
5960 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Efficient Implementation of Linear
Programming Decoding

Mohammad H. Taghavi, Member, IEEE, Amin Shokrollahi, Fellow, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—While linear programming (LP) decoding provides
more flexibility for finite-length performance analysis than it-
erative message-passing (IMP) decoding, it is computationally
more complex to implement in its original form, due to both
the large size of the relaxed LP problem and the inefficiency of
using general-purpose LP solvers. This paper explores ideas for
fast LP decoding of low-density parity-check (LDPC) codes. By
modifying the previously reported Adaptive LP decoding scheme
to allow removal of unnecessary constraints, we first prove that LP
decoding can be performed by solving a number of LP problems
that each contains at most one linear constraint derived from
each of the parity-check constraints. By exploiting this property,
we study a sparse interior-point implementation for solving this
sequence of linear programs. Since the most complex part of
each iteration of the interior-point algorithm is the solution of a
(usually ill-conditioned) system of linear equations for finding the
step direction, we propose a preconditioning algorithm to facilitate
solving such systems iteratively. The proposed preconditioning
algorithm is similar to the encoding procedure of LDPC codes,
and we demonstrate its effectiveness via both analytical methods
and computer simulation results.

Index Terms—Adaptive linear programming (LP) decoding,
conjugate-gradient method, interior-point methods, low-density
parity-check (LDPC) codes, preconditioning.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes [1] are
becoming one of the dominant means of error-control

coding in the transmission and storage of digital information.
By combining randomness and sparsity, LDPC codes with large
block lengths can correct errors using iterative message-passing
(IMP) algorithms at coding rates that are closer to the capacity
than any other class of practical codes [2]. While the perfor-
mance of IMP decoders for the asymptotic case of infinite
lengths is studied extensively using probabilistic methods

Manuscript received December 12, 2008; revised March 09, 2011; accepted
April 12, 2011. Date of current version August 31, 2011. Part of the research
on this paper was done when M. H. Taghavi was visiting EPFL in the summer
of 2007. The material in this paper was presented in part at the 3rd Annual
Information Theory and Applications Workshop (ITA’08), La Jolla, CA, January
2008, and in part at the 46th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, September 2008.

M. H. Taghavi was with the Electrical and Computer Engineering Depart-
ment, University of California, San Diego, La Jolla, CA 92093-0407 USA. He is
now with Qualcomm, Inc., San Diego, CA 92121 USA (e-mail: mtaghavi@ieee.
org).

A. Shokrollahi is with the School of Basic Sciences and School of Com-
puter Science and Communications, Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland (e-mail: amin.shokrollahi@epfl.ch).

P. H. Siegel is with the Electrical and Computer Engineering Department
and the Center for Magnetic Recording Research, University of California, San
Diego, La Jolla, CA 92093-0401 USA (e-mail: psiegel@ucsd.edu).

Communicated by I. Sason, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2011.2161920

such as density evolution [3], the finite-length behavior of
these algorithms, especially their error floors, are still not well
characterized.

Linear programming (LP) decoding was proposed by
Feldman et al. [4] as an alternative to IMP decoding of
LDPC and turbo-like codes. LP decoding approximates the
maximum-likelihood (ML) decoding problem by a linear op-
timization problem via a relaxation of each of the finite-field
parity-check constraints of the ML decoding into a number
of linear constraints. Many observations suggest similarities
between the performance of LP and IMP decoding methods
[4]–[6]. In fact, the sum-product message-passing algorithm
can be interpreted as a minimization of a nonlinear function,
known as Bethe free energy, over the same feasible region as
LP decoding [7], [8].

Due to its geometric structure, LP decoding seems to be more
amenable than IMP decoding to finite-length analysis. In par-
ticular, the finite-length behavior of LP decoding can be com-
pletely characterized in terms of pseudocodewords, which are
the vertices of the feasible space of the corresponding linear
program. Another characteristic of LP decoding—the ML cer-
tificate property—is that its failure to find an ML codeword is
always detectable. More specifically, the decoder always gives
either an ML codeword or a nonintegral pseudocodeword as the
solution. On the other hand, the main disadvantage of LP de-
coding is its higher complexity compared to IMP decoding.

In order to make linear programming (LP) decoding practical,
it is necessary to find efficient implementations that make its
time-complexity comparable to those of the message-passing
algorithms. A conventional implementation of LP decoding is
highly complex due to two main factors: (1) the large size of
the LP problem formed by relaxation, and (2) the inability of
general-purpose LP solvers to solve the LP efficiently by taking
advantage of the properties of the decoding problem.

The standard formulation of LP decoding [4] has a size that
grows very rapidly with the density of the Tanner graph repre-
sentation of the code. Adaptive LP (ALP) decoding was pro-
posed in [9] to address this problem, reducing LP decoding to
solving a sequence of much smaller LP problems. The size of
these LP problems has been observed in practice to be indepen-
dent of the degree distribution, and more specifically, a small
factor (less than two) times the number of parity checks. How-
ever, this observation has not been analytically explained.

More recently, an equivalent formulation of the LP decoding
problem was proposed in [11] and [12], with a problem size
growing linearly with both the code length and the maximum
check node degrees. While this formulation requires solving
only one LP, the overall complexity of this method in practice
remains substantially higher than that of ALP decoding.

0018-9448/$26.00 © 2011 IEEE

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5961

In this paper, we take some steps toward designing efficient
LP solvers for LP decoding that exploit the inherent sparsity and
structure of this particular class of problems. Our approach is
based on a sparse implementation of interior-point algorithms.
In an independent work, Vontobel studied the implementation
and convergence of interior-point methods for LP decoding and
mentioned a number of potential approaches to reduce its com-
plexity [13]. It is also worth noting that a different line of work
in this direction has been to apply iterative methods based on
message-passing, instead of general LP solvers, to perform the
optimization for LP decoding; e.g., see [8] and [14].

The contributions of this paper are divided into two main
parts; the results given in the first part lay the foundation and
provide motivation for the techniques proposed in the second
part. In the first part of our contributions, we first propose two
modified versions of ALP decoding. The main idea behind
these modifications is to adaptively remove a number of con-
straints at each iteration of ALP decoding, while adding new
constraints to the problem. We prove a number of properties
of these algorithms, which facilitate the design of a low-com-
plexity LP solver. In particular, we show that the modified ALP
decoders have the single-constraint property, which means
that they perform LP decoding by solving a series of linear
programs that each contain at most one linear constraint from
each parity check. An important consequence of this property
is that the constraint matrices of the linear programs that are
solved have a structure similar, in terms of the locations of their
nonzero entries, to that of the parity-check matrix. This and
other analytical results presented in the first part are exploited
later in the paper to develop a more efficient interior-point LP
solver.

In the second part, we focus on the most complex part of
each iteration of the interior-point algorithm, which is solving
a system of linear equations to compute the Newton step. Since
these linear systems become ill-conditioned as the interior-point
algorithm approaches the solution, iterative methods that are
often used for solving sparse systems, such as the conjugate-gra-
dient (CG) method, perform poorly in the later iterations of the
optimization. To address this problem, we propose a criterion
for designing preconditioners that take advantage of the prop-
erties of LP decoding, along with a number of greedy algo-
rithms to search for such preconditioners. The proposed pre-
conditioning algorithms have similarities to the encoding pro-
cedure of LDPC codes, and we demonstrate their effectiveness
via both analytical methods and computer simulation results. It
is important to note that, while the preconditioning techniques
proposed are motivated by the structure of the (modified) ALP
decoders, the applications of these techniques are not limited to
solving LPs given by ALP decoders, and they can be applied to
various classes of sparse LP problems, including nonadaptive
LP decoding.

The rest of this paper is organized as follows. In Section II,
we review linear codes, LP decoding, and ALP decoding. In
Section III, we propose some modifications to ALP decoding,
and demonstrate a number of properties of ALP decoding and its
variations. In Section IV, we review a class of the interior-point
linear programming methods, as well as the preconditioned con-
jugate gradient (PCG) method for solving linear systems, with

an emphasis on sparse implementation. In Section V, we intro-
duce the proposed preconditioning algorithms to improve the
PCG method for LP decoding. Some theoretical analysis and
computer simulation results are presented in Section VI, and
some concluding remarks are given in Section VII.

II. LP DECODING

A. Notation

Throughout the paper, we denote scalars and column vectors
by lower-case letters , matrices by upper-case letters ,
and sets by calligraphic upper-case letters . We write the
th element of a vector and the th element of a matrix

as and , respectively. Furthermore, whenever one side
of an equation or inequality is a vector and the other side is a
constant such as 0, the latter is interpreted as a vector of the
corresponding length with all its elements equal to that constant.
The cardinality (size) of a finite set is shown by . The
support set (or briefly, support) of a vector of length is the
set of locations such that . Similarly,
the fractional support of a vector is the set of locations

such that .
A binary linear code of block length is a subspace of

. This subspace can be defined as the null space (kernel)
of a parity-check matrix . In other words

(1)

Hence, each row of corresponds to a binary parity-check con-
straint. The design rate of this code is defined as . In
this paper, we assume that has full row rank, in which case
the design rate is the same as the rate of the code.

Given the parity-check matrix, , the code can also
be described by a Tanner graph. The Tanner graph is a bi-
partite graph containing variable nodes (corresponding to the
columns of) and check nodes (corresponding to the rows
of). We denote by the set of (indices of) vari-
able nodes, and by the set of (indices of) check
nodes. Variable node is connected to check node via an edge
in the Tanner graph iff .

The neighborhood of a check (variable) node is the
set of variable (check) nodes it is directly connected to via an
edge, i.e., the support set of the th row (column) of . The
degree of a node is the cardinality of its neighborhood. Let

be a subset of the variable nodes. We call a stopping
set if there is no check node in the graph that has exactly one
neighbor in . Stopping sets characterize the termination of a
belief propagation erasure decoder.

Each code can be equivalently represented by many different
parity-check matrices and Tanner graphs. However, it is impor-
tant to note that the performance of suboptimal decoders, such as
message-passing or LP decoding, may depend on the particular
choice of and . A low-density parity-check (LDPC) code
is a linear code which has at least one sparse Tanner graph rep-
resentation, where, roughly speaking, the average variable node
and check node degrees are “small” with respect to or .

5962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

A linear program (LP)1 of dimension is an optimiza-
tion problem with a linear objective function and a feasible set
(space) described by a number of linear constraints (inequalities
or equations) in terms of real-valued variables. Each linear
constraint in the LP defines a hyperplane in -dimensional
space. If the solution to an LP is bounded and unique, then it is
at a vertex of the feasible space, on the intersection of at least

such hyperplanes. Conversely, for any vertex of the feasible
space of an LP, there exists a choice of the coefficients of the
objective function such that is the unique solution to the LP.

