
Efficient Implementation of Linear Programming
Decoding

Mohammad H. Taghavi∗, Amin Shokrollahi†, and Paul H. Siegel∗

∗ University of California, San Diego, Email: (mtaghavi, psiegel)@ucsd.edu
† Ecole Polytechnique Fédérale de Lausanne (EPFL), Email: amin.shokrollahi@epfl.ch

Abstract—This paper explores ideas for fast linear program-
ming (LP) decoding of low-density parity-check (LDPC) codes.
We first propose a modification of Adaptive LP decoding, and
prove that it performs LP decoding by solving a number of linear
programs that contain at most one linear constraint derived from
each of the parity-check constraints. Then, as a step toward
designing an efficient LP solver that exploits the structure of
LDPC codes, we study a sparse interior-point implementation
for solving this sequence of linear programs. Since the most
complex part of each iteration of the interior-point algorithms is
to solve a (usually ill-conditioned) system of linear equations for
finding the step direction, we propose a framework for designing
preconditioners to be used with the iterative methods for solving
these systems. The effectiveness of the proposed approach is
demonstrated via both analytical and simulation results.

I. INTRODUCTION

Linear programming (LP) decoding was proposed by Feld-
man et al. [1] as an alternative to iterative message-passing
(IMP) decoding of LDPC and turbo-like codes. LP decoding
approximates the maximum-likelihood (ML) decoding prob-
lem by a linear optimization problem via relaxing each of the
finite-field parity-check constraints of the ML decoding into a
number of linear constraints. Due to its geometric structure, LP
decoding seems to be more amenable than IMP decoding to
finite-length analysis. In particular, the finite-length behavior
of LP decoding can be completely characterized in terms of
pseudocodewords. Another characteristic of LP decoding – the
ML certificate property – is that its failure to find an ML
codeword is always detectable.

On the other hand, the main disadvantage of LP decoding
is its higher complexity compared to IMP decoding. A con-
ventional implementation of LP decoding is highly complex
due to two main factors: (1) the large size of the LP problem
formed by relaxation, and (2) the inability of general-purpose
LP solvers to solve the LP efficiently by taking advantage of
the properties of the decoding problem.

The standard formulation of LP decoding [1] has a size that
grows very rapidly with the density of the parity-check matrix.
Adaptive LP (ALP) decoding was proposed in [2] to address
this problem, reducing LP decoding to solving a sequence of
much smaller LP problems. The size of these LP problems
has been observed in practice to be independent of the degree
distribution, although this observation has not been analyti-
cally explained. More recently, an equivalent formulation of
the LP decoding problem was proposed in [3] and [4], with a

problem size growing linearly with both the code length and
the maximum check node degrees.

In this paper, we take some steps toward designing efficient
LP solvers for LP decoding that exploit the inherent sparsity
and structure of this particular class of problems. Our approach
is based on a sparse implementation of interior-point (IP)
algorithms. In an independent work, Vontobel studied the im-
plementation and convergence of IP methods for LP decoding
and mentioned a number of potential approaches to reduce
its complexity [5]. A different line of work in this direction
has been to apply iterative methods based on message-passing,
instead of general LP solvers, to perform the optimization for
LP decoding; e.g. see [6] and [7].

We first propose a modified version of ALP decoding, in
which we adaptively remove a number of constraints at each
iteration of ALP decoding, while adding new constraints to the
problem. We prove a number of properties of this algorithm,
which facilitate the design of a low-complexity LP solver.
In particular, we show that the modified ALP decoder has
the single-constraint property, which means that it performs
LP decoding by solving a series of linear programs that each
contain at most one linear constraint from each parity check.

Then, we focus on the most complex part of each iteration
of the IP algorithm, which is solving a system of linear
equations to compute the Newton step. Since these linear
systems become ill-conditioned as the IP algorithm approaches
the solution, iterative methods, such as the conjugate-gradient
(CG) method, that are often used for solving sparse systems
perform poorly in the later iterations of the optimization. As a
solution, we propose a criterion for designing preconditioners
that take advantage of the properties of LP decoding, along
with a number of greedy algorithms to search for such pre-
conditioners. The proposed preconditioning algorithms have
similarities to the encoding procedure of LDPC codes, and
we demonstrate their effectiveness via both analytical methods
and computer simulation results.

The rest of this paper is organized as follows. In Section
II, we review LP decoding and ALP decoding. In Section
III, we propose the modified ALP decoding, and show a
number of properties of this algorithm. In Section IV, we focus
on the sparse implementation of an IP linear programming
method, and the need for preconditioning to compute the
Newton step in this algorithm. In Section V, we introduce a
preconditioning approach to speed up the iterative computation

of the Newton step. Some theoretical analysis and computer
simulation results are presented in Section VI. Section VII
concludes the paper.

