,  (e’, t’))) = ( ( e ,  e’), @(( t ,  t’))). 

It follows easily from the fact that @ is one-to-one that Q 
is one-to-one as well. It remains to show that the pair of 
maps (a, Q) together define a graph homomorphism from 
H(G’; m, 2 + 1) to H’. It Mlows directly from the definition 
of Q that 7 o @ = Q, o T .  The fact that (T o = @ o U 

follows from 

Q, O 4 ( ( e ,  4 ,  (e ‘ ,  t’ll)) = @ ( ( a ( e ) ,  4 e ’ ) ) )  
1 = a ( ( e ,  e’)) 

= 4 ( ( e ,  4, Q,((t,  t’))))  
= o  o Q(((e, t ) ,  (e’, t’))). 

B. Application to the 2O-Sl‘tzte Encoder 

Lemma 3.1 suggests an approach to constructing a sliding- 
block-decodable encoder by applying a sequence of label con- 
sistent out-splittings. In this section, we demonstrate such an 
encoder construction for thie (d ,  k ;  c) = (1, 3; 3) constrained 
system. The code has rate 4 : 8 and is (3,5)-sliding-block- 
decodable. The decoder window therefore has total length 9 
codewords, or 72 channel symbols. The encoder has twenty 
states. 

The irreducible Shannon cover G of the (d ,  k ;  e )  = 
(1, 3; 3) constrained system is shown in Fig. 10 [3], [4]. 
States are denoted by (s, t ) ,  where s is the accumulated 
charge and t is the zero-mnlength. 

The graph has period 2, so the second power G2 decom- 
poses into two irreducible graphs. We will work with the 
graph H shown in Fig. 1 1 ,  where the edge labels A,  B ,  C 
correspond to the 2-bit words 00, 10, and 01, respectively. 
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1 
CCCC 
ABCC 

CACC 

CACC 

CCCC 
BBCC 

CACC 

BBCC 

TABLE I 
FOURTH-POWER OF H (TABULAR FORM) 

2 
CABC 
cccc 
ACAC 

BCCC 
BBBC 
CCAC 

ACCC 
ABBC 
CCAC 

CABC 
BCAC 

ABBC 
BBBC 
BCCC 
CCAC 

BCAC 

3 1  4 
CCCA I CACC 

1: 
CACA ACAC 

BBBC 

C A 

Fig. 11. 
Shannon cover. 

The graph H ,  one of two components of the second power of the 

The graph is obtained from one of the components of G2 by 
merging the states corresponding to accumulated charge value 
2 and zero-runlength values 1 and 2, and it is the irreducible 
Shannon cover of the constraint it presents. The capacity of 
the system is exactly 1, and vT = [ 1 2 3 3 3 4 2 ]  is a positive 
integer eigenvector for the eigenvalue n = 2. Of all such 
positive eigenvectors, it minimizes the maximum component. 
The sequence BA is a homing word for state 7; that is, any 
path of length 2 that generates this sequence must terminate in 
state 7. Moreover, any sequence generated by a path passing 
through state 7 must contain BA. From properties of the 
Shannon cover [7], it follows that any such sequence must, 
therefore, be generated by a unique path in H .  We refer to a 
state having this property as a good state. Note that state 7 
is in fact the only good state in H .  An edge that terminates 

5 
CACA 
CCAB 
ACCA 
ABBB 
BCAB 
BBCA 
CCCA 
CABB 
ACAB 
ABCA 
CCCA 
CABB 
GAGA 
BCCA 
BBBB 
BABB 
CCCA 
ABCA 
CABB 
BBCA 
BCAB 

BCCA 
BBBB 
BABB 

6 
CABB 
ACAB 

BBBB 
CCAB 
BBAB 

ABBB 
CCAB 
ABAB 

CABB 
BCAB 

ABBB 
ABAB 
BBBB 
BBAB 
CCAB 
BCAB 

7 

ABBA 

CABA 

CABA 

BBBA 
BABA 

CABA 

BBBA 
BABA 

in a good state is called a good edge. Therefore, in H ,  the 
only good edge is the unique edge entering state 7, labeled A. 
States and edges that are not good are called bad. 

The code rate will be 4 : 8, so the starting point for the 
construction will be the graph H 4 ,  the fourth power of H .  
Table I describes H4. Note that the state 7 is the only good 
state in H4 and the good edges are those which end at state 7. 

One of the steps in the proof of the main theorem in 
[7] involves performing state-splitting operations to generate 
many good edges. In order to do this, a scaled eigenvector 
with components divisible by n2 is used to guide the splitting. 
This generates many additional states. In this construction, we 
want to avoid the creation of a large number of states, so we 
use a different approach to generate some good edges and 
good states. 

The next two steps involve in-splittings that will enable the 
creation of additional good states in subsequent out-splittings. 

Step I :  In-split state 4, using the partition of incoming 
edges IE4 = IE," U IE: determined by 

IE," = (3-4, BBCC 6-4,3 cccc -4, 6-4}. CCCC 

Denote the descendant states by 4a and 4b. 

IE& determined by 
Step 2: In-split state 4b, using the partition IE4b = IEibU 

The three states created by this sequence of in-splittings are 
denoted 4A, 4B, 4C. 

The next five steps are rounds of independent out-splittings 
that satisfy the consistency conditions described in Section III- 
A. The specific splittings are given in detail below. As in [l], 
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we will use superscripts when we wish to identify descendant 
states. Edges will be denoted by their destination state t and 
their label w in the form t/w. 

Step 3: In this round, we out-split states 4A, 6, and 7. We 
also combine the weight-3 descendant of state 6 with state 3 to 
simplify the construction. (We remark that an equivalent out- 
splitting of state 6 and merging of one weight-3 descendant 
with state 3 could have been carried out directly on the graph 
H in Fig. 11, but we prefer to present the construction using 
H4 as the starting graph.) 

a) Out-split state 4A1> into states 4A1 and 4A21 3, accord- 
ing to the partition 

Note that state 4A2>3 is a good state. 
b) Out-split state 6 into 6l and 6214. 

2 4c 5 6 
ABBC’ ABCC’ ABCA’ ABBB’ ACAB 

1 2 2 2 3 
CACC’ BBBC’ BCCC’ CCAC’ CACA’ 

E;={-  ~ - ~ ___ 

4c 4c 4c 4c 4c 
BBCC’ BBCC’ CCCC’ CABC’ BCAC’ 

5 5 5 5 6 
CCCA’ CABB’ BBCA’ BCAB’ BBBB‘ 

6 6 7 
CCAB’ BBAB’ m}‘ 

~-~~~ 

~~~~~ 

~~ 

State 62>4 can be merged with state 3. We will 
henceforth denote 6 l  by 6, and this is, in fact, a good 
state. 

c) Out-split state 7 into 7l and 7’ according to the partition 

1 2 2 3 3 
BBCC’BCAC’BCAC’BBCA’BCAB’ 

E:=(-- ___ ~ ___ - 

~ ~ _ _ _  4C 4C 
BABC’ BBBC’ BCAB 

4C 5 5 5 7 E:=(- ~ ~ ~ ~ 

BCCC’ BABB’ BBBB’ BCCA’ BABA’ 

Note that states 7’ and 72 are both good states. 

Step 4: Out-split state 3’ s 3  into states 3l and 3213, accord- 
ing to the partition 

2 3 3 4 ~ 2 , 3  4 ~ % 3  

CCAC’ BBA,B ’ CCAB ’ BBCC ’ CCCC’ 
E:={- ___ ~ ~ 

6 6 7 
~ -- 
BBBB’ CCA€I’ m} 

1 2 2 3 3 
CACC’ BBBC:’ BCCC’ BBBB’ CACA’ 
4A1 4A1 4c 4c 5 - - - - - -  

BBCC’ CCCC’ BCAC’ CABC’ BBCA’ 
5 5 5 6 

~ -- ___ 
BCAB’ CABEI’ CCCA’ m}’ 

Note that state 3l is a good state. 
Step 5: In this round, WE: out-split states 4B and 5. 
1) Out-split state 4B1>:’ into states 4B1 and 4B2>3, ac- 

cording to the partition 

1 31 3l 32,3 4B 
CACC’ ABAB’ CACA’ CACA’ CABC’ 

= { ~ ____ ___ ~ - 

4B 5 5 7 1  
~ - ~ 

CABC’ CABB’ CCCA’ CABA]  

32,3  3l 3 2 > 3  4C 4c 
~ - ___ - 
ABBB’ CCAB’ CCAB’ ABCC’ ACAC’ 

CCCC’ ABCA’ ACAB’ ABAB’ ABBB’ 
4c 5 5 6 6 ___ ___ ___ - 

> . 
Note that state 4B1 is a good state. 
Out-split state 51>3 into states 5l and 5 2 ) 3 ,  according to 
the partition 

31 31 31 31 5 E:=(-- ~ ~ ___ 
BBCA’ BC’AB’ CABB’ CCCA’ BABB’ 

BCCA’ BCAB’ CABB’ BABA’ m] 
5 6 6 7 7 

~ ~ ~ 

1 1 2 2 32’ 3 
~ ~ ___ 

BBCC ’ CCCC ’ BCAC ’ CABC ’ BBCA ’ 
___ ___ ~ ___ 
BCAB’ CAB’B’ CCCA’ BABC’ BBBC’ 

4C 4C! 5 5 1  ___ ___ ~ 

BCCC’ CACC’ BBBB’ CACA 1. 
Note that state 5l is a good state. 
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Step 6: In this round, we out-split state 4C1l3 into states 
4C1 and 4C2a3, according to the partition 

31 3l 3l 31 3 2 , 3  

ABAB’ ABBB’ CACA’ CCAB’ ABAB’ 
~ ~ ~ ~ 

4B1 . 51 51 51 51 ~ ~ _ _ _ _ _ _ _ _ _ _ _ _  
CABC’ ABCA’ ACAB ’ CABB ’ CCCA’ 

ABAB’ ABBB’ CCAB’ CABA 
2 2 2 

{ClCC’  CCAC’ ABBC’ ACCC’ CACA’ 
3 2 , 3  32,s  4 ~ 2 , 3  4~ 4C 