B. LP Relaxation of Maximum-Likelihood Decoding

Consider a binary linear code of length . If a codeword
is transmitted through a memoryless binary-input output-

symmetric (MBIOS) channel, the ML codeword given the
received vector is the codeword that maximizes the
likelihood of observing , i.e.,

(2)

For binary codes, this problem can be rewritten as the equivalent
optimization problem

(3)

where is the vector of log-likelihood ratios (LLR) defined as

(4)

The ML decoding problem (3) is an optimization with a linear
objective function in the real domain, but with constraints that
are nonlinear in the real space (although, linear in). It is
desirable to replace these constraints by a number of linear con-
straints, such that decoding can be performed using linear pro-
gramming. The feasible space of the desired LP would be the
convex hull of all the codewords in , which is called the code-
word polytope. Since a global minimum occurs at one of the ver-
tices of the polytope, using this feasible space makes the set of
potential (unique) solutions to the LP identical to the set of code-
words in . Unfortunately, the number of constraints needed for
this LP representation grows exponentially with the code length,
therefore making this approach impractical. As an approxima-
tion to ML decoding, Feldman et al. proposed a relaxed version
of this problem by first considering the convex hull of the local
codewords defined by each row of the parity-check matrix, and
then intersecting them to obtain what is known as the funda-
mental polytope, [6].

To describe the (projected) fundamental polytope, linear con-
straints are derived from a parity-check matrix as follows. For
each row of the parity-check matrix, i.e., each
check node, the LP formulation includes the constraints

(5)

1Throughout the paper, we abbreviate the terms “linear program” and “linear
programming” both as “LP.”

which can be written in the equivalent form

(6)

We refer to the constraints of this form as parity inequalities.
If the variables are zeroes and ones, these constraints will
be equivalent to the original binary parity-check constraints. To
see this, note that if is a subset of , with odd, and the
corresponding parity inequality fails to hold, then all variable
nodes in must have the value 1, while those in must
have the value 0. This implies that the corresponding vector
does not satisfy parity check . Conversely, if parity check fails
to hold, there must be a subset of variable nodes of
odd size such that all nodes in have the value 1 and all those
in have the value 0. Clearly, the corresponding parity
inequality would be violated. Now, given this equivalence, we
relax the LP problem by replacing each binary constraint,

, by a box constraint, . LP decoding can then
be written as

(7)

Lemma 1 ([4], Originally by [17]): For any check node , the
set of parity inequalities (5) defines the convex hull of all
assignments of the variables with indices in that satisfy
the th binary parity-check constraint.

Since the convex hull of a set of vectors in is a subset
of , the set of parity inequalities for each check node au-
tomatically restrict all the involved variables to the interval [0,
1]. Hence, we obtain the following corollary:

Corollary 1: In the formulation of LP decoding above, the
box constraints for variables that are involved in at least one
parity-check constraint are redundant.

The fundamental polytope has a number of integral (bi-
nary-valued) and nonintegral (fractional-valued) vertices. The
integral vertices, which satisfy all the parity-check equations
as shown before, exactly correspond to the codewords of .
Therefore, the LP relaxation has the ML certificate property,
i.e., whenever LP decoding gives an integral solution, it is
guaranteed to be an ML codeword. On the other hand, if LP
decoding gives as the solution one of the nonintegral vertices,
which are known as pseudocodewords, the decoder declares a
failure.

C. Adaptive Linear Programming Decoding

In the original formulation of Feldman et al. for LP decoding
[4], the number of parity inequalities for each check node of de-
gree is equal to the number of odd-sized subsets of its neigh-
borhood, which is equal to . In the same article, another
formulation of the problem is presented with constraints
for dense parity-check matrices. Even for parity-check matrices
of moderate row weights and code lengths, the number of con-
straints given by both formulations can be very large. In [9], a
cutting-plane algorithm was proposed as an alternative to the

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5963

direct implementation of LP decoding (7). In this method, re-
ferred to as “adaptive LP decoding” (ALP decoding), a hier-
archy of linear programs with the same objective function as in
(7) are solved, with the solution to the last program being iden-
tical to that of LP decoding. The first linear program in this hi-
erarchy is made up of only box constraints, such that for each

, we include the constraint

(8)

The solution to this initial problem corresponds to the result
of an (uncoded) bit-wise hard decision based on the received
vector.

Algorithm 1 ALP Decoding

1: Setup the initial LP problem with constraints from (8),
and ;

2: Find the solution to the initial LP problem by bit-wise
hard decision;

3: repeat
4: ;
5: Find the set of all parity inequalities and box

constraints that are violated at ;
6: If , add the constraints in to the LP problem

and solve it to obtain ;
7: until
8: Output as the solution to LP decoding.

The adaptive LP decoding algorithm is presented here
as Algorithm 1 (ALP decoding). In Step 5 of this al-
gorithm, the search for all the violated parity inequal-
ities can be performed using Algorithm 1 of [9] in

time, without
having to examine all the parity inequalities given
by the original LP decoding formulation. Furthermore, based
on observations, it was conjectured in [10] that there is no
need to check for violated box constraints in Step 5, since they
cannot be violated at any of the intermediate solutions of
ALP decoding. In the next section, we present a proof of this
conjecture.

In [9], the number of iterations of ALP decoding was upper-
bounded by the code length . However, it was observed in the
simulations that the typical number of iterations is much smaller
in practice (less than for all). Moreover, one can
conclude from the following theorem that, at each iteration of
ALP decoding, the number of violated parity inequalities added
to the problem is at most , where is the number of check
nodes.

Theorem 1 ([10]): If at any given point , one of the
parity inequalities introduced by a check node is violated, the
rest of the parity inequalities from this check node are satisfied
with strict inequality.

III. PROPERTIES AND VARIATIONS OF ALP DECODING

In this section, we prove some properties of LP and ALP de-
coding, and propose some modifications to the ALP algorithm.

As we will see, many of the elegant properties of these algo-
rithms are consequences of Theorem 1.

First, we present an alternative to using Algorithm 1 of [9]
for finding all the violated parity inequalities at any given point

. Consider the general form of parity inequalities in
(6) for a given check node , and note that at most one of these
inequalities can be violated at . To find this inequality, if it
exists, we need to find an odd-sized that minimizes
the left-hand side of (6). If there were no requirement that
be odd, the left-hand side expression would be minimized by
putting any with in . However, if such
has an even cardinality, we need to select one element of

to add to or remove from , such that the increase on
the left-hand side of (6) is minimal. This means that is the
element whose corresponding value is closest to . This
results in Algorithm 2, which has complexity for check
node , thus reducing the complexity of finding all the parity
inequalities from with Algorithm 1 of [9] to

, where is the total number of edges in
the Tanner graph.2 In [18], the reader can find a more detailed
discussion of this Algorithm.

Algorithm 2 Find the Violated Parity Inequality from
Check Node at

1: ;
2: if is odd then
3: ;
4: else
5: ;
6: if ; otherwise ;
7: end if
8: if (6) is satisfied at for this and then
9: Check node does not introduce a violated parity

inequality at ;
10: else
11: We have found the violated parity inequality from check

node ;
12: end if

A. Modified ALP Decoding

Definition 1: A linear inequality constraint of the form
is called active at point if it holds with equality;

i.e., , and is called inactive if it holds with strict
inequality; i.e., .

The following is a corollary of Theorem 1.

Corollary 2: If one of the parity inequalities introduced by a
check node is active at a point , all parity inequalities
from this check node must be satisfied at .

Corollary 2 can be used to simplify Step 5 of ALP decoding
(Algorithm 1) as follows. We first find the parity inequalities
currently in the problem that are active at the current solution,

. This can be done simply by checking if the slack variable
corresponding to a constraint is zero. Then, in the search for

2During the peer-review process, we learned that an equivalent algorithm was
independently proposed by Wadayama [15] for determining if a given vector is
in the feasible space of the LP decoding problem.

5964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

violated constraints, we exclude the check nodes that introduce
these active inequalities.

Now consider the linear program at an iteration of
ALP decoding, with an optimum point . This point is the
vertex (apex) of the -dimensional cone formed by all hyper-
planes corresponding to the active constraints. It is easy to see
that among the constraints in this linear program, the inactive
ones are nonbinding, meaning that, if we remove the inactive
constraints from the problem, remains an optimum point of
the feasible space. This fact motivates a modification in the ALP
decoding algorithm, where, after solving each LP, a subset of the
constraints that are inactive at the solution are removed.

By combining the two ideas proposed above, we obtain the
modified ALP decoding algorithm A (MALP-A decoding),
stated in Algorithm 3. It was conjectured in [10] that no box
constraint can be violated at any intermediate solution of ALP
decoding. We will prove this conjecture for both ALP and
MALP decoding in this section. Hence, we do not search for
violated box constraints in the intermediate iterations of the
proposed algorithms.

Algorithm 3 MALP-A Decoding

1: Setup the initial LP problem with constraints from (8),
and ;

2: Find the solution to the initial LP problem by bit-wise
hard decision;

3: repeat
4:
5: for to do
6: if there is no active parity inequality from check node

in the problem then
7: if check node introduces a parity inequality that is

violated at then
8: Remove the parity inequalities of check node (if any)

from the current problem;
9: Add the new (violated) constraint to the LP problem;

;
10: end if
11: end if
12: end for
13: If , solve the LP problem to obtain ;
14: until
15: Output as the solution to LP decoding.

In line 7 of Algorithm 3, checking if check node introduces
a violated parity inequality can be done using Algorithm 2 in

time, where is the degree of check node , and the role
of the if-then structure of line 6 is to limit this processing to only
check nodes that are not currently represented in the problem
by an active constraint. In line 8, before adding a new constraint
from check node to the problem, any existing (inactive) con-
straint is removed from the problem.

In each iteration of MALP-A algorithm, not all inactive
constraints are removed; in line 8, we only remove inactive
constraints that come from the check nodes that introduce
violated constraints in the current iteration. An alternative
approach would be to move this command to line 6; i.e., to

remove all the inactive constraints that exist in the LP problem,
irrespective of which check node they come from. This results
in a slightly different algorithm, which we call MALP-B de-
coding. Although for any given decoding problem MALP-A
and MALP-B algorithms generally solve different series of LP
subproblems, we will see later in this section that these two
algorithms have very similar properties and complexities.

The LP problems solved in the ALP and modified ALP de-
coding algorithms can be written in the “standard” matrix form
as

(9)

where matrix is called the constraint matrix.

B. Properties

In Theorem 2 of [9], it has been shown that the sequence of
solutions to the intermediate LP problems in ALP decoding con-
verges to that of LP decoding in at most iterations. In the fol-
lowing theorem, in addition to proving that this property holds
for the two modified ALP decoding algorithms, we show three
additional properties shared by all three variations of adaptive
LP decoding.

We assume that the optimum solutions to all the LP prob-
lems in the intermediate iterations of either ALP, MALP-A, or
MALP-B decoding are unique. However, one can see that this
uniqueness assumption is not very restrictive, since it holds with
high probability if the channel output has a finite probability
density function (pdf). Moreover, channels that do not satisfy
this property, such as the binary symmetric channel (BSC), can
be modified to do so by adding a very small continuous-domain
noise to their output (or LLR vector).

Theorem 2 (Properties of Adaptive LP Decoding): Let
be the unique solutions to the sequence of

LP problems, , solved in either ALP,
MALP-A, or MALP-B decoding algorithms. Then, the fol-
lowing properties hold for all three algorithms:

a) The sequence of solutions satisfy all the box
constraints .

b) The costs of these solutions monotonically increase with
the iteration number; i.e.,

(10)

c) converge to the solution of LP decoding, , in
at most iterations.

d) Consider the set of parity inequalities included in
which are active at its optimum solution, . Let

be the set of indices of check nodes
that generate these inequalities. Then, is the solution
to an LP decoding problem with the LLR vector

and the Tanner graph corresponding to the check nodes
in .