II. LINEAR PROGRAMMING DECODING

A. LP Relaxation of Maximum-Likelihood Decoding

Consider a binary linear code C of length n. If a codeword
v ∈ C is transmitted through a memoryless binary-input
output-symmetric (MBIOS) channel, the ML codeword uML

given the received vector r ∈ R
n is the solution to the

optimization problem

ML Decoding
minimize γT u

subject to u ∈ C, (1)

where γ is the vector of log-likelihood ratios (LLR) given by

γi = log
(

Pr(ri|ui = 0)
Pr(ri|ui = 1)

)
. (2)

This is an optimization with a linear objective function, but
with nonlinear constraints in R. It is desirable to replace
these constraints by a number of linear constraints, so that
decoding can be performed using linear programming. The
feasible space of the desired LP would be the convex hull of all
the codewords in C. Unfortunately, the number of constraints
needed for this LP representation grows exponentially with the
code length, making this approach impractical.

As an approximation to ML decoding, Feldman et al.
proposed a relaxed version of this problem by first considering
the convex hull of the local codewords defined by each row of
the parity-check matrix, and then intersecting them to obtain
what is known as the fundamental polytope, P [8]. To describe
the (projected) fundamental polytope, linear constraints are
derived from a parity-check matrix as follows. For each row
j = 1, . . . , m of the parity-check matrix, i.e., each check node,
the LP formulation includes the constraints∑

i∈V
(1−ui)+

∑
i∈N (j)\V

ui ≥ 1, ∀ V ⊆ N (j) s. t. |V| is odd. (3)

We refer to the constraints of this form as parity inequalities. If
the variables ui are zeroes and ones, these constraints will be
equivalent to the original binary parity-check constraints. Now,
given this equivalence, we relax the LP problem by replacing
each binary constraint, ui ∈ {0, 1}, by a box constraint of the
form 0 ≤ ui ≤ 1. LP decoding can then be written as

LP Decoding
minimize γT u

subject to u ∈ P .
(4)

The integral vertices of the fundamental polytope exactly
correspond to the codewords of C. Therefore, the LP relaxation
has the ML certificate property, i.e., whenever LP decoding
gives an integral solution, it is guaranteed to be an ML
codeword. On the other hand, if LP decoding gives as the
solution one of the nonintegral vertices, which are called the
pseudocodewords, the decoder declares a failure.

B. Adaptive Linear Programming Decoding

In [2] the adaptive LP (ALP) decoding algorithm was
proposed as an alternative to the direct implementation of LP
decoding (4). In this method, a hierarchy of LPs with the same
objective function as in (4) are solved, with the solution to the
last program being identical to that of LP decoding. The first
LP in this hierarchy is made up of only n box constraints,
such that for each i ∈ {1, 2, . . . , n}, we include the constraint{

0 ≤ ui if γi ≥ 0,

ui ≤ 1 if γi < 0.
(5)

The solution to this initial problem corresponds to the result
of (uncoded) bit-wise hard decisions on the received vector.
The ALP decoding algorithm is written in Algorithm 1.

Algorithm 1 ALP Decoding
1: Setup the initial LP problem with constraints from (5),

and k ← 0;
2: Find the solution u0 to the initial LP problem by bit-wise

hard decision;
3: repeat
4: k ← k + 1;
5: Find the set Sk of all parity inequalities and box

constraints that are violated at uk−1;
6: If |Sk| > 0, add the constraints in Sk to the LP problem

and solve it to obtain uk;
7: until |Sk| = 0
8: Output u = uk as the solution to LP decoding.

In Step 5 of this algorithm, the search for all the violated
parity inequalities can be performed efficiently using Algo-
rithm 1 of [2], without having to examine all the O(m2dmax)
parity inequalities of the original LP decoding formulation.

In [2], the number of iterations of ALP decoding was upper-
bounded by the code length, n. However, it was observed
in the simulations that the typical number of iterations is
much smaller in practice (less than 20 for all n < 2000).
Moreover, one can conclude from the following theorem that,
at each iteration of ALP decoding, the number of violated
parity inequalities added to the problem is at most m.

Theorem 1 ([9]): If at any given point u ∈ [0, 1]n, one of
the parity inequalities introduced by a check node j is violated,
the rest of the parity inequalities from this check node are
satisfied with strict inequality.

III. MODIFIED ALP DECODING

Definition 1: A linear inequality constraint of the form
aT x ≤ b is called active at point x0 if it holds with equality;
i.e., aT x0 = b, and is called inactive if it holds with strict
inequality; i.e. aT x0 < b.
The following is a corollary of Theorem 1

Corollary 1: If one of the parity inequalities introduced by
a check node is active at a point x0 ∈ [0, 1]n, all parity
inequalities from this check node must be satisfied at x0.

Now consider the linear program LP k at an iteration k of
ALP decoding, with an optimum point uk. It is easy to see

that among the constraints in this linear program, the inactive
ones are non-binding, meaning that, if we remove the inactive
constraints from the problem, uk remains an optimum point of
the feasible space. Motivated by the fact above, we propose the
modified ALP decoding algorithm (MALP decoding), stated
in Algorithm 2, where, after solving each LP, a subset of the
constraints that are active at the solution are removed.

It was conjectured in [9] that no box constraint can be
violated at any intermediate solution of ALP decoding. We
will prove this conjecture for both ALP and MALP decoding
in a forthcoming paper [10]. Hence, in this work, we do not
search for violated box constraints in the proposed algorithm.

