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Abstruct- In holographic storage, two-dimensional arrays of binary 
data is optically recorded in a medium via an interference process. 
To ensure optimum operation of a holographic recording system, it is 
desirable that the patterns of 1’s (light) and 0’s (no light) in the recorded 
array satisfy the following modulation constraint: in each row and column 
of the array there are at least t transitions of the type 1 -+ 0 or 0 -+ 1, for 
a prescribed integer t. A two-dimensional array with this property is said 
to be a conservative array of strength t. In general, an n-dimensional 
conservative array of strength t is a binary array having at least t 
transitions in each column, extending in any of the n dimensions of the 
array. We present an algorithm for encoding unconstrained binary data 
into an n-dimensional conservative array of strength t .  The algorithm 
employs differential coding and error-correcting codes. Using n binary 
c o d e w n e  per dimension-with minimum Hamming distance d 2 2t -3, 
we apply a certain transformation to an arbitrary information array 
which ensures that the number of transitions in each dimension is 
determined by the minimum distance of the corresponding code. 

sional modulation constraints, error-correcting codes. 
Index Tenns-Holographic recording, modulation codes, multidimen- 

I. INTRODUCTION 
In holographic storage, two-dimensional data arrays (pages) are 

optically recorded via an interference process and subsequently 
retrieved by illumination of the hologram and forming an image 
of a page on a matched two-dimensional array of photodetectors. 
To ensure optimum operation of the holographic recording system, 
the patterns of 1’s (light) and 0’s (no light) have to satisfy certain 
modulation constraints [5], [6]. For instance, it is desirable to avoid 
long periodic stretches of contiguous light or dark in both dimensions 
[5 ] .  To this end, one would like to have as many transitions as possible 
from light to dark and from dark to light in each row and each column 
of the recorded data page. This may be achieved by requiring that 
in each row and column of the recorded array there are at least t 
transitions of the type 1 -+ 0 or 0 -+ 1, for a prescribed integer t. 
Extending the terminology of [I], [ I l l ,  [12], we shall say that a 
binary array with this property is a conservative array of strength t. 
Thus the modulation problem at hand is to encode unconstrained 
binary data into a conservative array of a given strength. 
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Although as discussed above, the main application of conservative 
arrays for holographic storage is in two, or perhaps three, dimensions 
we shall also present a solution to the modulation problem for any 
number of dimensions. When referring to multidimensional arrays, we 
run into a problem of terminology as the English words “row” and 
“column” have no counterparts beyond two dimensions. Thus given a 
k-dimensional binary array V = [u,122 2 k ]  of size n1 x n 2  x .  . . x n b ,  

we shall say that a column of V is obtained by fixing some k - 1 
subscripts and letting the remaining, say lth, subscript vary from 1 
to nl. For instance, the number of columns in a k-dimensional cube 
with edges of length n bits is kn“’. More precisely, we shall refer 
to the one-dimensional sequence of binary values ( 2 1 ,  zz,. . . , znl ) 
as an 1-column of V if xz = vJlJ2 31 3 k ,  where jl  = i while all the 
other subscripts are the same for all 2 1 ,  x2, . . . , z n l .  A k-dimensional 
conservative array of strength t may be now defined by requiring 
that for all l = 1 , 2 , .  . . , k ,  in each l-column of the array there are at 
least t transitions. Using differential coding, the pigeonhole principle 
(cf. [7]), and k binary codes-one per dimension-with minimum 
Hamming distance d 2 2t - 3, we derive an efficient algorithm for 
encoding unconstrained binary data into a k-dimensional conservative 
array of strength t. The algorithm can be readily implemented using 
simple logic circuits. 

The related works of [I], [l I], [12] also deal with constraints on 
the number of transitions in a binary sequence. Motivated by various 
applications for bit synchronization, the objective of [l], [l I], [I21 
was to encode information into binary sequences of length n having 
precisely Ln/21 transitions. We point out that using differential 
coding, as described in this correspondence, this objective can be 
achieved immediately with any of the known means for constructing 
balanced codes, say the Henry-Knuth algorithm [SI, [9]. However, 
our modulation problem is much more involved since the constraint 
on the number of transitions must be satisfied simultaneously in all 
the columns, extending in any of the k dimensions of the array. 