The proof of this theorem is given in Appendix A.

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5965

The following theorem shows an interesting property of the
modified ALP decoding schemes, which we call the “single-
constraint property.” This property does not hold for ALP de-
coding.

Theorem 3: In the LP problem at any iteration of the
MALP-A and MALP-B decoding algorithms, there is at most
one parity inequality corresponding to each check node of the
Tanner graph.

Proof: We start with an LP problem consisting only of box
constraints. At each iteration, if a check node introduces a
violated parity inequality, the LP should not contain any active
parity inequalities from check node (Corollary 2), and if the LP
contains any inactive parity inequalities from this check node,
both MALP-A and MALP-B remove them from the LP. Hence,
at the end of the iteration, the newly-found parity inequality will
be the only parity inequality from check node .

Corollary 3: The number of parity inequalities in any linear
program solved by the MALP decoding algorithms is at most .

The result above stands in contrast to the nonadaptive formu-
lations of LP decoding, where the size of the LP problems grows
with the check node degree. Consequently, the complexity of
these two MALP algorithms can be bounded by their number
of iterations times the worst-case complexity of solving an LP
problem with variables and parity inequalities. Therefore,
an interesting problem to investigate is how the number of itera-
tions of the MALP decoding algorithms varies with the code pa-
rameters, such as the length or the check node degrees, and how
its behavior changes depending on whether the LP decoding
output is integral or fractional. In Subsection III-D, we present
some simulation results, studying and comparing ALP decoding
and its modifications in terms of the number of iterations.

An important consequence of the single-constraint property
shown by Theorem 3 is that, in the LP problems that are solved
by these two algorithms, the distribution of the nonzero ele-
ments of the LP constraint matrix, , is identical to that of the
parity-check matrix, , after removing the rows of that are
not represented by a parity inequality in the LP. This is due to
the fact that the support set of a row of , corresponding to a
parity inequality, is identical to that of the row of from which
it has been derived, and in addition, each row of is derived
from a unique row of .

As we will see later in this paper, the single-constraint prop-
erty, which is not shared by LP or ALP decoding, maintains the
same desirable combinatorial properties (e.g., degree distribu-
tion) for that the matrix has. We exploit this key property of
MALP algorithms later in Section V to design preconditioners
for an interior-point LP solver. It is worth noting that a prop-
erty similar to the single-constraint property was used in [15]
in a different context—to reduce the number of terms added to
approximate the gradient and Hessian in a quadratic program-
ming-based decoding.

Remember that the LP problem in the last iteration of the
MALP decoding algorithms has the same solution as standard
LP decoding. This solution is a vertex of the feasible set, defined
by at least active inequalities from this LP problem. Hence,
using Corollary 3, we conclude that at least of the initial

box constraints given by (8) are active at the solution of LP
decoding. This yields the following properties of LP decoding.

Corollary 4: The solution to any LP decoding problem differs
in at most coordinates from the vector obtained by making
bit-based hard decisions on the LLR vector .

Corollary 5: Each pseudocodeword of LP decoding has at
most fractional entries.

Remark 1: This bound on the size of the fractional support
of pseudocodewords is tight in the sense that there are LP
decoding relaxations which have pseudocodewords with ex-
actly fractional entries. An example is the pseudocodeword

of the (7, 4, 3) code with , given in [4].

C. Connection to Erasure Decoding

For the binary erasure channel (BEC), the performance of be-
lief propagation (BP), or its equivalent, the peeling algorithm
[16], has been extensively studied. The peeling algorithm can
be seen as performing row and column permutations to triangu-
larize a submatrix of consisting of the columns corresponding
to the erased bits. It is known that the BP and peeling decoders
succeed on the BEC if and only if the set of erased bits does not
contain a stopping set.

Feldman et al. have shown in [4] that LP decoding and BP de-
coding are equivalent on the BEC. In other words, the success or
failure of LP decoding can also be explained by stopping sets.
In this subsection, we show a connection between LP decoding
on the BEC and LP decoding on general MBIOS channels, al-
lowing us to derive a sufficient condition for the failure of LP
decoding on general MBIOS channels based on the existence of
stopping sets.

Theorem 4: Consider an LP decoding problem with
LLR vector , resulting in the unique integral
solution (i.e., the ML codeword) . Also, let be the result of
bit-based hard decisions on ; i.e., if , and
otherwise. Then, the set of positions where and differ,
does not contain a stopping set.

Proof: Let’s assume, without loss of generality, that is
the vector of all-zeroes, in which case, we will have

(11)

We form an LP erasure decoding problem with as
the transmitted codeword and as the set of erased positions.

has the same feasible space as , but has a
new LLR vector , defined such that

(12)

Clearly, since , we have . We
prove the theorem by showing that the all-zeroes vector is the
unique solution to , as well.

Assume that there is another vector such that we have

(13)

5966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 1. Histograms of the number of iterations for ALP, MALP-A, and MALP-B decoding for a random (3,6)-regular LDPC code of length 480 at ��� � � dB.
The left, middle, and right columns respectively correspond to the results of all decoding instances, decodings with integral outputs, and decodings with fractional
output.

Combining (12) and (13) yields

(14)

implying that . Therefore, using (11), the cost
of the vector for will be

(15)

with equality if and only if . Since, by as-
sumption, is the unique solution to , we must have

. Hence, is also the unique solution to
. Finally, due to the equivalence of LP and BP decod-

ings on the BEC, we conclude that does not contain a stopping
set.

Theorem 4 will be used later in the paper to design an efficient
way to solve the systems of linear equations we encounter in LP
decoding.

D. Simulation Results

We present simulation results for ALP, MALP-A, and
MALP-B decoding of random (3,6)-regular LDPC codes,
where the cycles of length four are removed from the Tanner
graphs of the codes. The simulations are performed in an
AWGN channel with the SNR of 2 dB (the threshold of be-
lief-propagation decoding for the ensemble of (3,6)-regular
codes is 1.11 dB), and include 8 different lengths, with 1000
trials at each length.

In Fig. 1, we have plotted the histograms of the number of it-
erations using the three algorithms for length . The first

column of histograms includes the results of all the decoding
instances, while the second and third columns only include the
decoding instances with integral and fractional outputs, respec-
tively. From this figure, we can see that when the output is in-
tegral (second column), the three algorithms have a similar be-
havior, and they all converge in less that 15 iterations. On the
other hand, when the output is fractional (third column), the
typical numbers of iterations are 2–3 times higher for all algo-
rithms, so that we observe two almost nonoverlapping peaks in
the histograms of the first column.

In Fig. 2, the average numbers of iterations of the three al-
gorithms are plotted for both integral and fractional decoding
outputs versus the code length. We can observe that the number
of iterations for MALP-A and MALP-B decoding are signifi-
cantly higher than that of ALP when the output is fractional.
On the other hand, for decoding instances with integral outputs,
where the LP decoder is successful in finding the ML codeword,
the increase in the number of iterations for the modified ALP
decoders relative to the ALP decoder is very small. Hence, the
MALP decoders pay a small price in terms of the number of iter-
ations in exchange for obtaining the single-constraint property.

To measure the statistical deviation of the number of itera-
tions from their mean, we computed the CDF of the number
of iterations for each scenario, and observed that for each of the
data points plotted in Fig. 2, the 95th percentile value is between
2.5–6 iterations above the mean value. Moreover, our simula-
tions indicate that in the scenario examined in Fig. 1, the size of
the largest LP that is solved in each MALP-A or MALP-B de-
coding problem is smaller on average than that of ALP decoding
by 17% for integral outputs and 30% for fractional outputs.

The overall execution times of these decoding algorithms
heavily depend on the choice of the underlying LP solver.
Using the simplex algorithm implementation in GLPK [19],
we have observed that the overall execution times of the ALP

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5967

Fig. 2. Number of iterations of ALP, MALP-A, and MALP-B decoding versus code length for random (3,6)-regular LDPC codes at ��� � � dB. The solid
curves represent the decoding instances with integral outputs, and the dashed curves represent the decoding instances with fractional outputs.

and MALP algorithms are very comparable, with MALP al-
gorithms sometime performing slightly faster than ALP. For a
comparison of the execution time of ALP and a number of other
LP decoding approaches, we refer the reader to the simulation
results in Section III of [10].

IV. SOLVING THE LP USING THE INTERIOR-POINT METHOD

General-purpose LP solvers do not take advantage of the
particular structure of the optimization problems arising in LP
decoding, and, therefore, using them can be highly inefficient.
In this and the next sections, we investigate how LP algorithms
can be implemented efficiently for LP decoding. The two major
techniques for linear optimization used in most applications
are Dantzig’s simplex algorithm [20] and the interior-point
methods.

A. Simplex Versus Interior-Point Algorithms

The simplex algorithm takes advantage of the fact that the
solution to an LP is at one of the vertices of the feasible polyhe-
dron. Starting from a vertex of the feasible polyhedron, it moves
in each iteration (pivot) to an adjacent vertex, until an optimal
vertex is reached. Each iteration involves selecting an adjacent
vertex with a lower cost, and computing the size of the step to
take in order to move to that edge, and these are computed by a
number of matrix and vector operations.

Interior-point methods generally move along a path within the
interior of the feasible region. Starting from an interior point,
these methods approximate the feasible region in each iteration
and take a Newton-type step towards the next point, until they
get to the optimum point. Computation of these steps involves
solving a linear system.

The complexity of an LP solver is determined by the number
of iterations it takes to converge and the average complexity of
each iteration. The number of iterations of the simplex algorithm
has been observed to be polynomial (superlinear), on average,
in the problem dimension , while its worst-case performance
can be exponential. An intuitive way of understanding why the
average number of simplex pivots to successfully solve an LP
decoding problem is at least linear in is to note that each pivot
makes one basic primal variable nonbasic (i.e., sets it to zero)
and makes one nonbasic variable basic (i.e., possibly increases
it from zero). Hence, starting from an initial point, it should
generally take at least a constant times pivots to arrive at a
point corresponding to a binary codeword. Therefore, even if
the computation of each simplex iteration were done in linear
time, one could not achieve a running time better that ,
unless the simplex method is fundamentally revised.

In contrast to the simplex algorithm, for certain classes of in-
terior-point methods, such as the path-following algorithm, the
worst-case number of iterations has been shown to be ,
although these algorithms typically converge in itera-
tions [21]. Therefore, if the Newton step at each iteration can be
computed efficiently, taking advantage of the sparsity and struc-
ture in the problem, one could obtain an algorithm that is faster
than the simplex algorithm for large-scale problems.

Interior-point methods consist of a variety of algorithms, dif-
fering in the way the optimization problem is approximated by
an unconstrained problem, and how the step is calculated at each
iteration. One of the most successful classes of interior-point
methods is the primal-dual path-following algorithm, which is
most effective for large-scale applications. In the following sub-
section we present a brief review of this algorithm. For a more

5968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

comprehensive description, we refer the reader to the literature
on linear programming and interior-point methods, e.g., [21].

B. Primal-Dual Path-Following Algorithm

For simplicity, in this section we assume that the LP problems
that we want to solve are of the form (9). However, by intro-
ducing a number of additional slack variables, we can modify
all the expressions in a straighforward way to represent the case
where both types of box constraints may be present for each
variable.