Algorithm 2 MALP Decoding
1: Setup the initial LP problem with constraints from (5),

and k ← 0;
2: Find the solution u0 to the initial LP problem by bit-wise

hard decision;
3: repeat
4: k ← k + 1; flag← 0;
5: for j = 1 to m do
6: if check node j introduces a parity inequality that is

violated at uk−1 then
7: Remove the parity inequalities of check node j (if

any) from the current problem;
8: Add the new (violated) constraint to the LP prob-

lem; flag← 1;
9: end if

10: end for
11: If flag = 1, solve the LP problem to obtain uk;
12: until flag = 0
13: Output u = uk as the solution to LP decoding.

The LP problems solved in the ALP and MALP decoding
algorithms can be written in the “standard” matrix form as

minimize γT u

subject to Au ≤ b,

ui ≥ 0 ∀i ∈ I : γi ≥ 0,

ui ≤ 1 ∀i ∈ I : γi < 0,

(6)

where matrix A is called the constraint matrix.

A. The Single-Constraint Property

In Theorem 2 of [2], it has been shown that the sequence
of solutions to the intermediate LP problems in ALP decoding
converges to that of LP decoding in at most n iterations. Using
a similar approach it can be easily shown that this property
indeed holds for MALP decoding, as well.

Theorem 2: In the LP problem at any iteration k of the
MALP decoding algorithm, there is at most one parity inequal-
ity corresponding to each check node of the Tanner graph.

By induction: The initial LP problem consists only
of box constraints. So, it suffices to show that, if the LP
problem LP k at an iteration k satisfies the desired property,

the LP problem LP k+1 in the subsequent iteration satisfies this
property, as well. Consider check node j which has a violated
parity inequality κj at the solution uk of LP k. According
to Corollary 1, if there already has been a parity inequality
κ̃j from this check node in LP k, κ̃j cannot be active at uk,
hence, the MALP decoder will remove κ̃j before adding κj

to LP k+1. As a result, there cannot be more than one parity
inequality from any check node j in LP k+1.

Corollary 2: The number of parity inequalities in any linear
program solved by the MALP decoder is at most m.

The result above is in contrast to the non-adaptive formula-
tions of LP decoding, where the size of the LP problems grows
with the check node degree. Hence, the complexity of MALP
decoding can be bounded by its number of iterations times
the worst-case complexity of solving an LP problem with n
variables and m parity inequalities.

An important consequence of Theorem 2 is that, in the LP
problems that are solved in MALP decoding, the distribution
of the nonzero elements of the LP constraint matrix, A, has
the same structure as that of the parity-check matrix, H , after
removing the rows of H that are not represented by a parity
inequality in the LP. This is due to the fact that the support set
of a row of A, corresponding to a parity inequality, is identical
to that of the row of H from which it has been derived, and
in addition, each row of A is derived from a unique row of
H . As we will see later in this paper, this property can be
exploited in the design of efficient LP solvers.

The following corollary results from Corollary 2:
Corollary 3: The solution to any LP decoding problem

differs in at most n−m coordinates from the vector obtained
by making bit-based hard decisions on the LLR vector, γ.

Proof: Omitted.

IV. INTERIOR POINT METHOD FOR SOLVING THE LPS

In this and the next section, we investigate how an interior-
point (IP) linear optimization algorithm can be implemented
efficiently for LP decoding.

A. Implementation Issues of the Interior-Point Algorithms

For simplicity, in this section we assume that the LP
problems we want to solve are of the form (6). However,
by introducing additional slack variables, we can modify the
expressions in a straighforward way to represent the case
where both types of box constraints may be present for each
variable.

We first write the LP problem with q variables and p
constraints in the “augmented” form

Primal LP
minimize cT x

subject to Ax = b,

x ≥ 0.

(7)

Here, to convert the LP problem (6) into the form above,
we have taken two steps. First, noting that each variable u i

in (6) is subject to exactly one box constraint of the form
ui ≥ 0 or ui ≤ 1, we introduce the variable vector x and

cost vector c, such that for any i = 1, . . . , n, xi = ui and
ci = γi if the former inequality is included (i.e., γ i ≥ 0),
and xi = 1− ui and ci = −γi, otherwise. Therefore, the box
constraints will all have the form xi ≥ 0, and the coefficients
of the parity inequalities will also change correspondingly.
Second, for any j = 1, . . . , p, we convert the parity inequality
Aj�x ≤ bj in (6), where Aj� denotes the jth row of A,
to a linear equation Aj�x + xn+j = bj, by introducing p
nonnegative slack variables xn+1, . . . , xq , where q = n + p,
with corresponding coefficients equal to zero in the cost vector,
c. We will sometimes refer to the first n (non-slack) variables
as the standard variables. The dual of the LP has the form

Dual LP
minimize bT y

subject to AT y + z = c,

z ≥ 0,

(8)

where y and z are the dual standard and slack variables,
respectively.