The rest of this correspondence is organized as follows. In the next 
section we describe the main ideas and derive the encoding algorithm 
for two dimensions. Generalization to k-dimensional conservative 
a r r ~ y s  for k 2 3 is presented in Section 111-A. Finally, combination 
of the proposed algorithm with additional modulation constraints and 
error-correcting coding is discussed in Section 111-B. 

11. CONSERVATIVE ARRAYS IN TWO DIMENSIONS 

Suppose that the data to be encoded are presented in the form of an 
m x n binary array V .  We proceed by constructing a set of modulation 
arrays U, such that for any m x n array V there exists at least one 
element U E U, with V U being conservative of strength t. This 
approach is, in a sense, analogous to the well-known Henry-Knuth 
algorithm [8], [9] for balancing binary vectors. Indeed, to balance 
an arbitrary vector of even length n, the Henry-Knuth algorithm 
essentially employs the set K ,  = {(lZ 1 On-’): 0 5 i 5 n - l}, 
where (.I.) stands for concatenation, and lC denotes a vector of length 
i whose coordinates are fixed at 1. This set has the property that for 
any vector 2 of length n there is at least one g E IC,, such that 
- u f33 is balanced. 

In what follows, we shall count the transitions 0 ---f 1 and 1 --f 0 in 
a cyclic manner. Thus if a vector begins with a 1 and ends with 0, this 
would count as a 0 --f 1 transition. For example, there are two 0 +-+ 1 
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transitions in the vector 1 l ~ O O J l l l  and four 0 ++ 1 transitions in 
the vector ~ l l 0 0 0 l l l O .  With this definition of 0 ++ 1 transitions, it 
is clear that in any vector the number of 0 + 1 transitions is equal 
to the number of 1 i 0 transitions. Hence the total number of such 
transitions must be even. 

The above method of counting transitions is not realistic-there 
is no physical justification for counting the transitions in a cyclic 
manner. However, as we shall see, counting the transitions cyclically 
greatly simplifies the derivation. Obviously, any sequence having at 
least t cyclic transitions has at least t - 1 noncyclic “real” transitions. 
So, the difference between the two methods of counting is negligible 
for large t. In practical applications of the proposed encoding method, 
this difference would likely be accounted for by choosing the design 
parameter t to be one larger than the desired number of “rear 
transitions. 

Let IF, denote the set of all binary n-tuples, and let E, denote 
the subset of IF, consisting of all the n-tuples of even weight. For 
any g = (z~,z~,...,z,) E IF, let a(g)  = (z,,z~,...,z,-~) be 
the cyclic shift of 2. Define a mapping 4 : IF, + E, as follows: 

Note that the mapping 4 is linear and that the number of 0 * 1 
transitions in g is equal to the Hamming weight of b(& (the action 
of 4 on IF’, is analogous to the action of the 1 + D channel 
on semi-infinite sequences, or to the action of the differential on 
continuous functions). Although $ is not invertible we can formally 
define the inverse mapping. Let - y = (y1,yz,...,y,) E B, and 
- z = (z~,xz,...,z,) E IF,. Then +-’(y) = g if and only if 
d(g )  = y and z1 = 0. Since 4(g) = $7~’) implies that either 
- z = g’, or g and g‘ are complements of each other, it is clear that 
each element of E, will have exactly one inverse. 

Now let C1 be a ( t  - 2)-error-correcting code of length m, and 
assume that C1 contains at least (n + 1) codewords of even weight. 
Similarly, let C2 be a ( t  - 2)-error-correcting code of length n, 
containing at least (m + 1) codewords of even weight. When n and 
m are powers of 2, such codes exist for all t 5 min{n/4, m/4} + 1. 
These are just the first-order Reed-Muller codes of lengths m and n, 
respectively. Now, define the sets d-’(Cl) and 4-’(C2) as follows: 

$-‘(Cl) = {4-’(g): c E C1 and = Omod2) 