We first write the LP problem with variables and con-
straints in the “augmented” form

(16)

Here, to convert the LP problem (9) into the form above, we
have taken two steps. First, noting that each variable in (9)
is subject to exactly one box constraint of the form or

, we introduce the variable vector and cost vector ,
such that for any and if the
former inequality is included (i.e.,), and
and , otherwise. Therefore, the box constraints will
all have the form , and the coefficients of the parity
inequalities will also change correspondingly. Second, for any

we convert the parity inequality in
(9), where denotes the th row of , to a linear equation

by introducing nonnegative slack variables
, where , with corresponding coefficients

equal to zero in the cost vector . We will sometimes refer to the
first (nonslack) variables as the standard variables. The dual
of the primal LP has the form

(17)

where and are the dual standard and slack variables,
respectively.

The first step in solving the primal and dual problems is to re-
move the inequality constraints by introducing logarithmic bar-
rier terms into their objective functions.3 The primal and dual
objective functions will thus change to and

, respectively, for some , resulting in
a family of convex nonlinear barrier problems , parameter-
ized by , that approximate the original linear program4 Since
the logarithmic term forces and to remain positive, the so-
lution to the barrier problem is feasible for the primal-dual LP,
and it can be shown that as , it approaches the solution to
the LP problem. The key idea of the path-following algorithm
is to start with some , and reduce it at each iteration, as
we take one step to solve the barrier problem.

3Because of this step, interior-point methods are sometime referred to in the
literature as barrier methods.

4In all equations throughout the paper, we use natural logarithms.

The Karush–Kuhn–Tucker (KKT) conditions provide neces-
sary and sufficient optimality conditions for , and can be
written as [21, Chapter 9]

(18)

(19)

(20)

(21)

where and are diagonal matrices with the entries of and
on their diagonal, respectively, and denotes the all-ones vector.
If we define

where is the current primal-dual iterate, the
problem of solving reduces to finding the (unique) zero
of the multivariate function . In Newton’s method, is
iteratively approximated by its first-order Taylor series expan-
sion around

(22)

where is the Jacobian matrix of . The Newton di-
rection is obtained by setting the
right-hand side of (22) to zero, resulting in the following system
of linear equations:

(23)

where , and
are the residuals of the KKT equations (18), and is

the value of at iteration . If we start from a primal and dual
feasible point, we will not need to compute and , as they
will remain zero throughout the algorithm. However, for sake of
generality, here we do not make any feasibility assumption, in
order to have the flexibility to apply the equations in the general,
possibly infeasible case.

In the case where the LP in (16) represents an LP decoding
problem, the linear system (23) has vari-
ables and equations, where and , as defined earlier, denote
the number of parity inequalities and the code length, respec-
tively.

The solution to the linear system (23) is given by

(24)

(25)

(26)

where

(27)

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5969

To simplify the notation, we will henceforth drop the subscript
from , but it should be noted that is a function of the

iteration number, . Having the Newton direction, the solution
is updated as

(28)

(29)

(30)

and the primal and dual step lengths, , are chosen
such that all the entries of and remain nonnegative. In our
experiments, we have selected these step sizes according to the
following equations [21]

(31)

(32)

where . Specifically, we have found that a value close
to 0.5 is often a good choice for .

Since we are interested in solving the LP and not the bar-
rier program for a particular , rather than taking many
Newton steps to approach the solution to , we reduce the
value of each time a Newton step is taken, so that the barrier
program gives a better approximation of the LP. A reasonable
updating rule for is to make it proportional to the duality gap

(33)

that is, to update according to

(34)

The primal-dual path-following algorithm described above
will iterate until the duality gap becomes sufficiently small; i.e.,

. It has been shown that with a proper choice of the
step lengths, this algorithm takes to reduce the
duality gap from to .

In a feasible implementation of the algorithm, in order to ini-
tialize the algorithm, we need some feasible , and

. Obtaining such an initial point is nontrivial, and is usu-
ally done by introducing a few dummy variables, as well as a
few rows and columns to the constraint matrix. This may not
be desirable for a sparse LP, since the new rows and columns
will not generally be sparse. Furthermore, if the Newton direc-
tions are computed based on the feasibility assumption; i.e., that

and , round-off errors can cause instabilities due
to the gradual loss of feasibility. As an alternative, an infeasible
implementation of the primal-dual path-following algorithm is
often used, where any , and can be used
for initialization. This algorithm will simultaneously try to re-
duce the duality gap and the primal-dual feasibility gap to zero.
Consequently, the termination criterion will change: we stop the
algorithm if , and . As men-
tioned earlier, the other difference between the formulation of
the feasible and infeasible implementations is that in the former
case, the residual vectors and can be replaced by zero vec-
tors in (23).

C. Computing the Newton Directions: Preconditioned
Conjugate Gradient Method

The most complex step at each iteration of the interior-point
algorithm in the previous subsection is to solve the “normal”
system of linear equations in (24). While these equations were
derived for the primal-dual path-following algorithm, in most
other variations of interior-point methods, we encounter linear
systems of similar forms, as well.

Algorithms for solving linear systems fall into two main cat-
egories of direct methods and iterative methods. While direct
methods, such as Gaussian elimination, attempt to solve the
system in a finite number of steps and are exact in the absence of
rounding errors, iterative methods start from an initial guess and
derive a sequence of approximate solutions. Since the constraint
matrix in (24) is symmetric and positive definite, the
most common direct method for solving this problem is based
on computing the Cholesky decomposition of this matrix. How-
ever, this approach is inefficient for large-scale sparse problems
due to the computational cost of the decomposition, as well as
loss of sparsity. Hence, in many LP problems, e.g., network flow
linear programs, iterative methods such as the conjugate gra-
dient (CG) method [22] are preferred.

Suppose we want to find the solution to a system of linear
equations given by

(35)

where is a symmetric positive definite matrix. Equiva-
lently, is the unique minimizer of the functional

(36)

We call two nonzero vectors, -conjugate if

(37)

The CG method is based on building a set of -conjugate basis
vectors , and computing the solution as

(38)

where . Hence, the problem becomes that of
finding a suitable set of basis vectors. In the CG method, these
vectors are found in an iterative way, such that at step , the next
basis vector is chosen to be the closest vector to the negative
gradient of at the current point , under the condition that
it is -conjugate to . For a more comprehensive
description of this algorithm, the reader is referred to [23].

While in principle the CG algorithm requires steps to find
the exact solution , sometimes a much smaller number of it-
erations provides a sufficiently accurate approximation to the
solution. The distribution of the eigenvalues of the coefficient
matrix has a crucial effect on the convergence behavior of the

5970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 3. Parameters � � � , and � , for � � �� � � � � � at four iterations of the interior-point method for an LP subproblem of MALP decoding with � � �����

� � ���� � � �	
�. The variable indices, �, (horizontal axis) are permuted to sort � in increasing order.

CG method (as well as many other iterative algorithms). In par-
ticular, it is shown that [23, Chapter 6]

(39)

where and is the spectral condition
number of Q, i.e., the ratio of the maximum and minimum eigen-
values of Q. Using this result, the number of iterations of the CG
method required to reduce by a certain factor from its
initial value can be upper-bounded by a constant times .
We henceforth call a matrix ill-conditioned, in loose terms, if
CG converges slowly in solving (35).

In the interior-point algorithm, the spectral behavior of
changes as a function of the diagonal elements,

of , which are, as described in the previous
subsection, the square roots of the ratios between the primal
variables and the dual slack variables . In Fig. 3, the
evolution of the distributions of , and through
the iterations of the interior-point algorithm is illustrated for
an LP subproblem of an MALP decoding instance. We can
observe in this figure that and are distributed in such a way
that the product is relatively constant over all .
This means that, although the path-following algorithm does
not completely solve the barrier problems defined in IV-B, the
condition (20) is approximately satisfied for all . A conse-
quence of this, which can also be observed in Fig. 3, is that

(40)

As the iterates of the interior-point algorithm become closer to
the solution and approaches zero, many of the ’s take very
small or very large values, depending on the value of the cor-
responding in the solution. This has a negative effect on the
spectral behavior of , and as a result, on the convergence of
the CG method.

When the coefficient matrix of the system of linear equa-
tions is ill-conditioned, it is common to use preconditioning. In
this method, we use a symmetric positive-definite matrix as
an approximation of , and instead of (35), we solve the equiv-
alent preconditioned system

(41)

We hence obtain the preconditioned conjugate gradient (PCG)
algorithm, summarized as Algorithm 4.

Algorithm 4 Preconditioned Conjugate Gradient (PCG)

1: Compute an initial guess for the solution;
2: ;
3: Solve ;
4: ;
5: for until convergence do
6: ;
7: ;
8: ;
9: ;

10: Solve ;
11: ;
12: ;
13: end for

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5971

In order to obtain an efficient PCG algorithm, we need the
preconditioner to satisfy two requirements. First,
should have a better spectral distribution than , so that the
preconditioned system can be solved faster than the original
system. Second, it should be inexpensive to solve ,
since we need to solve a system of this form at each step of the
preconditioned algorithm. Therefore, a natural approach is to
design a preconditioner which, in addition to providing a good
approximation of , has an underlying structure that makes it
possible to solve using a direct method in linear time.

The convergence of the PCG algorithm can be determined
based on the relative residual error

(42)

To ensure sufficient accuracy in the calculation of the Newton
steps, one can stop the PCG algorithm once this residual value is
below a certain threshold. The proper value of the threshold de-
pends on the properties of the LP problem (such as code length
and SNR in LP decoding), as well as the distance of the current
interior-point from the optimum; the closer we are to the op-
timum, the higher the accuracy needed in the calculation of the
Newton steps.

One important application of the PCG algorithm is in inte-
rior-point implementations of LP for minimum-cost network
flow (MCNF) problems. For these problems, the constraint ma-
trix in the primal LP corresponds to the node-arc adjacency
matrix of the network graph. In other words, the LP primal vari-
ables represent the edges, each constraint is defined for the edges
incident to a node, and the diagonal elements, of the
diagonal matrix can be interpreted as weights for the edges
(variables). A common method for designing a preconditioner
for is to select a set of columns of (edges) with
large weights, and form , where the subscript

for a matrix denotes a matrix consisting of the columns of
the original matrix with indices in .

It is known that at a nondegenerate solution to an MCNF
problem, the nonzero variables (i.e., the basic variables) corre-
spond to a spanning tree in the graph. This means that, when the
interior-point method approaches such a solution, the weights of
all the edges, except those defining this spanning tree, will go to
zero. Hence, a natural selection for would be the set of in-
dices of the spanning tree with the maximum total weight, which
results in the maximum-weight spanning tree (MST) precondi-
tioner. Finding the maximum-weight spanning tree in a graph
can be done efficiently in linear time, and besides, due to the tree
structure of the graph represented by , the matrix can be
inverted in linear time, as well.5 The MST has been observed in
practice to be very effective, especially at the later iterations of
the interior-point method, when the operating point is close to
the final solution.

V. PRECONDITIONER DESIGN FOR LP DECODING

Our framework for designing an effective preconditioner for
LP decoding, similar to the MST preconditioner for MCNF

5Throughout the paper, we refer to solving a system of linear equations with
coefficient matrix � , in loose terms, as inverting � , although we do not ex-
plicitly compute � .