IP algorithms consist of a variety of algorithms, differing
in the way the problem is approximated and how the step is
calculated at each iteration. One of the most successful classes
of IP methods is the primal-dual path-following algorithm,
which is most effective for large-scale applications. It has
been shown that the path-following algorithm converges to
the solution in O(

√
n) iterations in the worst-case, while the

number of iterations is typically O(log n) [11]. Therefore, if
the Newton step at each iteration can be computed efficiently
by taking advantage of the sparsity and structure in the
problem, one could obtain an algorithm that is faster than the
simplex algorithm for large-scale problems. In this paper, we
will skip a review of the IP algorithm, and will only focus on
its complexity bottleneck. For a comprehensive description,
we refer the reader to the literature on linear programming
and IP methods, e.g. [11].

Let s = (x, y, z) be the current “iterate” (or state) of the
IP algorithm solving the primal-dual LP problem given in (7),
(8), and let X and S denote diagonal matrices, with the entries
of x and z on their diagonal, respectively. The most complex
part of the IP algorithm at each iteration is to solve a “normal”
system of linear equations of the form

(AD2AT)∆y = w (9)

for ∆y , where
D2 = XZ−1, (10)

as part of the process of computing the direction for the next
Newton step.

The primal-dual path-following algorithm will iterate until
the duality gap gd � xT z becomes smaller than some small
constant ε > 0. It has been shown that with a proper choice of
the step lengths, this algorithm takes O

(√
q log(ε0/ε)

)
steps

to reduce the duality gap from ε0 to ε.
In order to initialize the algorithm, we need some feasible

x0 > 0, y0, and z0 > 0. Obtaining such an initial point is
nontrivial, and is usually done by introducing a few dummy

variables, as well as a few rows and columns to the constraint
matrix. This may not be desirable for a sparse LP, since
the new rows and columns will not generally be sparse.
Furthermore, if the Newton directions are computed based
on the feasibility assumption, round-off errors can cause
instabilities due to the gradual loss of feasibility. As an
alternative, an infeasible variation of the primal-dual path-
following algorithm is often used, where any x0 > 0, y0,
and z0 > 0 can be used for initialization. This algorithm will
simultaneously try to reduce the duality gap and move the
iterates into the feasible space.

B. Solving the Linear System: Preconditioning

The most complex step at each iteration of the IP algorithm
in the previous subsection is to solve the normal system of
linear equations in (9). While these equations were derived
for the primal-dual path-following algorithm, in most other
variations of IP methods, we encounter linear systems of
similar form.

Suppose we want to find the solution x∗ to an arbitrary
system of linear equations given by

Qx = w, (11)

where Q is a q × q symmetric positive definite matrix, which
is equal to AD2AT in the case of (9). Various algorithms
for solving such a system fall into two main categories of
direct methods and iterative methods. While direct methods,
such as Gaussian elimination, attempt to solve the system
in a finite number of steps, and are exact in the absence of
rounding errors, iterative methods start from an initial guess,
and derive a sequence of approximate solutions. Since the
constraint matrix Q is symmetric and positive definite, the
most common direct method for solving this problem is based
on computing the Cholesky decomposition of this matrix.
However, this approach is inefficient for large-scale sparse
problems, due to the computational cost of the decomposition,
as well as loss of sparsity. Hence, in many sparse LP problems,
e. g. network flow linear programs, iterative methods such as
the conjugate gradient (CG) method [12] are preferred.

While in principle the CG algorithm requires q steps to find
the exact solution x∗, sometimes a much smaller number of
iterations provides a sufficiently accurate approximation to the
solution. The distribution of the eigenvalues of the coefficient
matrix Q has a crucial effect on the convergence behavior
of the CG method. In particular, the number of iterations to
reduce the residual error by a certain factor from its initial
value can be upper-bounded by a constant times

√
κ(Q) [13,

Chapter 6], where κ(Q) is the spectral condition number of
Q, i.e. the ratio of the maximum and minimum eigenvalues
of Q. However, the condition number is not the only factor
determining the behavior of this algorithm. We henceforth call
the matrix Q ill-conditioned, in loose terms, if the CG method
converges slowly in solving (11).

In the IP algorithm, the spectral behavior of Q = AD 2AT

changes as a function of the diagonal elements d1, . . . , dq,
of D, which are, as described in the previous subsection, the

square roots of the ratios between the primal variables {x i}
and the dual slack variables {zi}. In practice, at each iteration
of the path-following IP method, the product x izi is relatively
constant over all i, such that we have

di ≈ 1√
µ

xi, ∀i = 1, . . . , q, (12)

where

µ =
xT z

q
. (13)

is proportional to the duality gap. As the iterates of the IP
algorithm become closer to the solution and µ approaches
zero, many of the di’s take very small or very large values,
depending on the value of the corresponding x i in the solution.
This has a negative effect on the spectral behavior of Q, and
as a result, the convergence of the CG method.