$-‘(CZ) = {4- ’ (~):  c E CZ and IcI E Omod2) 
(1) 

where 1 denotes the Hamming weight. Let a, a,, . . , a, be some 
(n  + 1) fixed elements of dpl(C1), and let &,b1,...,bm be some 
(m + 1) fixed elements of ~ - ‘ ( C Z ) .  

transitions, then g + g3 has at least t transitions for all j # i. 
Proposition I :  For any 2 E IF’,, if g + gz has less than t 

Proofi Otherwise, we would have 

where d( . ,  .) denotes the Hamming distance, and the last inequality 
follows from the fact that the Hamming weight of 4(g) is equal to 
the number of 0 ti 1 transitions in g. Since d(gz) ,d (gJ)  E Cl, it 
follows from (2) that the vector 4(g) is at distance at most (t  - 2) 
from two distinct codewords of Cl, which is a contradiction. U 

The set of modulation arrays U may now be obtained as follows. 
Let A = {A~,AI,...,A,} and B = {Bo,&, . . . ,B,}  be two 
fixed sets of n x m binary arrays, with the elements of A and B, 

namely A, = [a1;1] and B, = [bj?] ,  defined by 

- 1, if the j t h  coordinate of 6, = 1 

if the kth coordinate of 6% = 1 

for i = 1,2,  . . , n 

f o r i  = 1,2 , .  . . ,m.  

J k  - { 0. otherwise 

3‘ (0, otherwise 
b(t) = 1, 

(3) 
The set of modulation arrays U is then a direct sum of the sets A 
and B, as follows: 

U =  { A $ B : A E A , B E E } .  
Note that adding an element of B to an arbitrary m x n array 
V is equivalent to complementing a certain set of columns of V .  
This does not affect the number of 0 cf 1 transitions in the columns 
of I/, since a vector and its complement contain the same number of 
0 H 1 transitions. Similarly, adding an element of A to V does not 
affect the number of 0 x 1 transitions in the rows of V .  However, if 
gl. gz. . . . , E, is the set of columns of V ,  then the set of columns of 
V $ A ,  is just gl +gz, 3, +a,, . . . , 3, +a,. In view of Proposition 1, 
for each specific column of V there is at most one element A E A, 
such that the number of 0 H 1 transitions in the corresponding 
column of V @ A is less than t. Since the cardinality of A is strictly 
greater than the number of columns in V ,  there exists, according 
to the pigeonhole principle, at least one A* E A such that all the 
columns of V @ A* contain at least t transitions. A similar argument 
shows that there exists at least one B* E B such that the number of 
0 ++ 1 transitions in all the rows of V @ B* is at least t. Therefore, 
VBU, where U = A*@B* E U, is a conservative array of strength t. 

Example: Let n = m = 3, and t = 2. Since t - 2 = 0, the set 
of four binary 3-tuples of even weight may be taken as  CI and C2. 

{&,bi,bz,&} = {000, 001, 010, O l l } .  Hence we have 
Thus Ci = Cz = (000, 011, 110, l O l }  and {a,g,,a2,g3} = 

0 0 0  0 0 0  
Ao=O 0 0 A 1 = 0  0 0 

1 1 1  0 0 0  

0 0 0  0 0 0  
A z = 1  1 1 A 3 = 1  1 1 

0 0 0  1 1 1  

0 0 1  0 0 0  
Bo=O 0 0 B 1 = 0  0 1 

0 0 0  0 0 1  

o i o  0 1 1  
B 2 = 0  1 0  B 3 = 0  1 1 

0 1 1  0 1 0  
The set of modulation arrays U thus consists of the following 16 
arrays 

0 0 0  0 0 0  0 0 0  0 0 0  
0 0 0  0 0 0  1 1 1  1 1 1  
0 0 0  1 1 1  0 0 0  1 1 1  

0 0 1  0 0 1  0 0 1  0 0 1  
0 0 1  0 0 1  1 1 0  1 1 0  
0 0 1  1 1 0  0 0 1  1 1 0  

0 1 0  0 1 0  0 1 0  0 1 0  
0 1 0  0 1 0  1 0 1  1 0 1  
0 1 0  1 0 1  0 1 0  1 0 1  