~~~~ 

3 2 , 3  

6 6 6 

E42;?3 I ~ ~ ___ ~ ~ 

_ _ _ _ _ _ _ _ _ _ _ _ ~  
CCAB’ ABBB’ CABC’ ABCC’ CCCC’ 
4c 5 2 , 3  5 2 , 3  52 ,3  5 2 , 3  

ACAC’ CABB’ CCCA’ ABCA’ m)‘ ~~~~ 

Note that state 4C1 is a good state. 
Step 7: In this round, we out-split states 2, 3 2 , 3 ,  4A2>3, 

a) Out-split state 2 into states 2l and 2’, according to the 
4B2l3, 4C2>3, and 52>3.  

partition 

2 31 31 4c1 4c1 
CCCC’ ABCA’ ACAB’ ABBC’ ACCC’ 
4 0  4c2>3 51 51 52 , s  

CCAC’ CCAC’ ACCA’ CCAB’ CCAB’ 

ACAB’ ABBA 

E;={-- ___ ___ ~ ~ 

_ _ _ _ _ _ _ _ _ ~ ~  

6 

1 2 3 2 , 3  32 ,3  4c2,3 

ABCC ’ ACAC ’ ABCA ’ ACAB ’ ABBC’ 
E;={-- ~ ~ ~ ~ 

b) Out-split state 32>3 into states 32 and 33, according to 
the partition 

1 2 2 31 31 
CACC’ BBBC’ BCCC’ BBBB’ CACA’ 

E:=(-- ~ ~ ___ ~ 

.4A1 4A1 4C1‘ 4C1 51 
BBCC’ CCCC’ BCAC’ CABC’ BBCA’ 

BCAB’ CABB’ CCCA’ 

~~~.~ 

51 51 51 6 
~~~ 

c) Out-split state 4A2> into states 4A2 and 4A3, according 

to the partition 

31 31 31 3 2 , 3  
~ ~ ~ ~ ~ { C:AC’ ABAB’ ABBB ’ CCAB ’ CCAB ’ 
4c1 4c1 51 51 6 

~~~~~ 

ABCC‘’ AC‘AC’ ABCA’ ACAB’ ABAB’ 

ABBB’ CCAB’ CABA ‘ 

~~~ 7 1  6 6 

d) Out-split state 4B2l3 into states 4B2 and 4B3, according 
to the partition 

e) Out-split state 4C2> into states 4C2 and 4C3, according 
to the partition 

2 3 2 > 3  4c1 4c1 E:,= ~ ~ ~ ~ ~ ( A i B C ’  ACCC’ ABBB’ ACAC’ CCCC’ 

f) Out-split state 5213 into states 52 and 53, according to 
the partition 
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TABLE I1 
SUMMARY OF 20-STATE ENCODER CONSTRUCTION 

__ 
1 
- 

2 
- 

3 

4A1 
4A2v3 

6l 
62,4 

71 
72 

- 
5 
- 

6 

4C' 
4c233 

- 

- 
7 

21 
22 

32 
33 

4A2 
4A3 

4B2 
4 B3 

4c2  
4c3  

52 
53 

- 

Merge 

4 112 

4B2 

- 
Final 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 

19 
20 

- 

__ 

1935 

Step 8: The states 4A2 and 4B2 have the same outgoing 
picture, and we therefore merge them. 

This concludes the construction of the encoder graph. Table 
I1 summarizes the construction, and indicates the correspon- 
dence between the states in the graph and the states numbered 
1-20 in the encoder graph. 

C. Consistent Input Tag Assignment 

We now describe in detail the input tag assignment that 
produces a sliding-block-decodable encoder. The good states 
in the encoder graph are states 4, 9, 10, 12, 15, 18, 19, 
20 of Table 11, corresponding to states 3', 4A3, 4B1, 4C1, 
5l ,  6, 7l, 7'. The remaining states are bad, and some of the 
edges outgoing from each such state will have to be labeled 
consistently with edges outgoing from some other state. 

In fact, one can verify that the round of out-splitting 
performed in Step ( i ) ,  where 3 5 i 5 7, is a (3, i - 3)- 
label-consistent out-splitting. For 2 5 i 5 7, denote by G(') 
the graph that results after performing Steps 1) through i). 
Set IT(') = H(G('));3, i - 2) for 2 5 i 6 7. The value 
m = 3 is chosen because looking back any further does not 
eliminate any more pairs (s, s') (states) from G(') * G(') than 
those that are already eliminated in passing to the subgraph 
H(G(2) ;  3, 0) of G(2) * G(2), It follows that If(') can be 
computed along with G(') as in Lemma 3.1 while performing 
Steps 3)-7). The consistency problem involves exactly those 
sets of edges of G(7) related by the connectedness equivalence 
relation (defined in Section 11) generated by the pairs (e, e') 
of (3,5)-adjacent edges of G(7) that occur as edges of If 

we manage to find an input tagging that colors all the edges in 
the equivalence class [e] tha: same (for each equivalence class) 
then the resulting encoder will be at worst (3,5)-sliding-block- 
decodable. 

On the other hand, to co~nstruct our 20-state, rate 4:8, (3,5)- 
sliding-block-decodable (11,3; 3) encoder, we performed five 
rounds of out-splitting (in Steps 3)-7)). In each of the last 
four of these five rounds, ad. least one state was split according 
to a partition of its outgoing edges into two sets, E and E', 
where the set E contains an edge e leading to one of two 
descendants s of a state i that was out-split in the previous 
round, and the set E' cointains an edge e' having the same 
label as e but leading to a distinct descendant s' of the state 
t. It follows from this that in the resulting graph there are 
two paths eoele2ege4 and e ~ e ~ e ~ e ~ e ~  emanating from the 
same state, with distinct first edges eo # e;, but that generate 
the same label sequence L(eoele2e3e4) = L(ebeieheiei). It 
follows from this observation alone that (for any input tag 
assignment I) any encoder based on the resulting graph is at 
best (m, 5)-sliding-block-decodable for some m 2 0. (One 
must sometimes look ahead at least five symbols to decide 
whether to decode to Z(e3) or to T.(eb).) Thus anticipation 
a = 5 is also the best that can be hoped for given that five 
rounds of out-splitting wen: performed to produce the encoder 

The consistency problem involves the following subsets of 
states: (1, 2, 7, 11, 13}, { 3, 8, 14}, (5, 16}, and (6, 17). 