Fig. 4. Extended Tanner graph for an LP problem with � � �� � � �, and
� � �.

problems, is to find a preconditioning set, ,
corresponding to columns of and , resulting in
matrices and , such that is both
easily invertible and a good approximation of . To
satisfy these requirements, it is natural to select to include
the variables with the highest weights, , while keeping

and full rank and invertible in time. Then, the
solution to in the PCG algorithm can be
found by sequentially solving ,
and , for , and , respectively.

We are interested in having a graph representation for the
constraints and variables of a linear program of the form (16) in
the LP decoding problem, such that the selection of a desirable

can be interpreted as searching for a subgraph with certain
combinatorial structures.

Definition 2: Consider an LP of the form (16) with con-
straints and variables, where are slack variables.
The extended Tanner graph of this LP is a bipartite graph con-
sisting of variable nodes and constraint nodes, such that
variable node is connected to constraint node iff is in-
volved in the th constraint; i.e., is nonzero.

For the linear programs in the MALP decoding algorithms,
since each constraint is derived from a unique check node of
the original Tanner graph, the extended Tanner graph will be a
subgraph of the Tanner graph, with the addition of degree-1
(slack) variable nodes, each connected to one of the constraint
nodes. In general, for an iteration of MALP decoding of a code
with an parity-check matrix, the extended Tanner graphs
would contain constraint nodes, variable nodes cor-
responding to the standard variables (bit positions), and slack
variable nodes. As extended Tanner graphs are special cases of
Tanner graphs, they inherit all the combinatorial concepts de-
fined for Tanner graphs, such as stopping sets. A small example
of an extended Tanner graph is given in Fig. 4.

A. Preconditioning via Triangulation

For a sparse constraint matrix, , a sufficient condition for
and to be invertible in time is that can

be made upper or lower triangular, with nonzero diagonal el-
ements, using column and/or row permutations. We call a pre-
conditioning set that satisfies this property a triangular set.
Once an upper- (lower-) triangular form of is found,
we start from the last (first) row of , and, by taking advan-
tage of the sparsity, solve for the variable corresponding to the

5972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

diagonal element of each row recursively in time. It is not
difficult to see that there always exists at least one triangular set
for any LP decoding problem; one example is the set of columns
corresponding to the slack variables, which results in a diagonal

.
As a criterion for finding the best approximation

of , we search for the triangular set
that contains the columns with the highest weights, . One
can consider different strategies of scoring a triangular set
from the weights of its members, e.g., the sum of the weights,
or the largest value of minimum weight. It is interesting to
study as a future work whether given any such metric, the
“maximum-weight” (or optimal) triangular set can be found in
polynomial time. However, in this work, we propose a (subop-
timal) greedy approach, which is motivated by the properties of
the LP decoding problem.

The problem of bringing a parity-check matrix into (approx-
imate) triangular form has been studied by Richardson and Ur-
banke [24] in the context of the encoding of LDPC codes. The
authors proposed a series of greedy algorithms that are sim-
ilar to the peeling algorithm for decoding in the binary erasure
channel: repeatedly select a nonzero entry (edge) of the matrix
(graph) lying on a weight-1 (degree-1) column or row (variable
or check node), and remove both the column and row of this
entry from the matrix. They showed that parity-check matrices
that are optimized for erasure decoding can be made almost tri-
angular using this greedy approach. It is important to note that
this combinatorial approach only relies on the placement of the
nonzero entries of the matrix, rather than their values.

The fact that the constraint matrices of the LP problems in
MALP decoding have structure similar to the corresponding
parity-check matrix motivates the use of a greedy algorithm
analogous to those in [24] for triangulating the matrix . How-
ever, this problem is different from the encoding problem, in
that we are not merely interested in making triangular, but
rather, we look for the triangular submatrix with the maximum
weight. In fact, as mentioned earlier, finding one triangular form
of is trivial, due to the presence of the slack variables. Here,
we present three greedy algorithms to search for the maximum-
weight triangular set (MTS), one of which is related to the al-
gorithms of Richardson and Urbanke. Throughout this section,
we will also refer to the outputs of these (suboptimal) greedy
algorithms, in loose terms, as the MTS, although they may not
necessarily have the maximum possible weight.

1) Incremental Greedy Search for the MTS: Although an
ideal preconditioning set would contain the columns of the
matrix that have the highest weights, in reality, the square
submatrix of composed of these columns is often neither
triangular nor full rank. In the incremental greedy search for the
MTS, we start by selecting the highest-weight column, and try
to expand the set of selected columns by giving priority to the
columns of higher weights, while maintaining the property that
the corresponding submatrix can be made lower-triangular by
column and row permutations.

Let be a set of selected columns from , where
. In order to check whether the submatrix can be made

lower-triangular by column and row permutations, we can treat
the variable nodes corresponding to in the Tanner graph as

erased bits, and use the peeling algorithm to decode them in
time. For completeness, this process, which we call the

Triangulation Step, is described in Algorithm 5.

Algorithm 5 Triangulation Step

1: Input: The set with , and the matrix ;
2: Output: An lower-triangular submatrix , if

possible;
3: Initialization: , and initialize and as

zero-length vectors;
4: for to do
5: if the minimum row degree in is not one then

cannot be made lower-triangular by permutation; Declare
Failure and exit the algorithm;

6: Select any degree-1 row from , and let be the index
of the column that contains the only nonzero entry of
row ;

7: ;

8: Set all the entries in column and row of to zero;
9: end for

10: Form by setting
;

Using the Triangulation Step as a subroutine, the incremental
greedy search method, given by Algorithm 6, first sorts the
columns according to their corresponding weights, (or, alter-
natively,), and initializes the preconditioning set, , as an
empty set. Starting with the highest-weight column and going
down the sorted list of column indices, it adds each column to

if the submatrix corresponding to the resulting set can be
made lower triangular using the Triangulation Step.

Algorithm 6 Incremental Greedy Search for the MTS

1: Input: constraint matrix , and the set of column
weights, ;

2: Output: A triangular set and the lower-triangular
matrix ;

3: Initialization: ;
4: Sort the column indices according to their

corresponding weights, , in decreasing order, to
obtain the permuted sequence , such that

;
5: while and do
6: ;
7: if the Triangulation Step can bring the submatrix

into the lower-triangular form then
8: ;
9: end if

10: end while

We claim that, due to the presence of the slack columns in
, Algorithm 6 will successfully find a triangular set of

columns; i.e., it exits the while-loop (lines 5–10) only when

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5973

. Assume, on the contrary, that the algorithm ends
while , so that the matrix is a lower-tri-
angular matrix. This means that if we add any column

to , it cannot be made lower triangular, since
otherwise, column would have already been added to
when in the while-loop.6 However, this clearly cannot be
the case, since we can produce a lower-triangular matrix

, simply by adding the columns corresponding to the slack
variables of the last rows of . Hence, we conclude
that .

2) Column-Wise Greedy Search for the MTS: Algorithm 7
is a column-wise greedy search for the MTS. It successively
adds the index of the maximum-weight degree-1 column of to
the set , and eliminates this column and the row that shares
its only nonzero entry. Matrix initially contains degree-1
slack columns, and at each iteration, one such column will be
erased. Hence, there is always a degree-1 column in the residual
matrix, and the algorithm proceeds until columns are selected.
The resulting preconditioning set will correspond to an upper-
triangular submatrix .

Algorithm 7 Column-wise Greedy Search for the MTS

1: Input: constraint matrix , and the set of column
weights ;

2: Output: A triangular set and the upper-triangular
matrix ;

3: Initialization: , and initialize and
as zero-length vectors;

4: Define and form as the index set of all degree-1
columns in ;

5: for to do
6: Let be the index of the (degree-1) column of

with the maximum weight, , and let be the index of the
row that contains the only nonzero entry of this column;

7: ;

8: Set all the entries in row of (including the only
nonzero entry of column) to zero;

9: Update from the residual matrix, ;
10: end for
11: Form by setting

;

3) Row-Wise Greedy Search for the MTS: Algorithm 7 uses
a row-wise approach for finding the MTS. In this method, we
look at the set of degree-1 rows, add to the indices of all the
columns that intersect with these rows at nonzero entries, and
eliminate these rows and columns from . Unlike the column-
wise method, it is possible that, at some iteration, there is no
degree-1 row in the matrix. In this case, we repeatedly eliminate
the lowest-weight column, until there is at least one degree-1
row.

6Note that if any set � of columns can be made lower triangular, any subset
of these columns can be made lower triangular, as well.

Algorithm 8 Row-wise Greedy Search for the MTS

1: Input: constraint matrix , and the set of column
weights ;

2: Output: A triangular set and the lower-triangular
matrix ;

3: Initialization: , and initialize and
as zero-length vectors;

4: Define and form as the index set of all degree-1
rows in ;

5: while is not all zeroes do
6: if then
7: Let be any degree-1 row of , and be the

index of the column that contains the only nonzero entry
of this row;

8: ;

9: Set all the entries in column of (including the only
nonzero entry of row) to zero, and update ;

10: else
11: Let be the index of the nonzero column of with the

minimum weight, . Set all the entries in column to
zero, and update ;

12: end if
13: end while
14: Diagonal Expansion: For each row of that is

not represented in , append to , and append
, i.e., the index of the corresponding slack

column, to both and ;
15: Form by setting

;

In addition to this difference, the number of columns in by
the end of this procedure is often slightly smaller that . Hence,
we perform a “diagonal expansion” step at the end, where

columns corresponding to the slack variables are added
to , while keeping it a triangular set. A problem with this
expansion method is that, since the algorithm does not have a
choice in selecting the slack variables added in this step, it may
add columns that have very small weights.

Let be the triangular submatrix obtained before the ex-
pansion step. As an alternative to diagonally expanding by
adding slack columns, we can apply a “triangular expansion.”
In this method, we form a matrix consisting of the columns of

that do not share any nonzero entries with the rows in vector
, and apply a column-wise or row-wise greedy search to this

matrix in order to obtain a high-weight lower-triangular sub-
matrix . This requirement for forming ensures that the
resulting triangular submatrices and can be concate-
nated as

(43)

to form a larger triangular submatrix of . This process can be
continued, if necessary, until a square triangular matrix

5974 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

is obtained, although our experiments indicate that one ex-
pansion step is often sufficient to provide such a result. It is easy
to see that this approach is potentially stronger than the diagonal
expansion in Algorithm 8, since it has the diagonal expansion as
a special case.

B. Implementation and Complexity Considerations

To compute the running time of Algorithm 6, note that while
Step 4 has complexity, the computational complexity
of the algorithm is dominated by the Triangulation Step. This
subroutine has complexity, and is called times in
Algorithm 6, which makes the overall complexity . An
interesting problem to investigate is whether we can simplify
the triangulation process in line 7 to have sublinear complexity
by exploiting the results of the previous round of triangula-
tion, as stated in the following open problem concerning erasure
decoding.

Open Problem: Consider the Tanner graph corresponding to
an arbitrary LDPC code of length . Assume that a set of bits
are erased, and does not contain a stopping set in the Tanner
graph. Thus, the decoder successfully recovers these erased bits
using the peeling algorithm (i.e., the triangulation Algorithm 5).
Now, we add a bit to the set of erased bits. Given , and the
complete knowledge of the process of decoding , such as the
order in which the bits are decoded, and the check nodes used,
is there an scheme to verify if can be decoded by
the peeling algorithm?