When the coefficient matrix Q is ill-conditioned, it is
common to use preconditioning. In this method, we use a
symmetric positive-definite matrix M as an approximation of
Q, and instead of (11), we solve the equivalent preconditioned
system

M−1Qx = M−1w. (14)

A good preconditioner M needs to satisfy two requirements.
First, M−1Q should have a better spectral distribution than
Q, so that the preconditioned system can be solved faster
than the original system. Second, it should be inexpensive
to solve Mx = z, since we need to solve a system of this
form at each step of the preconditioned algorithm. Therefore,
a natural approach is to design a preconditioner which, in
addition to providing a good approximation of Q, has an
underlying structure that makes it possible to solve Mx = z
using a direct method in linear time.

V. PRECONDITIONER DESIGN FOR LP DECODING

Our approach for designing an effective preconditioner for
LP decoding is to find a preconditioning set,M⊆ {1, . . . , q},
corresponding to p columns of A and D, resulting in p × p
matrices AM and DM, such that M = AMD2

MAT
M is both

easily invertible and a good approximation of Q = AD 2AT .
In the product AD2AT , the ith column of A is scaled by the

ith diagonal element di of the diagonal matrix D. Hence, to
design an effective preconditioner, it is natural to selectM to
include the columns with the highest scale factors, or weights,
{di}, while keeping AM and AT

M full rank and invertible in
O(q) time. Then, the solution x to Mx = z can be found by
sequentially solving AMf1 = z, D2

Mf2 = f1, and AT
Mx =

f2, for f1, f2, and x, respectively.

A. Preconditioning via Triangulation

For a sparse constraint matrix, A, a sufficient condition for
AM and AT

M to be invertible in O(q) time is that AM can
be made upper or lower triangular, with nonzero diagonal
elements, using column and/or row permutations. We call a
preconditioning setM that satisfies this property a triangular
set. Once an upper- (lower-) triangular form A�

M of AM is
found, we start from the last (first) row of A�

M, and, by taking

advantage of the sparsity, solve for the variable corresponding
to the diagonal element of each row recursively in O(1) time.
It is not difficult to see that there always exists at least one
triangular set for any LP decoding problem; one example is
the set of columns corresponding to the slack variables, which
results in a diagonal AM.

As a criterion for finding the best approximation
AMD2

MAT
M of AD2AT , we search for the maximum-weight

triangular set (MTS), i.e. the triangular set that contains the
columns with the highest weights, di. We propose a greedy
approach, to search for the MTS, motivated by the properties
of the LP decoding problem.

The problem of bringing a parity-check matrix into (ap-
proximate) triangular form has been studied by Richardson
and Urbanke [14] in the context of the encoding of LDPC
codes. The authors proposed a series of greedy algorithms that
are similar in nature to the peeling algorithm for decoding in
the binary erasure channel: repeatedly select a nonzero entry
(edge) of the matrix (graph) lying on a degree-1 column or
row (variable or check node), and remove both the column and
row of this entry from the matrix. They showed that parity-
check matrices that are optimized for erasure decoding can be
made almost triangular using this greedy approach.

The fact that the constraint matrices of the LP problems in
MALP decoding have structure similar to the corresponding
parity-check matrix motivates the use of a greedy algorithm
analogous to those in [14] for triangulating the matrix A.
However, this problem is different from the encoding problem,
in that we are not merely interested in making A triangular, but
rather, we look for the triangular submatrix with the maximum
weight. In fact, as mentioned earlier, finding one triangular
form of A is trivial, due to the presence of the slack variables.
Here, we present two greedy algorithms to search for the
MTS, one of which is related to the algorithms of Richardson
and Urbanke. Throughout this section, we will also refer to
the outputs of these (suboptimal) greedy algorithms, in loose
terms, as the MTS, although they may not necessarily have
the maximum possible weight.

1) Incremental Greedy Search for the MTS: Although an
ideal preconditioning set would contain the q columns of the
matrix that have the q highest weights, in reality, the square
submatrix of A comprised of these q columns is often neither
triangular nor full rank. In the incremental greedy search for
the MTS, we start by selecting the highest-weight column, and
try to expand the set of selected columns by giving priority to
the columns of higher weights, while maintaing the property
that the corresponding submatrix can be made lower-triangular
by column and row permutations.

Let S be a set of selected columns from A, where |S| ≤ p.
In order to check whether the submatrix AS can be made
lower-triangular by column and row permutations, we can treat
the variable nodes corresponding to S in the Tanner graph as
erased bits, and use the peeling algorithm to decode them in
O(q) time. We call this process the Triangulation Step, and
assume that, if full triangulation is possible, this procedure
outputs an |S| × |S| lower-triangular submatrix A�

S .

Using the Triangulation Step as a subroutine, the incremen-
tal greedy search method, given by Algorithm 3, first sorts
the columns according to their corresponding weights, d i (or,
alternatively, xi), and initializes the preconditioning set, M,
as an empty set. Starting with the highest-weight column and
going down the sorted list of column indices, it adds each
column to M if the submatrix corresponding to the resulting
set can be made lower triangular using the triangulation step.