Tables 111-V confirm that a consistent input tag assignment 
can be made for the encocllsr graph generated by the sequence 
of out-splittings and mergers. For each of the subsets of bad 

Wl. 
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5 

TABLE I11 
CONSISTENT SPLITTING CHECK FOR BAD STATES { 1, 2,  7 ,  11 ,  13) 

16 6 17 1 
1 f CCCC 
2ICABC 

2 7 11 13 
2f CCCC 131 CGCC 13 f CCCC 13/ GCGC 

13ICABC 11ICABG 
3fCABC 
5fCABB 
5fCCCA 
6fCABB 
6fCCCA 
13ICACC 

TABLE IV 
CONSISTENT SPLITTING CHECK FOR BAD STATES ( 3 ,  8, 14) 

I .? I 8 I 14 I 

14)CABC 8iCABC 
16ICABB 16ICABB 
16 f CCCA 16 f CCCA 
17fCABB 17ICABB 
17ICCCA 17ICCCA 
1ICACC 1 ICACC 

I I I 
~~ 

I 

1 fABCG I 13 f ABCC I 131 ABGC 
2lACAC I 13IACAG I 13IACAC 

3 f cccc 
13fCCAC 
14fCCAC 
16ICGAB 

14 f CGCC 14 f cccc 14 f cccc 
2fCCAC 2fCCAC 
3ICCAC 3ICCAC 
5ICCAC 5ICCAB 

states, the bad edges that must be assigned the same tag are 
aligned in rows. As can be seen, no edge is forced by the 
consistency requirement to appear in more than one row of 
the table, ensuring that consistent tagging can be achieved. 
Applying the testing algorithm described in Section I-C with 
0 5 m 5 3, one can confirm that the smallest m for which the 
tagged encoder is (m, 5)-sliding-block-decodable is m = 3. 
Therefore, the required decoder window size is m + a + 1 = 
9 codewords, or 72 code symbols. 

The final input tag assignment is reflected in the definition 
of the tagged encoder E in Tables VI-IX. The rows in Tables 
VI-IX correspond to the encoder states, and the columns 
represent the 16 possible 4-bit inputs. The entries in the table 
represent the next state t and output codeword c in the usual 
fashion t / c .  

State / Data 0000 0001 
1 1 / CCCC 2 /  CABC 
2 2ICCCC 4IABCA 

IV. A IOq-STATE, RATE 418, 
(0, 2)-SLIDING-BLOCK-DECODABLE (1 ,3;  3) ENCODER 

In this section, we construct another rate 4 : 8 encoder 
into the (d ,  k ;  e)  = (1, 3; 3) system. The code has a memory 
m = 0 and an anticipation a = 2 codewords (of length 8 each). 
Thus the window has total length (1+2).8 = 24 code symbols. 
The code is constructed from a component of the eighth power 

0010 0011 
3/ CABC 5 f CABB 
4IACAB 12IABBC 

3)ACAC ' 14)ACAC 1kfACAC 
5 fABCA 16IABCA 16fABGA 
5fACAB 16fACAB 16fACAB 
6IABCA 17fABCA 17fABCA 
6fACAB 17fAGAB 17fACAB 
13IABBC 2fABBC 2fABBC . 
13IACCG 2IAGCC 2IACCC 

3 
4 
5 
6 
7 

1)ABCC ' 2)ACAC 3)ACAG 5jABGA 
2/CCAC 3ICCAC 4IBBAB 4ICCAB 
5fBBBB 5ICACA 6IBBBB 6fCACA 
1fCACC 2fBBBC 2fBCCC 3IBBBC 
13ICCCC 13ICABC 14ICABC 16ICABB 

8 
9 
10 
11 

of out-splitting. (The minimal co-deterministic presentation is 
the fourth power of the transpose of the companion component 
of H in the second power of the (1, 3; 3) Shannon cover. It is 
represented in tabular form in Table X.) This small window is 
achieved at the price of having many more encoder states than 
our previous code has: this encoder has 13 . 8 = 104 states. 

The construction can be cast as an instance of a general 
procedure that starts with a (not necessarily deterministic) 
presentation G(') of a constrained system and with a target 
out-degree n for an encoder into the constrained system. The 
general procedure is not guaranteed to produce an encoder, but 
it does so in the case of the (d,  k ;  e)  = (1, 3; 3) constraint. 
Also, it is easier to describe even our particular (d ,  k ;  e )  = 
(1, 3; 3) code construction in this more general context. 

13)ABCC 13)ACAC ' 1i/ACAC ' 16fABCA 
2fCCAC 3fCCAC 4fABAB 4fABBB 
1fCACC 4/ABAB 4fCACA 5/CACA 
13ICCCC 4IABBB 4IGCAB L2IABCC 

A. A Matrix Generalization of the State-Splitting Algorithm 

We start with a labeled graph G(O) presenting a constrained 
of the minimal co-deterministic presentation using two rounds system. We assume that G ( O )  has no-parallel edges with the 
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State Data 1100 1101 1110 
1 41 CCCA l:!/ CACC 151 CACA 
2 13ICCAC Ii4ICCAC 16ICCAB 
3 16IACCA lr7fABBB 17JACCA 
4 18IBBBB :[8/CCAB 19ICABA 
5 17IBBCA lL7IBCAB 17ICABB 
6 15IBCAB IiBICABB 15ICCCA 

TABLE VI1 TABLE IX 
COMPLETE SPECIFICATION OF 20-STATE (1,3; 3) ENCODER (Cont.) COMPLETE SPECEXCATION OF 2o-sTATE ( 1 , s ;  3) ENCODER (Cont.) 

1111 
181 CABB 
7ICCAB 
15IABBB 
20ICABA 
17ICCCA 
18IBBAB 

13 ' 16ICCCA 
14 16JACAB 
15 15IBABB 
16 2IBCAC 

17ICABB 17ICCCA liCACC 
17IABGA 17IACAB 2IABBC 
15JBCCA 16IBABB 16IBCCA 
2ICABC 3IBCAC 3ICABC 

17 ' 14IBCCC 
18 5IABAB 
19 4IBCAB 
20 15/BBBB 

7 i l2'ICCCC i :iB/CABC i 15'ICABB i 15'ICCCA I 

1)BBCC 1;CCCC l2fBABC 
SIABBB 6IABAB 6JABBB 
5IBBCA SIBCAB GIBBCA 
15IBCCA 16IBABB 16IBBBB 

11 

3 13IACCC 14IABBC 14IACCC 16IABBB 
4 8IBBCC 8ICCCC SIBBCC SICCCC 

TABLE VI11 
COMPLETE SPECIFICATION OF 20-STATE (1 , s ;  3 )  ENCODER (cont.) 

5 
6 
7 

State 1 Data 1 1000 I 1001 I 1010 I 1011 
1 I 141 CACC I 161 GAGA I 171 CACA 14 I CABB 

16fBBCA 16IBCAB l6ICABB 16ICCCA 
4ICACA 12IBCAC 12ICABC 15IBBCA 
4ICACA 5ICACA GICACA 14/CCCC 

same label (if it does, delete all but one, and it still presents 
the same constrained system). We are also given a target out- 
degree n for an encoder into the constrained system. For this 
target n to be feasible, the capacity of the constrained system 
cannot fall below log(n). This implies in particular that the 
largest eigenvalue of the transition matrix T of G(O) cannot 
fall below log(n); if the presentation is not lossless, all the 
more so! 

We construct a new object H(O) as follows. We cannot resist 
the temptation to call this new object a polygraph, and we say 
G(O) underlies H(O). The polygraph has a single state 
SO corresponding to an ordered list of the states of G(O). For 
each distinct symbol that occurs as an edge label in G(O), there 
corresponds a self-loop edge e in from S O  to itself. At 
this point, H(O) seems far too simple to be of any use, and 

it is. Now here is where llie complexity of G(O) is reflected 
in H(O): The self-loop e in H(O) corresponding to edge label 
w is labeled not only by 70, but by an integer matrix A d W )  
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indexed by the states of G(O) and defined by 

M ( ~ )  - 1, if there is an edge i a j  in G(O) 
23 - { 0, otherwise. 

Notice that E, M(") is the ordinary transition matrix T 
of the graph G(O). We denote the matrix labeling edge e of 
H(O) by M(e). 

Now we assign an integer column vector w(s0) we call a 
weight to the single state SO.  In fact, we choose w(s0) to be 
any approximate right eigenvector T of the ordinary transition 
matrix T of G(O) corresponding to approximate eigenvalue n. 

Now 

= Tw(s0) 2 nu(s0)  

so at any state U of H(O) (there is only one!) the sum of the 
weights of its following edges (we define the weight w(e) of 
an edge e to be M ( e ) w ( ~ ( e ) ) ,  where .(e) is the terminal state 
of the edge e )  is at least n times the weight w(u) of U itself. 