In addition to this potential simplification, it is possible to
make a number of modifications to Algorithm 6 in order to re-
duce its complexity. Let be the size of the smallest stopping set
in the extended Tanner graph of , which means that the subma-
trix formed by any columns can be made triangular. Then,
instead of initializing to be the empty set, we can immedi-
ately add the highest-weight columns to , since we are
guaranteed that can be made triangular. Moreover, at each
iteration of the algorithm, we can consider columns to be
added to , in order to reduce the number of calls to the trian-
gulation subroutine. The value of can be adaptively selected
to make sure that the modified algorithm remains equivalent to
Algorithm 6.

To assess the complexity of Algorithm 7, we need to examine
Steps 8 and 11 that involve column or row operations, as well
as Steps 4, 6, and 9 that deal with the list of degree-1 columns.
Since there is an number of nonzero entries in each column
or row of , running Step 8 times (due to the for-loop) and
deriving from in Step 11 each takes time. However,
one should be careful in selecting a suitable data structure for
storing the set , since, in each cycle of the for-loop, we
need to extract the element with the maximum weight, and add
to and remove from this set an number of elements. By
using a binary heap data structure [25], which is implementable
as an array, all these (Steps 6 and 9) can be done in
time in the worst case. Also, the initial formation of the heap
(Step 4) has complexity. As a result, the total complexity
of Algorithm 7 becomes .

Similarly, in Algorithm 8, we need a mechanism to extract
the minimum-weight member of the set of remaining columns.

While the heap structure mentioned above works well here,
since no column is added to the set of remaining columns, we
can alternatively sort the set of all columns by their weights as
a preprocessing step with complexity, thus making
the complexity of the while-loop linear. Since the complexity
of Steps 15 (diagonal expansion) and 16 are linear, as well, the
total running time of Algorithm 8 will be .

The process of finding a triangular preconditioner is per-
formed at each iteration of the interior-point algorithm. Since
the values of primal variables, , do not substantially change
in one iteration, we expect the MTS at each iteration to be rel-
atively close to that in the previous iteration. Consequently, an
interesting area for future work is to investigate modifications
of the proposed algorithms, where the knowledge of the MTS in
the previous iteration of the interior-point method is exploited
to improve the complexity of these algorithms.

VI. ANALYSIS OF THE MTS PRECONDITIONING ALGORITHMS

A. Performance Analysis

It is of great interest to study how the proposed algorithms
perform as the problem size goes to infinity. We expect that a
number of asymptotic results similar to those of Richardson and
Urbanke in [24] can be derived, e.g., showing that the greedy
preconditioner designs perform well for capacity-approaching
LDPC ensembles. However, since one of the main advantages
of LP decoding over message-passing decoding is its geomet-
rical structure that facilitates the analysis of its performance in
the finite-length regime, in this work we focus on studying the
proposed algorithms in this regime.

We will study the behavior of the proposed preconditioner
in the later iterations of the interior-point algorithm, when the
iterates are close to the optimum. This is justified by the fact
that, as the interior-point algorithm approaches the boundary of
the feasible region during its later iterations, many of the primal
variables, , and the dual slack variables, , approach zero,
thus deteriorating the conditioning of the matrix .
This is when a precoditioner is most needed. In addition, we can
obtain some information about the performance of the precon-
ditioner in the later iterations by focusing on the optimal point
of the feasible set.

Consider an LP problem in the augmented form (16) as part
of ALP or MALP decoding, and assume that it has a unique op-
timal solution (although parts of our analysis can be extended
to the case with nonunique solutions). We denote by the triplet

the primal-dual solution to this LP, and by
an intermediate iterate of the interior-point method. We can par-
tition the set of the columns of into the basic set

(44)

and the nonbasic set

(45)

For brevity, we henceforth refer to the columns of the con-
straint matrix corresponding to the basic variables as the
“basic columns.” It is not difficult to show that, for an LP
with a unique solution, the number of basic variables, i.e.,

, is at most . To see this, assume that of the standard

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5975

variables are nonzero, which means that box
constraints of the form are active at . Since is
a vertex defined by at least active constraints in the LP, we
conclude that at least parity inequalities must be active at ,
thus leaving at most nonzero slack variables. We call the
LP nondegenerate if , and degenerate if .

It is known that the unique solution is “strictly
complementary” [26], meaning that for any ei-
ther and , or and . Remembering
from (27) that , as the iterates of the interior-point
algorithm approach the optimum, i.e., given in (34) goes to
zero, we will have

(46)

Therefore, towards the end of the algorithm, the matrix
will be dominated by the columns of and cor-

responding to the basic set. Hence, it is highly desirable to se-
lect a preconditioning set that includes all the basic columns,
i.e., , in which case becomes a better and
better approximation of as we approach the optimum of the
LP. In the rest of this subsection, we will show that, when the
solution to the LP is integral and is sufficiently small, this
property can be achieved by low complexity algorithms similar
to Algorithms 7 and 8.

Lemma 2: Consider the extended Tanner graph for an LP
subproblem of MALP decoding. If the primal solution to

is integral, the set of variable nodes corresponding to the
basic set, whose definition is based on the augmented form (16)
of the LP, does not contain any stopping set.

Proof: Consider an erasure decoding problem on
, where the basic variable nodes are erasures. We prove the

lemma by showing that the peeling (or LP) decoder can success-
fully correct these erasures.

We denote by and the solutions to the primal LP in the
(original) standard form (9) and in the augmented form (16).
From part c) of Theorem 2, we know that is also the solution
to a full LP decoding problem with the LLR vector
and the Tanner graph comprising the standard variable nodes
and the active check nodes, .

We partition the basic set into and , the sets of
basic standard variables and basic slack variables, respectively.
We also partition the set of check nodes in into and

, the sets of check nodes that generate the active and inac-
tive parity inequalities of , respectively. Clearly, the neigh-
bors of the slack variable nodes in are the check nodes in

, since an inactive parity inequality has, by definition, a
nonzero slack.

Step 1: We first show that, even if we remove the check nodes
in from , the set of basic standard variable nodes, ,
does not contain a stopping set.

Remembering the conversion of the LP in the standard form
(9) with inequality constraints to the augmented form (16), we
can write

(47)

Using, as in Theorem 4, the notation for the result of bit-based
hard decision on , one can see that is identical to , the

set of positions where and differ. Hence, knowing that
is the solution to an LP decoding problem, and using Theorem
4, we conclude that the set does not contain a stopping set
in the Tanner graph that only includes the check nodes in .

Step 2: Now we return to , and consider solving ,
where all the basic variables are erasures, using the peeling al-
gorithm. Since the slack variables which are basic are connected
only to the inactive check nodes, we know from Step 1 that the
erased variables can be decoded by only using the active
check nodes . Once these variable nodes are peeled off the
graph, we are left with the basic slack variable nodes, each of
which is connected to a distinct check node in . There-
fore, the peeling algorithm can proceed by decoding all of these
variables. This completes the proof.

Lemma 2 shows that, under proper conditions, the submatrix
of formed by only including the columns corresponding

to the basic variables can be made lower triangular by column
and row permutations. This suggests that looking for a max-
imum-weight triangular set is a natural approach for designing
a preconditioner in MALP decoding. In particular, the following
theorem shows that, under the conditions of Lemma 2, the in-
cremental greedy Algorithm 6 indeed finds a preconditioning
set that includes all such columns.

As the interior-point algorithm progresses, the basic variables
approach 1, while the nonbasic variables approach zero. Hence,
referring to (46), we see that after a large enough number of
iterations, the highest-weight columns of will correspond
to the basic set . The following theorem shows that two of
the proposed algorithms indeed find a preconditioning set that
includes all such columns.

Theorem 5: Consider an LP subproblem of an MALP
decoding problem. If the primal solution to is integral,
at the iterates of the interior-point method that are sufficiently
close to the solution, both the Incremental Greedy Algorithm
and the Row-wise Greedy Algorithm can successfully find a
triangular set that includes all the columns corresponding to the
basic set.

Proof: As the interior-point algorithm progresses, the
weights corresponding to the basic variables approach ,
while the weights of nonbasic variables approach zero. Hence,
when becomes sufficiently small, the columns corresponding
to the basic set, will be the highest-weight columns of ,
and according to Lemma 2, the matrix consisting of these
columns can be made triangular, provided that the solution to

is integral.
In view of this result, the proof of the claim for the incre-

mental greedy algorithm becomes straighforward: The precon-
ditioning set continues to grow by one member at each it-
eration, at least until it includes all the highest-weight (i.e.,
basic) columns.

To prove that the triangular set given by the row-wise
greedy algorithm includes the basic set, as well, it is sufficient
to show that none of the basic columns will be erased from
(i.e., become all zeroes) in line 11 of Algorithm 8. Assume that,
at some iteration, a column is selected in line 11 to be erased.
Column has the minimum weight among the nonzero columns
currently in . Therefore, if is a basic column and is small

5976 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 5. Progress of the residual error for different PCG implementations, solving (24) in the �th iteration of the interior-point algorithm, in an LP with an integral
solution. The constraint matrix � has 713 rows and 2713 columns, � � ����, and ���� � ����� �	 .

enough, all the other nonzero columns are basic columns,
as well, since the basic columns are the highest-weight
columns of . This means that could be made triangular,
without running out of degree-1 rows and having to erase
column . So, column cannot be basic.

Remark 2: The proof above suggests that Theorem 5 can be
stated in more general terms. For any , let be
a set consisting of the highest-weight columns of . Then, if
the set of variable nodes corresponding to in the (extended)
Tanner graph does not contain a stopping set, that is, can
be made triangular by row and column permutations, then the
preconditioning sets found by Algorithms 6 and 8 both contain

.
The assumption that the solution is integral does not hold for

all LPs that we solve in adaptive LP decoding. On the other
hand, in practice, we are often interested in solving the LP ex-
actly only when LP decoding finds an integral solution (i.e.,
the ML codeword). This, of course, does not mean that in such
cases every LP subproblem solved in the adaptive method has
an integral solution. However, one can argue heuristically that,
if the final LP subproblem has an integral solution, the interme-
diate LPs are also very likely to have an integral solution. To
see this, remember from Theorem 2 that each intermediate LP
problem that is solved in adaptive LP decoding is equivalent to
a full LP decoding that uses a subset of the check nodes in the
Tanner graph. Now, if LP decoding with the complete Tanner
graph has an integral solution, it is natural to expect that, after
removing a subset of check nodes, which can also reduce the
number of cycles, the LP decoder is still very likely to find an
integral solution.

B. Performance Simulation

We simulated the LP decoding of (3,6)-regular LDPC
codes on the AWGN channel using the MALP-A algorithm

and our sparse implementation of the path-following inte-
rior-point method. We have shown earlier that, as interior-point
progresses, the matrix that needs to be inverted to com-
pute the Newton steps becomes more and more ill-conditioned.
We have observed that this problem becomes more severe in
the later iterations of the MALP-A algorithm, where the LP
problem is larger and more degenerate due to the abundance of
active constraints at the optimum solution of the problem.

In Figs. 5–8, we present the performance results of the PCG
method for four different systems of linear equations in the
form of (24), solved in the infeasible primal-dual path-fol-
lowing interior-point algorithm, using the preconditioners
designed by greedy Algorithms 6–8.7 In these simulations,
we used a randomly-generated (3,6)-regular LDPC code of
length 2000, where the cycles of length four were removed. We
have measured the performance of the PCG algorithm by the
behavior of the relative residual error , defined in (42)
as a function of the iteration number of the PCG algorithm.
In our experiments, we often start with a threshold on this
error in the range 0.05–0.1, and in the latter iterations of the
interior-point method, we reduce this threshold to a level in the
range 0.001–0.01.