0 1 1  0 1 1  0 1 1  0 1 1  
0 1 1  0 1 1  1 0 0  1 0 0  
0 1 1  1 0 0  0 1 1  1 0 0  0 
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Since the modulation set U consists of (m + l ) ( n  + 1) elements, in 
order to indicate which modulation array was applied to V we need 
exactly [log, (m + l ) (n  + 1)1 redundant bits. This is logarithmic in 
the size of the input array V ,  and therefore the rate of the modulation 
encoder approaches its bounding value of 1 quite rapidly. After 
recording a sequence of about mnllog, (m  + l ) (n  + 1) data pages, 
the redundant bits for all these pages can be again encoded into a 
conservative array of strenght t ,  and so on recursively. Alternatively, 
the redundancy bits can be appended as an extra row or column 
to each recorded page. For more details on implementation issues 
see [5] .  

111. CONCLUDING REMARKS 
This section deals with generalizing the construction presented in 

Section I1 to higher dimensions, combining this construction with 
the balancing algorithm of Henry-Knuth [8], [9], and using the 
resulting balanced conservative arrays for efficient error detection 
and correction in holographic storage. 

A. Multidimensional Conservative Arrays 

We presently show that the modulation method of the previous 
section easily extends to more than two dimensions. Suppose that the 
data is presented in the form of a k-dimensional array V = [uzIz2  2 k ]  
of size n1 x 122 x . . . x n k .  As discussed in the Introduction, an 1- 
column of V is obtained by letting the Ith subscript vary from 1 to ni 
and fixing the remaining k - 1 subscripts. Conversely, a hyperplane 
of V is obtained by fixing one subscript and letting the other k - 1 
subscripts range over all the possible values. Thus an 1-hyperplane of 
V is a ( I ;  - 1)-dimensional array given by [vJIJ2 J ,  3 k ] ,  where j i  

is fixed at a certain specific value, while for all i # I the subscripts 
j ,  vary from 1 to n,. 

We now construct a set of k-dimensional arrays U, such that 
for any n1 x n2 x . e  - x 7Lk array V there exists at least one 
U E U with V @ U being conservative. Again, let CI , CZ, . . . , Ck: be 
(t - 2)-error-correcting codes of lengths 7 ~ 1 , 1 2 2 ,  . . . , nk, respectively. 
Further, suppose that for I = 1 ,2 , .  . . , k the code Ci contains at 
least [n;=,,,,, n,) + 1 codewords, all of even weight. Note that 
mi = n;=l,z+l nt is precisely the number of 1-columns in V. Just as 
in the two-dimensional case, the requirement that ICiI 2 mi + 1 for 
each 1 determines the highest attainable value of t. That is, t must 
be such that the codes C1, C2,. . . , Ck exist for all = 1 , 2 , .  . . , k .  
Now let the sets 4-'( C I ) , ~ - ' ( C ~ ) , . . . , ~ - ' ( C ~ )  be defined as 
in (l), and let c&, ai, . . . , a;, be some mi + 1 fixed elements of 
4-'(Ci). We construct the set of mi + 1 k-dimensional arrays 
Ai = {AA,Ai,..  . , A d , }  of size n1 x n2 x e . .  x n k  in a manner 
analogous to (3). Namely, for i = 0 ,1 , .  e . ,  mi, each Af is composed 
of ni I-hyperplanes, with the entries in each such 1-hyperplane being 
either all 0's or all 1's. More specifically, all the entries in the j t h  
&hyperplane of Af are taken to be equal to the j t h  entry of the vec- 
tor 6;. Once the sets AI, A2, . . . , Ab have been constructed, the 
required set of (ml + l)(m2 + 1). . . (mh + 1)  k-dimensional 
modulation arrays U is obtained as the direct sum of these 
sets 

Proposition 1 may be now used to show that for any nl x 12.2 x ' . . X n k  

input array V there exists at least one array U E U, such that V @ U 
is conservative of strength t. 

The number of redundant bits required by the multidimensional 
modulation encoder described above is just the logarithm of the 

I Y Y b  

cardinality of U given by 

where N = n1 n2 . . . TLk is the total number of information bits in V .  
Thus the redundancy of the multidimensional modulation scheme is 
still logarithmic in the input length. 