A state-splitting is defined as usual, except that, for a poly- 
graph, descendant edges inherit the matrix M(e) of their an- 
cestral edges. A state s is split into several states SI, . . . , s,, 
each state corresponding to an atom P, of a partition of the 
outgoing edges from state s. 

We call a state-splitting of a polygraph H legal with respect 
to a particular weight assignment w to its states if, when 
state s is split into states S I ,  . . . , sm, using the partition 
{ P I ,  . . . , Pm}, we have corresponding weights w1, . . . , w, 
satisfying 

l < i < m  
eEP, 

It is easy to verify that if we perfom a legal round of 
state-splitting on a polygraph H ,  and we assign the weight w, 
to the state sz corresponding to atom P,, then the resulting 
polygraph H',  like H ,  satisfies: 

At any state U of H' the sum of the weights of its 
following edges is at least n times the weight of the 
state U itself. 

We call this the weight condition for future reference. 
We will perform two legal rounds of state-splitting on 

the single-state polygraph H(O) constructed starting with a 
component of the seven-state eighth power of the minimal 
co-deterministic presentation of the (d ,  k ;  c)  = (1, 3; 3 )  
constrained system. We will start out with weight assignment 
w(s0) = 8(2 ,  1, 2, 3,  1, 3,  l)T, 8 times the smallest right 
eigenvector corresponding to eigenvalue n = 16. 

We will end up with a polygraph H ( 2 )  whose states all 
have weights that are integer vectors with only 0 or 1 entries. 
Each state of the polygraph H(')  overlies a list of seven states 
of an underlying graph G('), some fictitious (those whose 
corresponding weight vector entry is 0), and some real (those 
whose corresponding weight vector entry is 1). Likewise, for 

each edge e of the polygraph H(') ,  and for each nonzero 
M(e),, there is an edge in G(2) from the ith state underlying 
the initial state a( e) of e to the j th state underlying the terminal 
state .(e) of e. It follows from the weight condition that each 
real state of G(') has at least 16 outgoing edges terminating 
at real states. 

The labeling of a polygraph H' obtained by state-splitting a 
polygraph H is inherited (as usual in state-splitting) from the 
labeling of H .  The label of any edge of the resulting graph 
G' underlying H' is defined to be the label of the edge of H' 
that it underlies. 

Suppose H(")  is obtained from the single-state polygraph 
H(O) by a rounds of legal state-splitting, and that the states of 
H(")  all have 0-1 weights. Let G(") be the graph underlying 
the polygraph H(") .  The problem of finding a consistent input 
tag assignment for G(") will be reduced to solving a certain 
integer programming problem with 0-1 constraints. In general, 
there is no guarantee that it has a solution, but in the particular 
instance that arises in the construction of our encoder, there 
is an easy-to-find solution. 

Now we formulate this integer programming problem. First, 
the setup. We fix an integer n, and a labeled graph G(O) having 
k states. Suppose that is a polygraph constructed from 
G(O) as above, having a single state SO, with a weight w(s0) 
so that satisfies the weight condition for n. Suppose that 
a polygraph H(")  is obtained from H(O) by a rounds of legal 
out-splitting, and that the states of H(")  all have 0-1 weight 
vectors. For each state t of H(") ,  fix an ordering of its outgoing 
edges in H(") ,  say as e l ,  . . . , e d t .  Form the k-by-dt matrix 
W ( t )  by setting its ith column to be w(e,). 

Theorem 4.1: Suppose that for each state t of H(")  there is 
a dt-by-n matrix R(t) such that: 

1) each row of R(t) is an elementary row vector; 

We define an input tag assignment Z of G(") as follows. 
Suppose that f is an edge of G(") from state s to state s'. 
Let e, be the edge in H(")  that f underlies, and let t be 
its initial state in H(") .  Define Z(f) = j if and only if 
R(t)z3 = 1. Then a subgraph of G("), equipped with the input 
tag assignment 2, is an encoder. Moreover, this encoder is 
(0, a)-sliding-block-decodable. 

Pro@ First we show that a subgraph of G(") is an 
encoder. We must show that for each input symbol 0 5 3 5 
n- 1, and for each real state s of G("), there is an edge f with 
initial state s, with input tag Z(f) = j ,  and with a real terminal 
state s'. Let t be the state of H(")  that s underlies. Consider 
the row of the matrix inequality W(t)R(t)  2 w(t)[1 1 
corresponding to state s (call it the sth row). Since s is a 
real state underlying t, w(t), = 1, so the right-hand side 
is the length-n all-1's row vector [11 . . . 11. So for each j ,  
0 5 j 5 n - 1, there is at least one index i, 1 5 i 5 dt ,  such 
that W(t),, 2 1 and R(t),3 = 1. Now consider the edge e, 
following state t in H(") .  Recall w(e,) = M(e,)w(t'), where 
t' is the terminal state of e, in IT("). But w(e,), = W(t),, 2 1, 
so there is a real state s' underlying state t', for which the 
column of M(e,) corresponding to s' has a 1 in the row 
corresponding to s. Thus there is an edge f in G(") underlying 

2) W(t)R(t)  2 w(t) [11 . .  .1]. 
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the edge e, with initial state s and with terminal state s'. Since 
R(t)zl = 1, we have Z(f) = j .  

It remains to show that the resulting encoder is sliding- 
block-decodable with memory 0 and anticipation a. Because 
H(")  was obtained from H(O) by a rounds of out-splitting, 
for any sequence wowl . . . w, of a + 1 labels, all paths in 
H(")  labeled by this sequence begin with the same edge, say 
e. Thus all paths in G(") labeled by this sequence begin with 
an edge that underlies e. But the input tag of an edge of G(") 
only depends on the edge of H ( a )  that it underlies. Thus all 
of paths in G(") generating the label sequence wow1 . . . w, 
have initial edges sharing the same input tag. This proves that 
the encoder is sliding-block-decodable with memory 0 and 
anticipation a. 0 

B. Application to the (1,3; 3) Constraint 

We start with one of the two components G(') of the 
eighth power of the minimal co-deterministic presentation of 
the (d ,  IC; c)  = (1, 3; 3) constrained system. The graph G(O) 
has seven states. We construct the polygraph H(O) as in the 
previous subsection. We assign state S O  of H(O) the weight 
w(s0) = 8 .  (2, 1, 2, 3, 1, 3, l)T, 8 times the smallest right 
eigenvector of the transition matrix of G(O) corresponding to 
eigenvalue n = 16. We perform the two rounds of out-splitting 
on as described below. 

1) The First Round of Splitting: There are 32 self-loop 
edges at state SO of the polygraph H('),  one for each of 
the 32 allowed words of length 8. These edges are listed with 
their labels, corresponding matrices, and weights in Table X. 

Each label is a length 4 word over the symbols A = 00, 
B = 10, and C = 01. The 7 x 7 matrix A d w )  corresponding to 
word w is abbreviated as a list of transition specifications, one 
specification for each nonzero row of Ad"). If row i of M(") 
has 1's in columns j , , . . . , j,, then the transition specification 
corresponding to row i has the form (i + j , , . . . , j m ) .  
Incidentally, Table X also completely specifies the transitions 
of G(O). All the transitions having a given label are listed in 
the same row of Table X. The weight M(e)w(-r(e))  of each 
edge is listed in the last column. 

The rows of Table X corresponding to edges of H(') are 
partitioned into 14 sets. The set Pa of edges of H(') used to 
define the state sa of H ( l )  in the first round of splitting has 
rows listed under the header sa. The weight of w(s,) of state 
sa in appears in the last column of its header row. One 
can easily verify that 

w(e) = 16w(si), 
eeP,  

and that 
14 

a = 1  

so the first round of splitting is legal. 
2 )  The Second Round of Splitting: The graph H(' )  has 14 

states, SI, .. . , ~ 1 4 ,  created in the first round of splitting 
(specified in Table X). To completely specify the second round 
of splitting, we need to specify 14 different partitions, one 
partition for each of the 14 states of graph Thus we 

TABLE XI 
THE SPLITTING OF ss IN THE SECOND ROUND 

BABB 

BBBB 

-- 

I d  
BABB 
BABB 
BABB 
BABB 
BBBB 
BBBB 
BBBB 

nilar in size and form to 'Il e need 14 tL.,.-+ each being I 

X. In fact, if the set of edges in Table X corresponding to state 
sa has m; elements, then lhe number of outgoing edges from 
state sa in El ( ' )  is 14mz, because each edge in H(') has 14 
descendants in Id1). For ,unstance, the table corresponding to 
state s1 has 5 . 14 = 70 rows corresponding to edges. 