In Figs. 5 and 6, we considered solving (24) in two different
iterations of the interior-point algorithm for solving an LP
problem. This LP problem was selected at the 6th iteration
of an MALP decoding problem at dB, and the
solution to the LP was integral. The constraint matrix for
this LP had 713 rows and 2713 columns, and we used the PCG
algorithm to compute the Newton step. Fig. 5 corresponds to
finding the Newton step at the 8th iteration of the interior-point
algorithm. In this scenario, the duality gap was

7In all the simulations of the Row-wise Greedy Search (Algorithm 8) that
we present in this section, we have used a diagonal expansion, rather than a
triangular expansion, as described in Subsection V-A.

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5977

Fig. 6. Progress of the residual error for different PCG implementations, solving (24) in the 18th iteration of the interior-point algorithm, in an LP with an integral
solution. The constraint matrix � has 713 rows and 2713 columns, � � ����, and ���� � ����� �� .

Fig. 7. Progress of the residual error for different PCG implementations, solving (24) in the 8th iteration of the interior-point algorithm, in an LP with a fractional
solution. The constraint matrix � has 830 rows and 3830 columns, � � �	��, and ���� � ����� �� .

equal to 48.6, and the condition number of the problem
was equal to . We have plotted the residual error
of the CG method without preconditioning, as well as the
PCG method using the three proposed preconditioner designs.
For this problem, except during the first 10-15 iterations, the
behaviors of the three preconditioned implementations are very
similar, and all significantly outperform the CG method.

In Fig. 6, we solved (24) at the th iteration of the same LP,
where the interior-point is much closer to the solution, with

and . In this problem, the convergence
of the CG method is very slow, so that in 200 iterations, the
residual error does not get below 0.07. The PCG method with

incremental greedy preconditioning, reaching a residual error of
in 40 iterations, has the fastest convergence, followed by

the column-wise greedy preconditioner.
To study the performance of the algorithms when the LP solu-

tion is not integral, we considered an LP from the 6th iteration
of an MALP-A decoding problem at dB, where
the solution was fractional. The matrix had 830 rows and
3830 columns. Fig. 7 corresponds to the th iteration of the in-
terior-point algorithm, with and ,
while Fig. 8 corresponds to the 18th (penultimate) iteration, with

and . These parameters are
chosen such that the scenarios in these two figures are respec-

5978 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 8. Progress of the residual error for different PCG implementations, solving (24) in the 18th iteration of the interior-point algorithm, in an LP with a fractional
solution. The constraint matrix � has 830 rows and 3830 columns, � � �����, and ���� � ����� �� .

tively similar to those in Figs. 5 and 6, the main difference being
that the decoding problem now has a fractional solution. We can
observe that, while the performance of the CG method is very
similar in Figs. 5 and 7, as well as in Figs. 6 and 8, the precon-
ditioned implementations have slower convergence when the
LP solution is fractional. In particular, in Fig. 8, the row-wise
greedy preconditioner does not improve the convergence of the
CG method, and is essentially ineffective.

To provide an overall perspective on the behavior of LP de-
coding using the schemes proposed here, in Fig. 9 we have
plotted three different parameters as a function of the iteration
index of the interior-point method as it steps toward the solu-
tion. The numbers are obtained from a single instance of LP
decoding of a (3,6)-regular LDPC code of length 1920 at SNR
= 2 dB, as a representative of the typical behavior of a suc-
cessful decoding scenario at a moderate SNR. The decoding was
done using the MALP-A decoding method and the column-wise
greedy preconditioning algorithm. In this decoding instance,
MALP-A took 5 iterations (i.e., solved 5 LP subproblems) to
find the correct codeword, and we have plotted the results for
the first, third, and fifth (final) iterations. The plots show the
number of PCG iterations it took to compute the Newton step,
the objective function gap (the objective function defined in (9)
and (16) with its optimum value subtracted) and the current
value of the duality gap (as defined in (33)). We observe that
while the objective function and duality gaps decrease exponen-
tially as the interior-point method progresses, the convergence
of the PCG method becomes faster, although the system of linear
equations to obtain the Newton steps becomes more and more
ill-conditioned.

C. Discussion

Overall, we have observed that in very ill-conditioned prob-
lems, the incremental and the column-wise greedy algorithms

are significantly more effective than the row-wise greedy al-
gorithm in speeding up the solution of the linear system. The
better performance of the column-wise approach relative to the
row-wise approach can be explained by the fact that the former,
which searches for degree-1 columns, has more choices at each
stage, since the columns of have lower degrees on average
than its rows. Besides, while the column-wise algorithm is al-
ways able to find a complete triangular preconditioning set, the
row-wise algorithm needs to expand the preconditioning set at
the end by adding some slack columns that may have very low
weights. Considering both the complexity and performance, the
column-wise search (Algorithm 7) seems to be a suitable choice
for a practical implementation of LP decoding.

A second observation that we have made in our simulations
is that the convergence of the PCG method cannot be well char-
acterized just by the condition number of the preconditioned
matrix. In fact, we have encountered several situations where
the preconditioned matrix had a much higher condition number
than the original matrix, yet it resulted in a much faster conver-
gence. For instance, in the scenario studied in Fig. 8, the condi-
tion number of the preconditioned matrix for both the
column-wise and the incremental algorithms was higher than
that of by a factor of 50–100, while these preconditioners still
improved the convergence compared to the CG method. Indeed,
the literature suggests that the speed of convergence of the CG
can typically be better explained by the number of distinct clus-
ters of eigenvalues.

While we studied the interior-point method in the context of
MALP decoding, the proposed algorithms can also be applied
to the LPs that may have more than one constraint from each
check node. For instance, we have observed that the proposed
implementation is also very effective for ALP decoding. How-
ever, in the absence of the single-constraint property, some of
the analytical results we presented may no longer be valid.

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5979

VII. SUMMARY OF THE PROPOSED LP DECODING ALGORITHM

In this paper, we have proposed and studied a number of al-
gorithms that can be used either jointly or separately in dif-
ferent stages of LP decoding, as well as in other applications
involving optimization or systems of linear equations. To pro-
vide a high-level overview of an end-to-end LP decoder based
on these algorithms, we present in Algorithm 9 a sketch of an LP
decoder employing the following techniques: adaptive LP de-
coding (ALP/MALP), an interior-point method for solving LPs,
a preconditioned conjugate-gradient method (PCG) to compute
Newton steps, and a greedy preconditioner design algorithm.

Algorithm 9 The sketch of an end-to-end LP decoder

1: Setup the initial LP problem with box constraints from
(8);

2: repeat ALP/MALP Loop; based, e.g., on Algorithm 3
3: Obtain the the augmented primal (16) and dual (17)

forms of the current LP problem;
4: Find initial values , and for the primal

and dual standard and slack variables, and an initial value
for the barrier coefficient (Lagrange multiplier);

5: repeat Interior-point method loop to solve the current
LP; e.g., based on the primal-dual path-following
algorithm described in Subsection IV-B

6: Form the normal equation (24) to compute the Newton
step for the dual standard variables, ;

7: Find a triangular set —defined in
Subsection V-A—using one of the greedy search
Algorithms 6, 7, or 8;

8: Using , obtain the preconditioner matrix
;

9: Perform the PCG method—based on Algorithm 4—to
solve for in (24), using the preconditioner ;

10: Given , obtain the remaining two Newton steps
and using (25) and (26);

11: Calculate the primal and dual step sizes and
using (31)–(32), and update , and using (28)–(30);

12: Update the barrier coefficient (Lagrange multiplier)
according to (34);

13: Compute the duality gap as defined in (33), and
feasibility gap with and
defined in (23);

14: until Duality gap and feasibility gap are below their
corresponding thresholds

15: Given the solution to the current LP, search the set of
linear constraints of LP decoding (7)—using Algorithm
2—to find all cuts (violated constraints) at this solution;

16: If any cuts were found, add them to the LP problem,
and remove all or some of the inactive constraints from
the LP problem, according to MALP-A (Algorithm 3)
or MALP-B;

17: until No cuts are found
18: Output the solution of the final LP as the LP decoding

solution.

VIII. CONCLUSIONS

In this paper, we studied various elements in an efficient
implementation of LP decoding. We first studied the adaptive
LP decoding algorithm and two variations and demonstrated
a number of properties of these algorithms. Specifically, we
proposed modifications of the ALP decoding algorithm that
satisfy the single-constraint property; i.e., each LP to be solved
contains at most one parity inequality from each check node of
the Tanner graph.

We then studied a sparse interior-point implementation of
linear programming, with the goal of exploiting the properties
of the decoding problem in order to achieve lower complexity.
The heart of the interior-point algorithm is the computation of
the Newton step via solving an (often ill-conditioned) system of
linear equations. Since iterative algorithms for solving sparse
linear systems, including the conjugate-gradient method, con-
verge slowly when the system is ill-conditioned, we focused on
finding a suitable preconditioner to speed up the process.

Motivated by the properties of LP decoding, we studied a
new framework for desiging a preconditioner. Our approach was
based on finding a square submatrix of the LP constraint matrix
which contains the columns with the highest possible weights,
and at the same time, can be made lower- or upper-triangular
by column and row permutations, making it invertible in linear
time. We proposed a number of greedy algorithms for designing
such preconditioners, and proved that, when the solution to the
LP is integral, two of these algorithms indeed result in effec-
tive preconditioners. We demonstrated the performance of the
proposed schemes via simulation, and we observed that the pre-
conditioned systems are most effective when the current LP has
an integral solution.

One can imagine various modifications and alternatives to the
proposed greedy algorithms for designing preconditioners. It is
also interesting to investigate the possibility of finding other
adaptive or nonadaptive formulations of LP decoding that re-
sult in solving the smallest possible number of LPs, while main-
taining the single-constraint property. Moreover, there are sev-
eral aspects of the implementation of LP decoding that are not
explored in this work. These potential areas for future research
include the optimal selection of the stopping criteria and step
sizes for the interior-point algorithm and the CG method, as
well as the theoretical analysis of the effect of preconditioning
on the condition number and the eigenvalue spectrum of the
linear system, similar to the study done in [27] for network flow
problems.

