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To optimize a high-density magnetic recording system, one needs to know the tradeoffs between various components of the system
including the read/write transducers, the magnetic medium, and the read channel. In this paper, we consider a channel model character-
ized by three parameters: the replay pulse width 50, the transition jitter noise standard deviation , and the signal-to-electronic-noise
ratio SNRWG. We utilize information-theoretic tools to determine the acceptable region for the channel parameters 50 and when
optimal detection and linear coding techniques are used. This paper is an extension of a similar analysis for a system that utilized a
minimum mean-squared error (MMSE) equalizer, a Viterbi detector, and a Reed–Solomon (RS) code. Our main conclusion is that there
is a considerable potential gain to be achieved by using improved detection and coding schemes as compared with the present system.

Index Terms—Information theory, jitter noise, parameter optimization, perpendicular magnetic recording.

I. INTRODUCTION

THE optimization of high-density magnetic recording
systems requires the analysis and evaluation of tradeoffs

among the many system parameters. For example, code rate
optimization for different channel models has been addressed in
several recent studies [1]–[3]. In particular, Chaichanavong et
al. [1] proposed a quasi-analytical methodology to optimize the
system for a channel model with three parameters, the replay
pulse width , the transition jitter noise standard deviation

, and the signal-to-electronic-noise ratio (SNR ). The
signal processing scheme included a minimum mean-squared
error (MMSE) equalizer, a maximum-likelihood detector, and a
Reed–Solomon (RS) error-correcting code. For a specified user
bit spacing and SNR , the results in [1] take the form
of a design curve that defines the acceptable ( , ) pairs for
a specified sector error rate (SER). Each point on the curve has
a corresponding optimal code rate and an optimal channel
bit spacing .

In this paper, for the same channel model, we apply informa-
tion-theoretic tools to derive design curves that shed light on the
acceptable region of ( , ) pairs when optimal detection and
linear coding techniques are used.

There has been much previous research reported on the
computation of information rates and capacity for magnetic
recording channels [5]–[8]. As an application of these tech-
niques, Ryan et al. [4] determined the symmetric information
rate (SIR) for a Lorentzian channel corrupted by additive white
Gaussian noise (AWGN), and then used this result to maximize
the user density.

We consider a perpendicular recording channel with both
AWGN and jitter noise. Using upper bounds on the SIR, we
compute information-theoretic design curves that, for a given
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user density, provide insight into the tradeoff among the three
parameters , , and SNR . The results are compared
to those of the RS-coded system described in [1], and they
show the possibility of obtaining considerable performance
improvement with the help of advanced detection and coding
techniques.

The paper is organized as follows. Section II gives a brief
introduction to the channel model that is used throughout the
paper. Section III describes our method for approximating the
SIR. In Section IV, we derive design curves based upon the eval-
uation of the SIR and compare them with the analogous curves
for the RS-coded system in [1]. Section V concludes the paper.
Some derivations of results needed in Section III are presented
in the Appendix.

II. CHANNEL MODEL

The basic channel model used throughout this paper is the
same as that used in [1] except for a slight change in notation.

The channel isolated transition response is given by

(1)

where is the error function defined by

(2)

The constant 0.954 comes from the definition of , which
is the width of the transition response at half of the maximum
amplitude, i.e., .

The channel dipulse response is defined as

(3)

where is the channel bit spacing.
The channel input is assumed to be an independent iden-

tically distributed (i.i.d.) equiprobable binary sequence ,
where . The noiseless channel output can be
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written as the convolution of the channel input and the dipulse
response

(4)

Jitter noise is modeled as

(5)

where the are independent Gaussian random variables with
zero mean and variance and is the first derivative of the
transition response .

Electronic noise and a small amount of stationary medium
noise, not included in the jitter noise, can be modeled as AWGN
represented by . Therefore, the output of the channel can
be written as

(6)

After low-pass filtering and sampling at the channel bit
spacing , the discrete-time channel output is

(7)

where , , and are independent,
zero-mean Gaussian random variables with variance ,
and are independent, zero-mean Gaussian random vari-
ables with variance The signal-to-electronic-noise ratio is
given by SNR .

Assume when and where
. Similarly, assume that when and

where The channel is, therefore, modeled
as a finite-memory intersymbol interference (ISI) channel with
data-dependent, finite-memory noise and AWGN.

III. INFORMATION RATE COMPUTATION

The SIR of a channel is the mutual information rate corre-
sponding to independent, identically distributed, equiprobable
binary inputs. The SIR is generally interpreted as the maximum
achievable rate for which reliable recording is possible using
a binary, linear code. For the channel described previously, we
use the SIR to examine the tradeoffs among system design pa-
rameters assuming optimal detection and linear coding. In this
section, the method we used to evaluate the SIR is introduced.