Algorithm 3 Incremental Greedy Search for the MTS
1: Input: p × q constraint matrix A, and the set of column

weights, d1 . . . dq;
2: Output: A triangular setM and the p×p lower-triangular

matrix A�
M;

3: Initialization: M← ∅, i← 0;
4: Sort the column indices {1, . . . , q} according to their cor-

responding weights, di, in decreasing order, to obtain the
permuted sequence π1, . . . , πq, such that dπ1 ≥ . . . ≥ dπq ;

5: while i < q and |M| < p do
6: i← i + 1, ←M∪ {πi};
7: if the Triangulation Step can bring the submatrix AS

into the lower-triangular form A�
S then

8: M← S, A�
M ← A�

S ;
9: end while

We claim that, due to the presence of the slack columns in
A, Algorithm 3 will successfully find a triangular set M of
p columns; i.e., it exits the while-loop (lines 5-9) only when
|M| = p. Assume, on the contrary, that the algorithm ends
while |M| < p, so that the matrix AM is a p × |M| lower-
triangular matrix. This means that if we add any column k ∈
{1, . . . , q}\M toM, it cannot be made lower triangular, since
otherwise, column k would have already been added to |M|
when πi = k in the while-loop.1 However, this clearly cannot
be the case, since we can produce a p × p lower-triangular
matrix A�

M, simply by adding the columns corresponding to
the slack variables of the last p − |M| rows of AM. Hence,
we conclude that |M| = p.

2) Column-wise Greedy Search for the MTS: Algorithm 4 is
a column-wise greedy search for the MTS. It successively adds
the index of the maximum-weight degree-1 column of A to
the setM, and eliminates this column and the row that shares
its only nonzero entry. Matrix A initially contains p degree-1
slack columns, and at each iteration, one such column will
be erased. Hence, there is always a degree-1 column in the
residual matrix, and the algorithm proceeds until p columns
are selected. The resulting preconditioning set will correspond
to an upper-triangular submatrix AM.

B. Implementation and Complexity Considerations

To compute the running time of Algorithm 3, note that
while Step 4 has O(q log q) complexity, the computational
complexity of the algorithm is dominated by the Triangulation

1Note that if any set S of columns can be made lower triangular, any subset
of these columns can be made lower triangular, as well.

Algorithm 4 Column-wise Greedy Search for the MTS
1: Input: p × q constraint matrix A, and the set of column

weights d1, . . . , dq;
2: Output: A triangular set M and the upper-triangular

matrix A�
M;

3: Initialization: Ã ← A, M ← ∅, and initialize col and
row as zero-length vectors;

4: Define and form DEG1 as the index set of all degree-1
columns in Ã;

5: for k = 1 to p do
6: Let i ∈ DEG1 be the index of the (degree-1) column of

Ã with the maximum weight, di, and let j be the index
of the row that contains the only nonzero entry of this
column;

7: M←M∪ i, col ←
[

col
i

]
, row ←

[
row

j

]
;

8: Set all the entries in row j of Ã (including the only
nonzero entry of column i) to zero;

9: Update DEG1 from the residual matrix, Ã;
10: end for
11: Form A�

M by setting A�
Mi,j = Acoli,rowj , ∀ i, j ∈

{1, . . . p};

Step. This subroutine has O(q) complexity, and is called O(q)
times in Algorithm 3, which makes the overall complexity
O(q2). An interesting problem to investigate in the future is
whether we can simplify the triangulation process in line 7
to have sublinear complexity by exploiting the results of the
previous round of triangulation.

To assess the complexity of Algorithm 4, we need to
examine Steps 4, 6, and 9, which deal with the list of degree-
1 columns. One should be careful in selecting a suitable data
structure for storing the set DEG1, since, in each cycle of the
for-loop, we need to extract the element with the maximum
weight, and add to and remove from this set an O(1) number
of elements. By using a binary heap data structure [15], which
is implementable as an array, all these (Steps 6 and 9) can
be done in O(log q) time in the worst case. Also, the initial
formation of the heap (Step 4) has O(q) complexity. As a
result, the complexity of Algorithm 4 becomes O(q log q).

The process of finding a triangular preconditioner is per-
formed at each iteration of the IP algorithm. Since the values
of primal variables, {xi}, do not substantially change in one
iteration, we expect the maximum-weight triangular set at
each iteration to be relatively close to that in the previous
iteration. Consequently, an interesting are for future work is
to investigate modifications of the proposed algorithms, where
the knowledge of the MTS in the previous iteration of the
IP method is exploited to improve the complexity of these
algorithms.

VI. PERFORMANCE OF THE PRECONDITIONERS

A. Analytical Results

We will study the behavior of the proposed preconditioner
in the later iterations of the IP algorithm, when the iterates are

close to the optimum. This is justified by the fact that, as the
IP algorithm approaches the boundary of the feasible region
during its later iterations, many of the primal variables, x i, and
the dual slack variables, zi, approach zero, thus deteriorating
the conditioning of the matrix Q = AD2AT . This is when a
precoditioner is most needed.