For the sake of brevity, we only present the tables for four 
states s3, s7, s g ,  and s13 in If('). The other states have quite 
similar tables, and these can readily be discovered by the 
reader, given the example of these four. We choose to present 
tables for these four states because it will turn out that their 
descendants in IT(') will iccount for all of the terminal states 
of outgoing edges emanating from a particular descendant s3 3 

in H(') of state s3 in H ( ' ) .  In the next subsection, we plan 
to use state s3 3 of H ( 2 )  to illustrate the input tag assignment 
problem, because it provides the most interesting illustration. 

Tables XI-XIV specify the splittings in the second round of 
states s3, s7, sg ,  and ~ 1 3  in 

In Tables XI-XIV, the second column lists the terminal state 
.(e) in H ( l )  of the edge e corresponding to the row. Using 
this terminal state, and tlhe label listed in the first column, 
one can readily verify the edge weight w(e) listed in the last 
column by using Table X to look up M ( e )  and w(T(e)), and 
then calculate w(e) = M(c?)w(r(e)). For instance, the second 
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= 

edge in the set of edges corresponding to state ~ 3 . 2  has weight 

M ( B A B B ) ~ ( ~ 2 )  = [(l + 2,3,4) ,  (4 + 1)](4,0,0,2,0,0,0)'  
= (2 ,0,0,4,0,0,  O)T 

-111111011111100111100000000000000000000 
000000000000000000000000000000000000000 
000000000000000000000000000000000000000 
000000000000000011110111111011111100000 
000000000000000000000000000000000000000 
000000000000000000000000000000000000000 

~000000000000000001010111111001111110110 

C. The Input Tagging 

Now we establish the hypothesis of Theorem 4.1 for the 
graph H(")  = For each of the 104 states t of H ( z ) ,  we 
must find a matrix R(t) as in the theorem. First we will argue 
the case of the state 53.3 as a special case, and then make a 
general argument that covers all other states of If('). What 
makes state s 3  3 special is that its weight has three nonzero 
entries; all other states of H ( 2 )  have weights with at most two 
nonzero entries. 

Table XV lists the outgoing edges from state s 3  3 in 
Using the edge label w listed in the first column and the 

terminal state .(e) listed in the second column one can verify 
the edge weight w(e) listed in the third column by looking 
up the label matrix Ad") in Table X, and the state weight 
w(.(e)) in the appropriate Table XI-XIV, and then calculating 
w(e) = Mcw)w(r(e)).  

The last column lists a proposed input tagging Z of these 
edges by the 16 input symbols 0, 1, - . . ,  9, a ,  b, e ,  d, e, f .  
This input tagging defines the matrix R ( s 3  3 )  as follows. Order 
the outgoing edges from state s 3  3 as they are ordered in Table 
XV (so el corresponds to the first row, and so on, up to ezg, 
which corresponds to the last row). Then the matrix W ( s 3  3 )  

:V 

1, if row i of Table XV has input symbol j 
R ( S 3 3 ) a j  = { 0,  otherwise 

1111111111111111 
0000000000000000 
0000000000000000 
1111111111111111 
0000000000000000 
0000000000000000 
1111111111111111 

= W ( S 3 , 3 ) [ 1  1 . ' .  11, 

which verifies the hypothesis of Theorem 4.1 for the state 53.3. 

It remains to verify the hypothesis of Theorem 4.1 for the 
other 103 states of We can recast the hypothesis in terms 
of the Set n-Coloring problem (see Section II). The set U 
corresponds to the set of edges e l ,  . . . , e d t  emanating from 

TABLE XII 
THE s P L " 3  OF S7 W THE SECOND ROUND 

CCCA 
CCAB 
CCCA 

cccc 813 

CCAB 

CCAB 
s7 

CCAB 
CCCA 
CCAB 

Em? 
cccc 
CCCC 
cccc 
cccc 
CCAB 
CCAB 
CCAB 
CCCA 
CCCA 
CCCA 
CCCA 
CCCA 
CCCA 

the state t of H(") ,  and hence corresponds to the set of columns 
of W(t) .  The subsets SI, SZ, . . . , S, correspond to the real 
states SI, s2, . . , s ,  of G(") that underlie state t ,  and hence 
they correspond to the nonzero rows of W(t ) .  Specifically we 
have i E SI, if and only if W ( ~ ) I , ,  > 0. To find a matrix R(t) 
as in the theorem is to find a set coloring 

Z: {columns of W ( t ) }  + (0, 1, . . . , n - I}. 

If there is only one set 5'1 in the collection of sets to be 
colored (corresponding to a state of H(")  whose weight has 
only one nonzero entry), then a coloring exists if and only 
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TABLE XI11 
THE SPLITTING OF Sg IN THE SECOND ROUND 

BBCA 

BBAB 
BBCA 
BBCA 

BBAB 
BBCC 
BBCC 1 i:4 
BBAB 

BBAB 
BBAB 

BBCC 
BBAB 

s9. 
BBCC 
BBCC 
BBCC 
BBCC 
BBCC 
BBAB 
BBAB 
BBAB 
BBCA 
BBCA 
BBCA 
BBCA 
BBCA 
BBCA 

if SI has at least n elements. But this is true by the weight 
condition satisfied by If("). 

If there are two sets SI and S2 to be colored (corresponding 
to a state of If(") whose weight has two nonzero entries), 
then, again, there is a coloring if and only if SI and Sz each 
have at least n elements. (First color their intersection, and 
use the remaining colors to color elements in their symmetric 
difference in any fashion.) Again, the fact that SI and Sz are 
big enough follows from the weight condition on If("). 

It remains to show that all states of H(') except state s3.3 

have weights with at most two nonzero entries. Referring to 

TABLE XIV 
THE SPLITTING OF 513  TN THE SECOND ROUND 

label I T ( ! )  I w(e) 

ABBC l0,0.0.0.0,2,01 - - . . . . . . . 

ABBC I se I l O , O . O . O , 0 , 4 , O j  
ABBC I I (o;o;o,o,o,e,oj 

s1s.s -- 
ABBC I si IO,O,O,O,O,O,O 
ABBC s2 (o,o,o,o,o,o,oj 
ABBC SJ (O,O, 0, O,O, 0,O) 1 (0.0.0,0,0,0,0) ABBC 1 S. 
ABBC sg (O,O,O,O,O,O,O) 
ABBC sg- (O,O,O,O,O,O,O) 

'IABLE XV 
THE OUTGOING EDGES FROM STATE 53.3 IN ff(') 

label 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BABB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 
BBBB 

.o: 
87.1 
67.2 
67.5 

s7.4 
S7.6 

s7.6 

87.7 

S9.l 
s9.2 
s9 .s 
s9.4 
59.5 
s9.6 
s9.7 
S9.8 

s3.1 
ss .2 
$0 .s 
ss.4 
SS.6 

SS .6 
87.1 
87.2 
s7.3 
57.4 
57.6 

S7.6 
s7.7 

S9.l 
89.2 

J9 .s 
s9.4 
S9.6 
s9.6 
59.7 
s9.0 
sl3.1 
615.2 
813.3 -, 

Z(e) 
0 
1 
2 
3 
4 
5 
0 
6 
7 
8 
9 
a 
b 
0 
0 

d 

f 
0 
0 
1 
2 
3 
4 
5 
6 
0 
7 
8 
9 
a 
b 

d 
0 
f 
7 
0 

C 

C 

C 

Table X, we see that all the states except state s3 of H ( l )  have 
weights with at most two nonzero entries. Since the weight of 
a descendant state is at most the weight of its ancestor, all 
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the descendants of these states other than state s3 have at 
most two nonzero entries. Now referring to Table XI we see 
that the only descendant of state s3 that has more than two 
nonzero entries is state s3 3 .  

This completes the argument establishing the hypothesis of 
Theorem 4.1 for all states of H(’). 

V. NP-COMPLETE PROBLEMS w CONSTRAINED CODE DESIGN 

In this section, motivated in part by the (1,3; 3)-code 
constructions in the preceding two sections, we examine 
the complexity of certain general problems that arise in the 
construction of constrained codes. In particular, we will show 
that for a finite-state encoder graph, the general problem of 
finding a consistent input tag assignment that will ensure 
sliding-block decodability-the Encoder Input Tag Assign- 
ment-is NP-complete. We also show that the input tagging 
problem that arose in connection with the application of the 
matrix generalization of state-splitting is NP-complete. The 
connections of these problems to Graph n-Coloring and Set 
n-Coloring, respectively, are key to these proofs. 