We note that the idea of inverting entire hyperplanes allows 
us to break the inherent dependence between the columns of a 
multidimensional array. This, along with differential coding 4( .), 
essentially transforms the modulation problem at hand into the 
following: find the smallest subset A C E,, such that given any 
m-subset of E,, there is at least one element of A at Hamming 
distance 2 t from all the elements of the m-subset. It is easy to 
see that the smallest possible cardinality of A is m + 1 and that 
( t  - 2)-error-correcting codes provide the optimal solution to this 
problem. 

B. Further Constraints and Error Correction 

Another common requirement in holographic recording is that the 
number of 1's and 0's in a data page should be balanced. In this 
way, during recording, the amount of signal light is independent of 
the data content of a page and, during retrieval, the light coming 
from a stored page is divided between the same number of beams, 
again independent of data content. Thus it is desirable to balance 
the recorded arrays, which may be accomplished using, for instance, 
the Henry-Knuth algorithm [8], [9] .  We now show that the proposed 
modulation encoder can be readily combined with that of Knuth, 
provided the latter proceeds in a horizontal row-by-row order. Specifi- 
cally, this means that to apply the one-dimensional modulation vector 
- U E IC,, to a two-dimensional m x n m a y  V = [ v ~ , ] ,  we represent 
V as a vector 

v zz ( V L I ,  ut27 * VI,, ~ 2 1 ,  ~ 2 2 , .  * , V Z ~ ,  . . ' 1  um2, ' ' 7  V m n ) .  

(4) 
Now suppose that V is a conservative array of strength t + 2 
and that several bits of V are complemented so that the resulting 
array, W @ V say, is balanced. It is easy to see that if the bits of 
V are complemented in the readout order of (4) then W @ V is 
necessarily a conservative array of strength at least t. Thus we have 
a modulation encoder from unconstrained binary data into balanced 
conservative arrays in two dimensions. A similar argument applies 
to k-dimensional arrays, provided the bits of V are complemented 
in the readout order analogous to (4), that is, recurrently hyperplane- 
by-hyperplane. 

The balancing of recorded pages also provides an effective means 
for error detection, since the errors in holographic storage tend to be 
asymmetric-it is much more likely that a 0 will be detected as a 1 
than conversely. The latter condition occurs because scattered light 
and/or crosstalk light from adjacent pages can always be detected if 
it illuminates a bit location that was originally a 0, hence a 0 bit 
could become a 1 bit if there is sufficient noise light. Conversion 
of a 1 bit to a 0 bit requires that the data light and the noise light 
interfere destructively; that is, they must have the same amplitude 
and be 180" out of phase. This is much less likely, thereby giving 
rise to the error asymmetry. The asymmetric nature of the errors 
will be detected by the balanced code, which can be used to declare 
erasures at the affected blocks. The information in the erased blocks 
can then be retrieved using an outer error-correcting code. Since 
the errors also tend to occur in large two-dimensional clusters [lo], 
the outer error-correcting code should be capable of handling very 
large symbols with relatively low decoding complexity. Thus the 
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MDS codes with large symbols developed in [3],  [4] are ideally 
suited to holographic recording. All this, possibly combined with two- 
dimensional interleaving [2], provides an extremely powerful coding 
scheme for holographic memory systems. 
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I. INTRODUCTION AND MOTIVATION 
A source with memory as well as a memoryless source with a 

nonuniform distribution are sources with redundancy. For a finite 
alphabet of size J ,  a uniformly distributed independent and identically 
distributed (i.i.d.) random process contains a maximal amount of 
information and exhibits no redundancy. Its entropy rate is equal 
to log,J bits/sample. The total redundancy a stationary ergochc J -  
ary alphabet source {X,}~!i possesses is equal to the difference 
between log,J and its entropy rate H,(X) [9]: p~ = log,J - 
H c 3 ( X ) ,  where 

The redundancy may be attributed to the nonuniform source dis- 
tribution or to the source memory (or both). More specifically, 
we can write PT = ,DO + p~ where p~ log,J - H(X1) 
denotes the redundancy in the form of a nonuniform distribution and 
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