Consider an LP problem in the augmented form (7) as part
of ALP or MALP decoding, and assume that it has a unique
optimal solution. We denote by the triple (x∗, y∗, z∗) the
primal-dual solution to this LP, and by (x, y, z) an intermediate
iterate of the IP method. We can partition the set of the q
columns of A into the basic set B and the nonbasic set N ,
where

B = {i|x∗
i > 0} and N = {i|x∗

i = 0}. (15)

For any LP with p constraints, we have |B| ≤ p. In fact, the
LPs solved for LP decoding are often “degenerate”, i.e. B < p.

It is known that the unique solution (x∗, y∗, z∗) is “strictly
complementary” [16], meaning that for any i ∈ {1, . . . , q}
either x∗

i = 0 and z∗
i > 0, or x∗

i > 0 and z∗
i = 0.

Remembering from (10) that di =
√

xi/zi, as the iterates
of the IP algorithm approach the optimum, i.e., µ given in
(13) goes to zero, we will have

lim
µ→0

di =
{

+∞ if i ∈ B,

0 if i ∈ N ,
(16)

Therefore, towards the end of the algorithm, the matrix
Q = AD2AT will be dominated by the columns of A and D
corresponding to the basic set. Hence, it is highly desirable to
select a preconditioning set that includes all the basic columns,
i.e., B ⊆M, in which case AMD2

MAT
M becomes a better and

better approximation of Q, as we approach the optimum.
Lemma 1: Consider the constraint matrix A for an LP sub-

problem LP k of MALP decoding, written in the augmented
form (7) . If the primal solution to LP k is integral, the set
of columns of A corresponding to the basic variables form a
matrix that can be made lower-triangular using column and
row permutations.

Proof: Omitted.
The following theorem shows that, under the conditions of

Lemma 1, the incremental greedy Algorithm 3 indeed finds a
preconditioning set that includes all the basic columns.

Theorem 3: Consider an LP subproblem LP k of a MALP
decoding problem. If the primal solution to LP k is integral, at
the iterates of the IP method that are sufficiently close to the
solution, the Incremental Greedy Algorithm 3 finds a triangular
set that includes all the columns corresponding to the basic set.

Proof: As the IP algorithm progresses, the basic variables
approach 1, while the nonbasic variables approach 0. As a
result of (16), after sufficient iterations, the |B| highest-weight
columns of A will correspond to the basic set B, and according
to Lemma 1, the matrix AB comprised of these columns can
be made triangular. Algorithm 3 adds one of these columns to
the preconditioning set at each iteration, until it includes all
the |B| highest-weight (i.e., basic) columns.

The assumption that the solution is integral does not hold
for all LPs that we solve in adaptive LP decoding. However,
in practice, we are often interested in solving the LP exactly
only when the LP decoder has an integral solution (i.e., the
ML codeword). This, of course, does not necessarily mean
that in such cases every LP subproblem solved in the adaptive
method has an integral solution. On the other hand, one would
intuitively expect that, if the final LP subproblem has an
integral solution, the intermediate LPs are also very likely to
have an integral solution, since the factor graphs corresponding
to the intermediate problems are subgraphs of the Tanner graph
of the code, and thus generally contain fewer cycles.

While we studied the IP method in the context of MALP
decoding, the proposed algorithms can also be applied to the
LPs that may have more than one constraint from each check
node, such as those arising in ALP decoding. However, in
the absence of the single-constraint property, some of the
analytical results we presented may no longer be valid.

B. Simulation Results

We simulated LP decoding using the MALP algorithm and
our sparse implementation of the path-following IP method
on the AWGN channel. We used a randomly-generated (3, 6)-
regular LDPC code of length 2000, with the 4-cycles removed
from its Tanner graph. We have shown before that, as the
IP algorithm progresses, the matrix AD2AT that needs to be
inverted to compute the Newton steps becomes more and more
ill-conditioned. We have observed that this problem becomes
more severe for LP problems in the later iterations of the
MALP algorithm, where the LP is larger and more degenerate
due to the abundance of active constraints at the solution to
the problem.

In Figs. 1 and 2, we present the performance results of the
PCG method for two different systems of linear equations in
the form of (9), solved by the infeasible primal-dual path-
following IP algorithm, using the preconditioners designed by
greedy Algorithms 3 and 4. The performance of the precon-
ditioned CG (PCG) algorithm is measured by the behavior of
the relative residual error ‖Qx− w‖2/‖w‖2 in (11), where
‖.‖ denotes the Euclidian norm, as a function of the iteration
number of the PCG algorithm.

In Fig. 1, we considered solving (9) using the PCG method
in the 18th iteration of the IP algorithm. The LP problem was
selected from the 6th iteration of a MALP decoding problem
at SNR = 1.5 dB, and the solution to the LP was integral.
The constraint matrix A for this LP had 713 rows and 2713
columns. In this scenario, the duality gap gd = xT z was equal
to 0.22, and the condition number of the problem, i.e., κ(Q),
was equal to 2.33×108. We have plotted the residual error of
the CG method without preconditioning, as well as the PCG
method using the two proposed preconditioner designs. In this
problem, the convergence of the CG methods is very slow, so
that in 200 iterations, the residual error does not get below
0.07. On the other hand, the PCG method with incremental
greedy preconditioning has a very fast convergence, reaching

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

10
5

Iteration Number

R
es

id
ua

l E
rr

or

CG (No Preconditioning)
PCG, Column−wise Greedy
PCG, Incremental Greedy

Fig. 1. The residual error for different PCG implementations, solving (9) in
the 18th iteration of the IP algorithm, in an LP with an integral solution.