A thorough and illuminating introduction to the theory of 
NP-completeness may be found in [6]. For our purposes, the 
following streamlined and heuristic discussion will suffice. 

The theory of NP-completeness has to do with the complex- 
ity of algorithms for solving decision problems. A decision 
problem is a general question applicable to each member of 
a class of objects. The objects are characterized by a set of 
parameters. For example, each object might be a finite set of 
points, {p,li = I, . . . , N } ,  together with the set of mutual 
distances d(p, ,  p 3 ) ,  and a constant D. The question might be: 
Is there an ordering of the points, defined by a permutation 7r 

on the integers (1, 2, (yz d ( P T ( % ) ,  P T ( % + l ) )  + 4 P T ( A r ) ,  P T ( l ) )  5 D.  ) 
That is, the problem is to determine if there is a “tour” of the 
points, starting and ending at the point ~ ~ ( ~ 1 ,  and visiting each 
of the other points exactly once, such that the length of the 
tour does not exceed D. 

An instance of the decision problem arises from the spec- 
ification of particular values for the parameters used to char- 
acterize the objects. In the example, an instance would be a 
particular set of points, their mutual distances, and the constant 
D. One can make precise the notion of the size of an instance 
in terms of the length needed to specify the input parameters 
in some encoding scheme. For example, the mutual distances 
d(p, ,  p 3 ) ,  z < j and D above might be given in binary 
representation and the length would be the minimum number 
of bits required to do so. 

The complexity of an algorithm for solving the decision 
problem can be measured in terms of the number of operations, 
or the execution time, required to execute the algorithm, using 
some model of computing, such as a Turing machine model. 
An algorithm is considered to be efficient if the complexity is 
a polynomial function of the size of an instance. A problem is 
said to be in the class P if there exists such a solution algorithm 

of polynomial-time complexity. A problem is deemed to be 
intractable if there is provably no efficient algorithm for deter- 
mining a solution. Among the known intractable problems are 
those which are undecidable-for which there is no algorithm, 
efficient or otherwise, to determine a solution-as well as 
those which are decidable by some algorithm. The latter also 
have the property that, roughly speaking, there is provably no 
efficient algorithm for simply verifying whether a proposed 
solution answers the decision problem. 

There are many decision problems, however, for which no 
efficient solution algorithm is known, but for which there 
exists an efficient verification algorithm. A problem of this 
kind is said to be in class NP, indicating that it can be 
solved in polynomial time by a nondeterministic algorithm 
(an algorithm that, roughly speaking, evaluates all possible 
solutions simultaneously). It is evident that the class P is a 
subset of the class NP. The fundamental unsolved problem of 
complexity theory is whether the class P is a proper subset 
of the class NP. 

Within the class NP, certain problems, known as NP- 
complete problems, have been shown to have the following 
property: the existence of a polynomial-time algorithm for 
solving any NP-complete problem would imply that P = NP. 
On the other hand, if any NP-complete problem is intractable, 
then every NP-complete problem is intractable. In some sense, 
then, the NP-complete problems may be viewed as the most 
difficult problems in the class NP. 

Given a decision problem that belongs to NP, it is useful 
to know if it is, in fact, NP-complete. One can determine 
this by demonstrating a polynomial-time reduction of any 
instance of a particular NP-complete problem to an instance 
of the problem in question. In the remainder of this section, 
we demonstrate that certain problems related to input tag 
assignments and sliding-block decodability are NP-complete. 

A. NP Completeness of Encoder Input Tag Assignment 

Let E be an (S ,  n)-encoder graph. In this section, we exam- 
ine the complexity of determining the existenck of an input tag 
assignment such that the resulting encoder is (nz, a)-sliding- 
block-decodable. In particular, we will prove the following 
result. 

Theorem 5.1: Let € be an (S, n)  encoder. Given nonneg- 
ative integers m and a, the problem of deciding whether 
there exists an w a r y  input tag assignment such that the 
tagged encoder is (m, a)-sliding-block-decodable is solvable 
in polynomial time for n = 2, but is NP-complete for n 3 3.  

The key step in the proof of the theorem is the transforma- 
tion of the graph n-coloring problem to an instance of the 
(m, a)-sliding-block decodability problem. We then invoke 
the following known facts about the n-coloring problem. 

For the case n = 2, there is a polynomial-time solution 
to the problem which actually produces a 2-coloring if one 
exists. The following algorithm should be applied to each 
irreducible component of the given graph H .  We denote the 
two colors as (0, 1). Each step of the algorithm will make 
use of a designated state that we will call a hub state. 
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Choose an initial hub state w arbitrarily and assign a 
color P(w). 
For all states U such that U ,  U determines an edge - in H ,  
assign the complementary color, i.e., P(u)  = P(w). 
If the assigned color at any state conflicts with a previous 
assignment for the state, STOP. The graph is not 2- 
colorable. 
Else choose a new hub state w from among the already 
colored states, excluding those which were a previously 
designated hub state. If no such state exists, STOP. The 
assignment P is a 2-coloring. 
Else, go to step 2). 

For n 2 3, the graph n-colorability problem is known to 
be NP-complete [6] .  

First, we reduce the general sliding-block decodability prob- 
lem to the problem of block decodability. 

Lemma 5.2: The (m, a)-sliding-block decodability prob- 
lem is polynomially equivalent to the (0, 0)-sliding-block- 
decodability problem, i.e., the block-decodability problem. 

Proofi Let G be a labeled graph with edge label func- 
tion L for which we wish to find an (m, a)-sliding-block- 
decodable input tag assignment. We first assign to each (m, a)- 
connectedness equivalence class a unique symbol, Z[e]. Note 
that the (m, a)-adjacency of pairs of edges can be determined 
by looking at the edges in the graph H ( G ;  m, a) ,  defined 
in Section 111-A, whose construction requires only polyno- 
mial time. Now (m,a)-connectedness can be computed in 
polynomial time as the equivalence relation induced by the 
(m,a)-adjacency relation.We now define a new edge label 
function L’ by setting L’(e) = Z[e] for all edges e. This 
labeling satisfies the property that two edges e ,  f in G share 
the same label L’(e) = L’( f )  if and only if [e] = [ f ] ;  that is, 
they are (m, @)-connected with respect to the original labeling 
L. It follows immediately that an input tag assignment for G is 
(m, a)-sliding-block-decodable with respect to L if and only 

0 
The block-decodability problem is easily seen to be in NP, 

Proposition 5.3: Let G be an undirected graph. There is an 

1) E is obtained from G by a polynomial-time modification. 
2) E has a block-decodable input tag assignment if and 

Proof: Let eo, . . . , e N - 1  denote the N = IEl edges in 
G. The encoder graph E has a distinct state w, corresponding 
to each edge e,. If, in G, e = e, has initial state s = a ( e )  
and terminal state t = 7 ( e ) ,  the state w, in E has two outgoing 
edges with terminal state ~ ( , + ~ ) ~ ~ d ( ~ )  and labels s and t ,  
respectively. Each state w, is then assigned an additional n - 2 
edges with terminal states chosen arbitrarily. The labels on 
these added edges are chosen to be distinct from one another 
as well as all previously assigned edge labels. The resulting 
graph E is an irreducible, (S, n)  encoder for the constrained 
system S(E). From the construction, it i s  clear that any block- 
decodable input tag assignment provides an n-coloring of G. 
Conversely, any n-coloring of G gives a partial assignment of 
input tags to the edges derived from the states of G. At each 

if it is block-decodable with respect to L’. 

so Theorem 5.1 will follow from the following proposition. 

( S ,  n) encoder graph E with the following properties: 

only if G is n-colorable. 

state of E,  an arbitrary assiignment of the unused input tags to 
the untagged outgoing edges yields a block-decodable input 

Remark: Since Subgraph Encoder Input Tag Assignment 
has Encoder Input Tag Assignment as a special case, the 
theorem implies that this more general problem is NP-hard. 

tag assignment. 0 

B. NP Completeness of Input Tagging in the 
Matrix Construction 

In Section IV-A, we inibroduced a matrix generalization of 
state-splitting that was then applied to the construction of a 
rate 4 : 8, (0,2)-sliding-block-decodable (1,3; 3) encoder. In 
general, the construction of a (0, a)-sliding-block-decodable 
encoder using this approach requires the specification of an 
n-ary input tag assignment for a graph G(”) underlying a 
polygraph H(“) obtained after a rounds of generalized state- 
splittings. In this section, we prove that this input tagging 
problem is, in general, NP-complete. We formally state the 
problem as follows. 