In [5] and [6], independently, a simulation-based method
to evaluate the information rate of a Markovian channel was
proposed. This method was extended in [7] and [8] to eval-
uate the information rate and the capacity for the magnetic
recording channel, assuming linear ISI and data-dependent,
colored Gaussian noise. We use a similar method in this paper.

In the following analysis, we denote a column vector
by . The information rate between the

channel input and the channel output can be written as

(8)

where is the entropy rate of the
channel output and
is the entropy rate of the channel output conditioned on the
channel input. We proceed to evaluate these two values sepa-
rately.

According to [5], converges to
with probability one. Since we are considering a finite memory
Markovian channel, it can be computed by the forward recur-
sion of the BCJR algorithm [9]. Let be the trellis state at
time . Then, the probability of the channel output sequence is

(9)

where is the set of all states.
Define the forward state metric as

(10)

Using Bayes’ rule

(11)

If we define the branch metric to be

(12)

then, we have the following recursion relationship:

(13)

Since is very close to zero when is large, we nor-
malized the sum of all forward state metrics at each time to be
1 in order to avoid losing precision in the computation. There-
fore, denoting the normalized forward state metric at time and
state by , and the normalization factor by , the new
recursion relationship takes the form

(14)

Setting the same initial values for recursions (13) and (14),
we can show that

(15)

Thus

(16)
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The computation of the branch metric depends on the channel
model. According to the derivations in the Appendix, the branch
metric is

(17)

where and are edge-dependent constants and is an edge-
dependent column vector, as defined in (30)–(32). Here, is the
memory of the jitter noise, defined as with
and as specified at the end of Section II.

Using the branch metrics, the initial values for the forward
state metrics, and the recursion relationship (14), we can com-
pute the probability of a long channel output realization, and,
thus, get an estimate of the output entropy rate.

Computing the conditional entropy rate is quite
straightforward for this channel model [7]. The conditional en-
tropy rate is

(18)

where is a realization of the input sequence and the ex-
pectation is over all possible input sequences.

Since we are considering the SIR, we assume the input se-
quences are equiprobable. For a random input sequence realiza-
tion , converges to when
goes to infinity. With the knowledge that the channel output se-
quence obeys a joint Gaussian distribution when conditioned on
a specific channel input sequence, the conditional entropy rate
is

(19)

where is the covariance matrix of the output sequence,
given the input sequence . The length of the input sequence
should be large.

The number of states in the trellis grows exponentially with
the sum of the memory length of the channel ISI and the memory
length of the jitter noise. Thus, if these quantities are large, the
complexity in computing the SIR is dominated by the channel
output entropy rate calculation.

One method to reduce the computational complexity is to re-
duce the number of states in the trellis by truncating the channel
dipulse response and the sampled first derivative of ,

. In [7], it is stated that if we use an approximation of the real
channel in the BCJR forward recursion, the computed output en-
tropy rate is an upper bound on the true value of . However,
although this method can reduce the computational complexity
significantly, it generates a loose upper bound.

Another method is to try to reduce the number of branch
metric computations in the recursion. Recall that, for each state,
the new state metric is obtained by calculating the branch metric
for each incoming edge, multiplying each of these by the state
metric of the corresponding state from the previous stage, and
then summing up these products. However, the normalized for-
ward state metric , which equals the conditional proba-
bility , may be very close to zero if the cur-
rent state is unlikely to be the actual state at time , given

the past channel output sequence. Since the branch metric is a
multivariate Gaussian density function, which is bounded, we
can ignore terms in the summation (14) corresponding to suf-
ficiently small values of . Therefore, we set a threshold
value , and if the forward state metric is smaller than

, it is set to zero and the branch metrics on the edges starting
from state are not calculated. This approximation results in
forward state metrics, and, therefore, estimated output sequence
probabilities, that are smaller than their true values. It follows
that the computed estimate of the output entropy rate is an upper
bound for the true value.

Simulations confirmed that this method significantly reduces
the required amount of computation, while producing a tight
upper bound on the output entropy rate. For example, for a
512-state trellis and a threshold value , the computa-
tion time consumed with this approximation is about one-fifth
of that required by the exact computation. We observed that
the number of nonzero forward state metrics was reduced to no
more than 100 after a few steps, and sometimes dropped to less
than 10. At the same time, the entropy rate upper bound differed
only slightly from the exact value. Therefore, in the simulations
used to generate the design curves, we chose a reasonably large
number of states, namely , and applied this approximation
method to compute our upper bounds on the SIR.