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

10
5

Iteration Number

R
es

id
ua

l E
rr

or

CG (No Preconditioning)
PCG, Column−wise Greedy
PCG, Incremental Greedy

Fig. 2. The residual error for different PCG implementations, solving (9) in
the 18th iteration of the IP algorithm, in an LP with a fractional solution.

a residual error of 10−4 in 40 iterations, closely followed by
the column-wise greedy preconditioner.

In Fig. 2, we considered an LP from the 6th iteration of a
MALP decoding problem at SNR = 1.0 dB, where the solution
was fractional. The matrix A had 830 rows and 3830 columns,
and we compute the Newton step at the 18th (penultimate)
iteration of the IP algorithm, with gd = 0.155 and κ(Q) =
2.61×108. These parameters are chosen such that the scenario
in this figure is similar to the one in Fig. 1, the main difference
being that the decoding problem now has a fractional solution.
We observe that, while the performance of the CG method is
very similar in Fig. 1 and Fig. 2, the preconditioned methods
have slower convergence when the LP solution is fractional.

VII. CONCLUSION

We studied a sparse interior-point (IP) implementation of
LP decoding, with the goal of exploiting the properties of the
decoding problem in order to achieve lower complexity. To
that end, we first proposed a modification of the adaptive LP
decoding algorithm, which has the single-constraint property;
i.e., it solves a sequence of LPs that each contain at most one
parity inequality from each parity check.

The heart of the IP algorithm is the computation of
the Newton step at each iteration via solving a system of
linear equations. These systems of equations are often ill-
conditioned, especially in the later iterations. In such cases,
the iterative algorithms for solving sparse linear systems,
including the conjugate-gradient method, convergence slowly.
Motivated by the properties of LP decoding, we studied a new
framework for desiging a preconditioner. Our approach was
based on finding a matrix that approximates the constraint
matrix, and in addition, can be inverted in linear time due to its
combinatorial structure. We proposed two greedy algorithms
for designing such preconditioners, and showed that, when
the solution to the LP is integral, one of these algorithms can
provably find a preconditioner that is a good approximation of
the original matrix. Lastly, we demonstrated the performance
of the proposed schemes via simulation, and we observed that
the preconditioned systems are most effective when the LP
has an integral solution.

ACKNOWLEDGMENT

This work is supported in part by NSF Grant CCF-0829865.

REFERENCES

[1] J. Feldman, M. J. Wainwright, and D. Karger, “Using linear program-
ming to decode binary linear codes,” IEEE Trans. Inform. Theory, vol.
51, no. 3, pp. 954-972, Mar. 2005.

[2] M. H. Taghavi and P. H. Siegel, “Adaptive linear programming decoding,”
Proc. IEEE Int’l Symp. on Inform. Theory, Seattle, WA, Jul. 2006.

[3] M. Chertkov and M. Stepanov, “Pseudo-codeword landscape,” Proc. IEEE
Int’l Symp. on Inform. Theory, ISIT’07, Nice, France, Jun. 2007.

[4] K. Yang, X. Wang, and J. Feldman, “Cascaded formulation of the
fundamental polytope of general linear block codes,” Proc. IEEE Int’l
Symp. on Inform. Theory, ISIT’07, Nice, France, Jun. 2007.

[5] P. O. Vontobel, “Interior-point algorithms for linear-programming decod-
ing,” Proc. Information Theory and its Applications Workshop, La Jolla,
CA, Jan./Feb. 2008.

[6] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: message-passing and linear programming,” IEEE
Trans. Inform. Theory, vol. 51, no. 11, pp. 3697-3717, Nov. 2005.

[7] P. O. Vontobel and R. Koetter, “Towards low-complexity linear-
programming decoding,” Proc. Int’l Conf. on Turbo Codes and Related
Topics, Munich, Germany, Apr. 2006.

[8] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-
length analysis of message-passing iterative decoding of LDPC codes,”
Sumbitted to IEEE Trans. Inform. Theory.

[9] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,” To appear in IEEE Trans. Inform. Theory.

[10] M. H. Taghavi, A. Shokrollahi, and P. H. Siegel, “Efficient interior-point
implementation of linear programming decoding,” Submitted to IEEE
Trans. Inform. Theory.

[11] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization,,
Athena Scientific, Belmont, MA, 1997.

[12] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409-436, Dec. 1952.

[13] Y. Saad, Iterative Methods for Sparse Linear Systems (2nd Edition).
SIAM, 2003.

[14] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-
656, Feb. 2001.

[15] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 2nd ed. Reading, Addison-Wesley, MA, 1998.

[16] A. J. Goldman and A. W. Tucker, “Theory of linear programming,”
Linear Equalities and Related Systems, H. W. Kuhn and A. W. Tucker,
eds., Princeton University Press, Princeton, N. J., 1956, pp. 53-94.