Polygraph n-ary Input Tag Assignment: Given a poly- 
graph and its associated weight matrices W ( t ) ,  one 
for each state t of I$(”), as specified in Theorem 4.1, do 
there exist matrices R(t) satisfying the hypotheses of 
Theorem 4.1? 
Theorem 5.4: Polygraph n-ary Input Tag Assignment is 

NP-complete for n _> 2. 
The proof proceeds in two steps. We first prove that Set n- 

Coloring, the problem corresponding to the verification of the 
hypothesis of Theorem 4.1, is NP-complete. We also show 
that even for fixed n, Set n-Coloring is NP-complete for 
n 2 2. We then use this fact to prove that the consistent 
input tag assignment problem for the graph produced by the 
matrix-based construction is NP-complete. 

Recall the statement of Set n-Coloring, reproduced here for 
convenience. 

Set n-Coloring: Given an integer n 2 1, and given a 
collection of subsets SI, Sa, . . . , S, of a finite set U ,  
is there a coloring 

m 

1: U S k - - ~ { 0 , 1 , . ” , n - 1 }  
k=l 

such that: for each 1 5 k 5 m, and for each color 
0 5 j 5 n - 1, the set s k  has at least one element of 
color j? 
We remark that, if we impose the additional constraint that 

each set S,, 1 5 k 5 m has cardinality equal to two, then Set 
2-Coloring is solvable by a polynomial algorithm. Specifically, 
we can define a graph G with vertex set given by the set U ,  
and edge set given by the (collection of subsets S,, 1 5 k 5 m. 
The set 2-coloring problem is simply the 2-coloring problem 
for the graph G, and we have described a polynomial solution 
to this problem in Section V-A. 

Theorem 5.5: Set n-Coloring is NP-complete. For fixed n, 
Set n-Coloring is NP-complete for n 2 2.  

Proofi It is not difficidt to show that a proposed coloring 
can be checked in polynomial time, so Set n-Coloring is 
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NP. We will show that Set n-Coloring is NP-complete by 
reducing the NP-complete problem Satisfiability (or SAT) [6] 
to it. Recall that a truth assignment to a set ($1, 
Boolean variables is afunction T : (21,  . . . , x,} + {0, 1). A 
clause is a disjunction (or) of Boolean variables and negations 
of Boolean variables, such as 21 V 5 3  V x8. (One can regard 
the logical operators as 5 = 1 - x and XI Vz2 = max (XI, 2 2 )  

if one likes.) A clause is satisjied by a truth assignment r if 
and only if it evaluates to 1 (true) when each variable x, is 
replaced by its assignment, ~ ( 2 , )  E (0, l}. Thus the clause 
2 1  V E3 V X8 i s  satisfied by T if and only if r(x1) = 1, or 
'(23) = 0, or ~ ( 2 8 )  = 1. 

Here is Satisfiability: 

Satisfiability (SAT): Given a set V of Boolean variables, 
and a collection C of clauses over V ,  is there a truth 
assignment r that satisfies all of the clauses in C? 

(We remark that SAT was the original NP-complete problem 

Now we reduce Satisfiability to Set 2-Coloring, showing 
that Set 2-Coloring is NP-complete. We remark that there is 
an easy reduction of Set n-Coloring to Set (n  + 1)-Coloring, 
so it will follow that Set n-Coloring is NP-complete for n 2 2. 

We are given an instance (V, C) of Satisfiablity. Implement 
this instance as an instance of Set 2-Coloring as follows. The 
universal set U contains the Boolean variables z1, ' . . , x,, 
their complements ?Ell . . . , E,, and two additional elements 
denoted t and f .  We define a subset SO = {t, f) and, for each 
Boolean variable, we define a subset S, = {x,, Et}. Finally, 
for each clause C, = U,' V U," V . . . V U:. in C,  where each U," 

represents a Boolean variable or its complement, we define a 
subset T, = {f, .U:, U:, . . . ,  a,%} .  

Now, suppose we are given a valid set 2-coloring. We define 
a truth assignment according to the rule: ~ ( 2 , )  = 1 if and 
only if Z(z,) = Z(t). It is easy to see that the properties of 
the set 2-coloring ensure that this assignment r satisfies all 
of the clauses in C. Conversely, given a truth assignment that 
satisfies all of the clauses in C, we can use the same rule 
to specify a set 2-coloring for the collection of subsets {Sz}, 
15 IC 5 m. It follows that Set 2-Coloring is NP-complete. 0 

We can now show that Polygraph n-ary Input Tag Assign- 
ment is NP-complete, for n > 2. Verifying that a proposed 
matrix R(t) is a solution is a polynomial algorithm, so the 
problem is in the class NP. We show the problem is NP- 
complete by reducing Set n-Coloring to it. 

Let (U, SI, Sz , . . . , S,) be an instance of Set n-Coloring. 
We construct a constraint graph G(O) as follows. For each 
set S,, the graph G(') has a state that we call S,. For each 
x3 E S,, the state S, of has a distinct outgoing edge e with 
label L ( e )  = xJ. To ensure that G(O) is irreducible, we resort 
to the following artifice. For each set S,, linearly order its 
outgoing edges and declare that the first edge terminates at 
state Sr+l, and declare that the others terminate at S,. 

Construct the polygraph as in Section IV-A. Set the 
initial weight vector w(s0) = (1, 1, ..., 1). 

The matrix W = W (  so)  becomes the matrix whose rows are 
indexed by SI, . . . , S, and whose columns are indexed by the 
elements of U,S,. The entry W(S,,  x3) is 1 or 0 according to 

[GI .I 

k 

whether or not xJ E S,. A matrix R (whose rows are indexed 
by the x3 and whose columns are indexed by the input symbols 
0, 1, . . . , n - 1) having elementary rows that solves 

gives a solution to the Set n-Coloring problem by setting 
Z(x,) = j if the z,th row of R has its single 1 in column 
j .  This completes the reduction and the proof of Theorem 
5.4. 0 

C. Deciding when there is a. 1-Block Decoder from an 
Edge System is NP-complete 

The edge system presented by a directed graph G is the 
system presented by G when the label L(e)  of an edge e of G 
is just e itself: L ( e )  = e. Thus the symbols of the edge system 
are just the edges of G, and the allowed symbol sequences are 
just the paths of G. We denote the edge system of G by X G .  

If there is an ( X G ,  n) encoder having a 1-block decoder, 
then we can form a subgraph G' of G and an input tagging of 
the edges of G' as follows: if the 1-block decoder decodes the 
label e (an edge of G) to the symbol j ,  then (and only then) we 
declare e to be an edge of G' and we assign the tag Z( e )  = j 
to the edge e. Since any tag sequence can be encoded into 
a label sequence in X G  using the ( X G ,  n) encoder, there is 
for each tag sequence iozl . . . ik a path eOe1 . . . ek in G' that 
generates it as Z(eoe1 . . . eh) = ioil . . . ik. In other words, 
the 1-block map defined by Z is onto the n-shift. 

We make the further assumptions that 6' is an irreducible 
graph, and that the capacity of the edge system X G ~  is log (n). 
In this case, we can apply the following theorem (a special 
case of a result of Coven and Paul) [5] to conclude that the 
tagging of G' by Z is lossless: any two distinct paths in GI that 
share the same initial state and share the same terminal state 
generate distinct tag sequences using the tagging function Z. 

Theorem 5.6 [5]: Let 4: X G  + S be an onto 1-block map 
$ : X G  3 S from an irreducible edge system X G  to a sofic 
system S, defined by a labeling L of the edges of G by the 
symbols of S. Then cap ( X G )  = cap (S) if and only if the 
labeling L is lossless. 

This discussion suggests the following problem which, for 
future reference, we call the 1-block surjection problem for 
the n-shifi. 

1-Block Surjection for the n-Shift: Given an integer n > 
2 and a directed graph G with cap ( X G )  2 n, is there 
an irreducible subgraph G' C G with cap(XG,) = n 
and a 1-block map from XG, onto the n-shift? 
In this section, we address the complexity of 1-Block Sur- 

jection. Specifically, we prove the following NP-completeness 
result. 