IV. DESIGN CURVES FOR SIR

For a specified user density and SNR , the information-the-
oretic design curves computed in this paper essentially deter-
mine the region of ( , ) pairs that are acceptable in a system
utilizing a code that achieves the SIR.

As in [1], we simplify the calculation of the design curves
by normalizing with respect to the user bit spacing, defined by

, where the code rate is set equal to the SIR. The
method for deriving the normalized curve is modeled after the
approach used in [1]. Specifically, for a given SNR and var-
ious values of the ratio , we first compute the SIR bound
as a function of . We then determine the corresponding
values of , where is the calculated
SIR bound.

Fig. 1(a) and (b) illustrates the numerical results for these
two steps for the case where SNR 17 dB. Note that
for each curve in Fig. 1(b), there is a point representing a
maximum value of . The corresponding points in
the ( , )-plane form the normalized infor-
mation-theoretic design curve for SNR 17 dB, shown in
Fig. 2 along with the normalized design curves for SNR
values of 14 and 20 dB.

For purposes of comparison, Fig. 2 also shows the normalized
design curves derived in [1] for the RS-coded system at the same
values of SNR . (We remark that, in order to facilitate the
comparison to the curves taken from [1], the information-theo-
retic results plotted in Fig. 2 were computed for different values
of the ratio than those used to generate the curves in
Fig. 1).

It is clear that there is a significant gap between the curves
representing the same SNR . Thus, we can infer that better
detection methods and coding schemes might extend the accept-
able region of system parameters considerably.
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Fig. 1. SIR curves and normalized user density curves for SNR = 17 dB.

Fig. 2. Normalized design curves.

Also, it is interesting to note that the shapes of the two sets of
curves are not the same. This suggests that the tradeoff between
the system parameters might be different for SIR-achieving
codes than for the optimized RS codes examined in [1].

In Fig. 3, we plot the design curves in the ( , )-plane for
SNR 17 dB and for user bit spacing 20 nm. The
region below the lower design curve is the acceptable region
of ( , ) pairs for the RS-coded system in [1]. The region

Fig. 3. Comparison of the design curves for optimal RS code and SIR at
SNR = 17 dB, B = 20 nm.

TABLE I
COMPARING T =B

TABLE II
COMPARING CODE RATE

above the upper design curve can be interpreted as ( , )
pairs for which no detection method and linear coding scheme
can guarantee reliable data retrieval. The region between these
two curves gives insight into head and media parameters that
are acceptable with sufficiently powerful detection and coding
schemes.

The numerical results represented by the curves in Fig. 2 are
shown in Tables I and II. Table I gives the values for
points on the normalized design curves for both the RS-coded
system and the information-theoretic limiting case.Table II
shows the corresponding optimal RS code rates and the SIR
upper bound values. Note that the SIR-achieving code almost
doubles the user density relative to the optimized RS
code, whereas the optimal RS code rates and SIR upper bounds
are relatively close.

V. CONCLUSION

In this paper, we determined information-theoretic design
curves for a perpendicular magnetic recording channel model.
We computed a tight upper bound for the SIR and presented
design curves that demonstrate some tradeoffs among system
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parameters when using an SIR-achieving coding scheme.
Given a set of channel parameters ( , , and SNR ), we
can use the design curves to determine—approximately—the
maximum user density we can achieve using any detection
method and linear coding scheme. Our results show a sub-
stantial gap between these information-theoretic design curves
and those computed in [1] for an optimized RS-coded system.
This suggests that advanced detection and coding schemes
have the potential to significantly improve system capacity and
performance.

APPENDIX

Referring to the channel model in Section II, we define
and . We also recall that
, so the state of the channel is given by

. With these definitions, the Markovian
channel satisfies the relations

(20)

and

(21)

The branch metric defined in Section III can, therefore, be
written as

(22)

The transition probability from state to state is ei-
ther 0, if there is no edge between them, or 0.5, assuming i.i.d.
equiprobable binary channel inputs.

The channel output satisfies

(23)

where is an matrix defined as

. . .
. . .

...

. . . (24)

and is defined as

The conditional joint density function
is multivariate Gaussian with covariance matrix

(25)

Similarly, the conditional density of given and
is multivariate Gaussian with covariance matrix which
is obtained from by eliminating the last row and column;
that is

(26)

Noting that

(27)

we can express the branch metric as

(28)

The Gaussianity of the conditional joint density functions
mentioned previously implies that

(29)

where

if there is an edge from to

otherwise
(30)

(31)

and

(32)

All these three parameters are edge-dependent.
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