APPENDIX A
PROOF OF THEOREM 2

a) To prove the claim, we show that the solution to any linear
program consisting of the initial (single-sided) box
inequalities given by (8) and any number of parity in-
equalities of the form (6) satisfies all the double-sided box
constraints of the form .
For simplicity, we first transform each variable ,

5980 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 9. Behavior of the interior-point method using PCG with column-wise greedy preconditioner search. The results are plotted for solving 3 LP subproblems at
different iterations of the same MALP-A decoding problem at ��� � � dB, with a random (3,6)-regular LDPC code of length 1920.

and its coefficient in the objective function, respec-
tively, into a new variable and a new coefficient ,
where

(48)

By this change of variables, we can rewrite in terms
of . In this equivalent LP, all the variables will have
nonnegative coefficients in the objective function, and
the box constraints (8) will all be transformed into in-
equalities of the form . However, the transformed
parity inequalities will still have the form

(49)

although here some of the sets may have even car-
dinality. To prove the claim, it suffices to show that the
unique solution to this LP satisfies .
Assume, on the contrary, that for a subset of indices

, we have , and .
We define a new vector as

(50)

Remembering that , we will have
. Moreover, clearly satisfies all the double-sided

box constraints . We claim that
any parity inequality of the form (49) in the LP, which
is by assumption satisfied at , is also satisfied at .
To see this, note that the first sum in (49) can only either
increase or remain constant by moving from to , and
it will be nonnegative at . Moreover, the second sum
will remain constant if , or will decrease but
remain greater than or equal to one if . In both
cases, inequality (49) will be satisfied at . Hence, we
have shown that there is a feasible point which has a
cost smaller than or equal to that of . This contradicts
the assumption that is the unique solution to the LP.
Consequently, the solution to the LP should satisfy all the
double-sided box constraints.

b) We need to show that for any
. This is obvious for ALP decoding, as the feasible set

of contains the feasible set of . For MALP-A
and MALP-B, let be the problem obtained by re-
moving from a subset (or all) of the parity inequal-
ities that are inactive at its solution, . As discussed
earlier, these inactive inequalities are nonbinding, so the
solution to must be , as well. Now, is
obtained by adding some new (violated) constraints to

. Hence, the feasible set of strictly contains
that of , which yields .

c) Similar to the proof of [9, Theorem 2].

TAGHAVI et al.: EFFICIENT IMPLEMENTATION OF LINEAR PROGRAMMING DECODING 5981

d) Similar to part b), let be the LP problem obtained
by removing from all of the parity inequalities that
are inactive at , and remember that is the solution
to , as well. Clearly, all the parity inequalities in

are from check nodes with indices in ; thus, the
feasible space of contains that of . Hence, it
remains to show that , the optimum feasible point for

, is also in the feasible space of . Let
be the set of indices of variable nodes that are

involved in at least one of the parity inequalities in
(or, equivalently, check nodes in), and let be the set
of the remaining indices. According to Corollary 2, all the
parity inequalities from check nodes in are satisfied at

. In addition, we can conclude from Corollary 1 that
the box constraints for variables with indices in are
satisfied, as well. Now, for any , the variable
will be decoupled from all other variables, since it is only
constrained by a box constraint according to (8). Hence, in
the solution , such a variable will take the value
if or if .8 Consequently, satisfies
all the parity inequalities and box constraints of ,
and hence is the solution to this LP decoding problem.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for helpful tech-
nical comments and pointers to the literature. This work was
supported in part by NSF Grant CCF-0829865.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[3] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[4] J. Feldman, M. J. Wainwright, and D. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Trans. Inf. Theory, vol. 51,
no. 3, pp. 954–972, Mar. 2005.

[5] P. O. Vontobel and R. Kötter, “On the relationship between linear pro-
gramming decoding and min-sum algorithm decoding,” in Proc. IEEE
Int. Symp. Information Theory and Applications, Parma, Italy, Oct.
2004, pp. 991–996.

[6] P. O. Vontobel and R. Kötter, “Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes,” IEEE
Trans. Inf. Theory, to be published.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding Belief Prop-
agation and its Generalizations, Mitsubishi Electric Research Labs.,
Tech. Rep. TR2001-22, Jan. 2002.

[8] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: Message-passing and linear programming,”
IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3697–3717, Nov. 2005.

[9] M. H. Taghavi and P. H. Siegel, “Adaptive linear programming de-
coding,” in Proc. IEEE Int. Symp. Information Theory, Seattle, WA,
Jul. 2006, pp. 1374–1378.

8We assume that � �� �, since otherwise, � will not have a unique optimum
value, which contradicts the uniqueness assumption on � in the theorem.

[10] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear pro-
gramming decoding,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp.
5396–5410, Dec. 2008.

[11] M. Chertkov and M. Stepanov, “Pseudo-codeword landscape,” in
Proc. IEEE Int. Symp. Information Theory, Nice, France, Jun. 2007,
pp. 1546–1550.

[12] K. Yang, X. Wang, and J. Feldman, “Cascaded formulation of the fun-
damental polytope of general linear block codes,” in Proc. IEEE Int.
Symp. Information Theory, Nice, France, Jun. 2007, pp. 1361–1365.

[13] P. O. Vontobel, “Interior-point algorithms for linear-programming
decoding,” presented at the Information Theory and its Applications
Workshop, La Jolla, CA, Jan./Feb. 2008.

[14] P. O. Vontobel and R. Kötter, “On low-complexity linear-program-
ming decoding of LDPC codes,” Europ. Trans. Telecommun., vol. 5,
pp. 509–517, Aug. 2007.

[15] T. Wadayama, “Interior point decoding for linear vector channels based
on convex optimization,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp.
4905–4921, Oct. 2010.

[16] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[17] R. G. Jeroslow, “On defining sets of vertices of the hypercube by linear
inequalities,” Discrete Math., vol. 11, pp. 119–124, 1975.

[18] X. Zhang and P. H. Siegel, “Adaptive cut generation for improved
linear programming decoding of binary linear codes,” in Proc. IEEE
Int. Symp. Information Theory, Saint Petersburg, Russia, Jul./Aug.
2011, pp. 1644–1648.

[19] GNU Linear Programming Kit [Online]. Available: http://www.gnu.
org/software/glpk

[20] G. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton Univ. Press, 1963.

[21] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimiza-
tion. Belmont, MA: Athena Scientific, 1997.

[22] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. Nat. Bureau Standards, vol. 49, no. 6,
pp. 409––436, , Dec. 1952.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd
ed. Philadelphia, PA: SIAM, 2003.

[24] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-den-
sity parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
638–656, Feb. 2001.

[25] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 2nd ed. Reading, MA: Addison-Wesley, 1998.

[26] A. J. Goldman and A. W. Tucker, “Theory of linear programming,” in
Linear Equalities and Related Systems, H. W. Kuhn and A. W. Tucker,
Eds. Princeton, N. J.: Princeton Univ. Press, 1956, pp. 53–94.

[27] J. J. Júdice, J. M. Patrício, L. F. Portugal, M. G. C. Resende, and G.
Veiga, “A study of preconditioners for network interior point methods,”
Comput. Optim. Appl., no. 24, pp. 5–35, 2003.

Mohammad H. Taghavi (M’09) received the B.Sc. degree from Sharif Uni-
versity of Technology, Tehran, Iran, in 2003 and the M.Sc. and Ph.D. degrees
from the University of California, San Diego, La Jolla, in 2005 and 2008, re-
spectively, all in electrical engineering.

Since 2008, Dr. Taghavi has been with Qualcomm, Inc. in San Diego, CA,
conducting research and development on wireless cellular and local area net-
works. He has contributed to the IEEE 802.11ac and 802.11ad standards on Very
High Throughput Wireless LAN, and has co-authored several patents in this
area. His research interests include wireless communications, error-correcting
codes, information theory, and optimization theory.

Dr. Taghavi was a recipient of the Gold Medal of the 30th International
Physics Olympiad, Padova, Italy, 1999.

5982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Amin Shokrollahi (M’97–SM’06–F’08) was born in Tehran in 1964. He re-
ceived a Diplom (equivalent of an M.Sc.) from the University of Karlsruhe in
1988, and a Ph.D. in computer science from the University of Bonn in 1991.
He completed a Habilitation in Basic Sciences at the University of Karlsruhe in
1998. He was a lecturer at the University of Bonn between 1991 and 1995, a se-
nior researcher at the International Computer Science Institute in Berkeley from
1995 to 1998, Member of the Technical Staff at Bell Laboratories between 1998
and 2000, Chief Scientist of Digital Fountain between 2000 and 2009, and Pro-
fessor of Mathematics and Computer Science at the Ecole Polytechnique Fed-
erale de Lausanne since 2003. He is a member of the Research Council of the
Swiss National Science Foundation, Fellow of the IEEE, and a member of var-
ious other professional organizations. Amin’s research interests include coding
theory, cryptography, computational number theory, computational algebra, al-
gebraic complexity theory, and signal processing. He has over 100 publications
in these areas, including the definitive book on algebraic complexity of which
he is a co-author. In addition, he has over 50 granted and pending patents in the
areas of coding theory and wireless communications. Within the coding com-
munity he is best known for his work on iterative decoding of graph based codes.
He is the co-inventor of Tornado codes, and the inventor of Raptor codes, a class
of fountain codes that has been standardized by several standardization bodies
in wireless, satellite, and wired communications.

He is also the co-inventor of Kandou signaling, a new signaling method for
communication between IC components, and one of the main technologies be-
hind the company Kandou Technologies which he co-founded in 2011. The
company specializes in the design and implementation of energy and pin-ef-
ficient high speed serial links.

He has served as a Member of Technical Program Committee of ISIT (2001,
2002, 2003, 2004, 2006, 2009), ICC (2002), ITW (2006), LATIN (2006),
RANDOM (2005), Turbo Coding Conference (2008), IMA Conference on
Cryptography and Coding (2007, 2009), ICALP (2000), and many others. He
was the Technical Program Committee co-chair of ISIT 2007, the co-chair
of the Oberwolfach Workshop on Coding Theory in 2007, the co-chair of
the Dagstuhl Conference on Group Testing in 2008, and co-organizer of the
DIMACS Special Year on Computational Information Theory in 2001. Since
2008 he has been a member of the Board of Governors of the Information
Theory Society of IEEE.

Dr. Shokrollahi is the co-recipient of the IEEE IT Best Paper Award 2002, the
co-recipient of the IEEE Eric E. Sumner Award 2008, the recipient of the joint
IEEE ComSoc/IT Best Paper Award 2008, and the recipient of the European
Research Council Advanced Research Grant 2008.

Paul H. Siegel (M’82–SM’90–F’97) received the S.B. and Ph.D. degrees in
mathematics from the Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellowship at the Courant Institute,
New York University. He was with the IBM Research Division in San Jose,
CA, from 1980 to 1995. He joined the faculty of the School of Engineering
at the University of California, San Diego in July 1995, where he is currently
Professor of Electrical and Computer Engineering. He is affiliated with the Cali-
fornia Institute of Telecommunications and Information Technology, the Center
for Wireless Communications, and the Center for Magnetic Recording Research
where he holds an endowed chair and served as director from 2000 to 2011. His
primary research interests lie in the areas of information theory and commu-
nications, particularly coding and modulation techniques, with applications to
digital data storage and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE Informa-
tion Theory Society from 1991 to 1996 and was elected to another 3-year term in
2009. He served as Co-Guest Editor of the May 1991 Special Issue on “Coding
for Storage Devices” of the IEEE TRANSACTIONS ON INFORMATION THEORY.
He served the same TRANSACTIONS as Associate Editor for Coding Techniques
from 1992 to 1995, and as Editor-in-Chief from July 2001 to July 2004. He was
also Co-Guest Editor of the May/September 2001 two-part issue on “The Turbo
Principle: From Theory to Practice” of the IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS. He was co-recipient, with R. Karabed, of the 1992 IEEE
Information Theory Society Paper Award and shared the 1993 IEEE Communi-
cations Society Leonard G. Abraham Prize Paper Award with B. Marcus and J.
K. Wolf. He holds several patents in the area of coding and detection, and was
named a Master Inventor at IBM Research in 1994. He is a member of Phi Beta
Kappa and the National Academy of Engineering.