Theorem 5.7: 1-Block Surjection for the n-Shift is NP- 
complete. For fixed n, it is NP-complete for n 2 2. 

ProoA We use Theorem 5.6 to show that the problem 
is in NP. To verify that a proposed tagging Z of 6' by the 
input symbols 0, 1, . . . n - 1 defines a mapping onto the full 
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Fig. 12. The subgraph of paths from the leaf l o  to the root r in G. 

n-shift, we must verify that the tagging is lossless. This can 
be done in polynomial time by constructing the fiber product 
G’ * GI and checking whether there are any paths in GI * GI 
that leave the diagonal and then retum to it. 

To show that the problem is NP-complete, we reduce Set 
n-Coloring to 1-Block Surjection for the n-Shift. Our proof is 
for the case n = 2. The proof for general n is not really any 
more difficult. We handle the specific case of n = 2 for clarity. 

We are given an instance (U, SI, 5’2, . . . , S,) of set 2- 
coloring. U is a finite set, and each S, is a subset of U .  We are 
to answer the following question: Is there a coloring function 

m 

1: U sj -+ (0, 1} 
j=1 

such that for each 1 5 IC 5 m, and for each color i E (0, l}, 
the set S k  has at least one element of color i? 

Construct a directed graph G as follows. G has a special 
state T which we call the root state. Construct a directed binary 
tree rooted at state r as follows. The edges of the tree are 
directed away from the root. Each internal (nonleaf) state of 
the tree has two outgoing edges to states in the tree at the next 
depth. Construct the tree in any (definite) way so that it has 
exactly m + 1 leaves. For example, one could always grow 
only the leftmost branch, creating a very unbalanced tree. Or 
one could grow all the branches, creating a complete tree of 
sufficient depth. It does not matter, as long as the tree is grown 
following a definite procedure that is polynomial in the length 
of the instance of Set 2-Coloring. 

Enumerate the tree’s leaves as 20, 11, . . . , 1,. From leaf 10,  
construct the subgraph as shown in Fig. 12. Notice that there 
are 24 = 16 paths of length 4 from 10 to T .  We will shortly 
construct further incoming edges to states b and c of Fig. 12. 
State a of Fig. 12 will have no more incoming edges. 

Enumerate the elements of UEISz as XI, 2 2 ,  . . . , q. For 
each I C ~ ,  G has a state zJ and a single edge from xJ to r .  For 
each set S,, G has a state S,. For each element xJ E S,, G 
has a single edge from state S, to state x3. 

For each leaf Z,, 1 5 i 5 m, construct the following 
subgraph (see Fig. 13). Form a path of length 2 starting at 
the leaf I,, passing through a new state a,, and ending at the 

r r r r r r r 

Fig. 13. The subgraph of paths from leaves l o  and I ,  to the root r in G. 

Fig. 14. The tagged paths from leaves lo and 1, to the root r in G’. 

state S,. Add an edge from 1, to state b and an edge from 1, 
to state c. This completes the construction of the graph G. 

First suppose that the imstance (U, SI, . . . , S,) of set 2- 
coloring has a solution T: U, S, -+ (0, l}. We form the 
subgraph GI of G as follows. For each 1 5 z 5 m, choose 
zCz(O), E S, with Z(xc”)) = 0 and Z(Z~(~))  = 1. Delete 
from G all of the states x, (and their incident edges) except 
those that are chosen as sc!’) or xi1) for some 1 5 i 5 m. 
The remaining graph is GI. Note that GI is irreducible because 
every path in GI must pass through r in a time bounded by 4 
plus the depth of the binary tree. 

We tag the edges along the paths of length 4 emanating from 
the leaf states 10 and 1, in C:’ as shown in Fig. 14. In particular, 

(1) note that the tags on the edges leaving the states xCz(0) and x, 
are well-defined as Z(zio’> = 0 and = 1, respectively. 
Also notice that the 2* = I16 paths of length 4 emanating from 
each leaf state (and ending at r )  are distinctly tagged by the 
16 binary strings of length 4. 

Finally, for each intem,al state of the binary tree rooted at 
state r ,  distinctly tag its two outgoing edges (with 0 and 1). 

We show that this tagginig defines a 1-block map from X Q  
onto the 2-shift. Call a nonempty path in GI that starts at state 
T ,  does not pass through r ,  and ends at r,  a return. The reader 
can verify that for any sufliciently long binary string w, there 
is a return in G’ that is lagged by a nonempty prefix w’ of 
w. It follows from this and an induction that the 1-block map 
defined by the tagging is (onto the 2-shift. 
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The tagging of G‘ is lossless because for each state s of 
G’, any two paths of length 3 emanating from s that generate 
the same tag sequence actually share the same initial edge. It 
follows from Theorem 5.6 that 

cap ( X Q )  = cap (X,) = log (2). 

Now suppose that there is an irreducible subgraph G‘ of G 
with cap ( X Q )  = log (2) and a 1-block map from X Q  onto 
the 2-shift. This 1-block map is lossless by Theorem 5.6. 

For each state S,, 1 5 t 5 m, of the original graph G, 
all the paths of length 2 emanating from S, end at state r .  It 
follows that for each such state S, that remains in the subgraph 
G’, S, has out-degree at most 22 = 4; otherwise, G‘ would 
not admit a lossless tagging. Similarly, for each state 2, of 
G, all the paths of length 4 emanating from I ,  end at state 
T .  It follows that for each such state 2, that remains in the 
subgraph G’, there are at most 24 = 16 paths of length 4 in 
G’ emanating from state 1,. We denote the number of paths of 
length 4 emanating from state I ,  as n(1,). Note n(1,) 5 16. 

Because each internal state of the binary tree in G rooted 
at r has out-degree 2, we have 

2-de~th(C = 1 
leaves 1 in G 

so 

and the inequality is strict if either G’ has fewer leaves than 
G has or for some leaf 1 of G’, n(1) < 16. But cap ( X p )  = 
log(2), so 

leaves 1 in G’ returns p in G‘ 
= 1. 

It follows that all leaves in G remain in GI and there are 
exactly 16 paths of length 4 in G’ from each leaf to state T .  

Referring to Fig. 12 and using that ,(lo) = 16, we see that 
there are exactly six paths of length 3 in G‘ from state b to 
state r ,  and exactly eight paths of length 3 in GI from state 
c to state r .  In the subgraph GI, for each 1 5 a 5 m, there 
are at most four paths of length 3 from state a, to state r .  But 
n(1,) = 16, so all three of the edges emanating from state 1, 
in G must remain in the subgraph G’. It follows that there are 
exactly 16 - 8 - 6 = 2 paths of length 3 in G’ from state 
a, to state r .  Thus for each 1 _< i 5 m, the state S, remains 
in G’; moreover, the state has exactly two outgoing edges 
in GI. Denote as zJ(,) and xJj(,) the terminal states of these 
two edges. (Recall, in terms of the set 2-coloring problem, 

We can assume, without loss of generality, that the paths 
of length 4 in GI from state 1, through states b and c are 
tagged as they are in Fig. 14. The tags of these paths account 
for all of the binary sequences of length 4 except the two 
sequences 0000 and 0001. Thus these two remaining sequences 
are generated by the two paths of length 4 in G’ that emanate 
from state 1, and pass through states z ~ ( ~ )  and z3/(zj. As a 
consequence, the edges leaving these two states are distinctly 

X j ( Z ) ,  ZJ’(2) E S,.) 

tagged. Finally, define a set 2-coloring Z: U, 8, + (0, 1) by 
first defining Z(zj(,)) and I ( x J / ( , ) )  to be these distinct tags, 
and then extending Z arbitrarily to all of U,S,. This completes 
the proof. 0 

VI. CONCLUSIONS 

In this paper, we presented two detailed and quite dif- 
ferent constructions of rate l /2,  sliding-block codes for the 
runlength-limited, charge-constrained system with parameters 
(d,  IC; e )  = (1, 3; 3). These represent the first 100% ef- 
ficient, sliding-block codes for this constraint to appear in 
the literature. Heuristics for designing sliding-block-decodable 
encoders using state-splitting and a new matrix generalization 
of state-splitting were also developed and illustrated by means 
of the constructions. 

We established relationships between the general problem 
of determining the existence of sliding-block-decodable input 
tag assignments for finite-state encoder graphs (and subgraphs) 
and combinatorial problems of graph colorability and set 
colorability. Exploiting these connections, we considered com- 
plexity issues associated with these problems of coding and 
combinatorics and proved NP-completeness results for several 
of them. 
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