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Abstract. In this paper, we consider the problem of determining when the capacities of distinct
(d, k)-constrained systems can be equal. A (d, k)-constrained system consists of binary sequences
which have at least d zeros and at most k zeros between any two successive ones. If we let C(d, k)
denote the capacity of a (d, k)-constrained system, then it is known that C(d, 2d) = C(d+ 1, 3d+ 1)
and C(d, 2d + 1) = C(d + 1,∞). Repeated application of these two identities also yields the chain
of equalities C(1, 2) = C(2, 4) = C(3, 7) = C(4,∞). We show that these are the only equalities
possible among the capacities of (d, k)-constrained systems. In the process, we also provide useful
factorizations of the characteristic polynomials for these constraints.
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1. Introduction. Given nonnegative integers d, k, with d < k, we say that a
binary sequence is (d, k)-constrained if every run of zeros has length at most k and
any two successive ones are separated by a run of zeros of length at least d. A (d, k)-
constrained system is defined to be the set of all finite-length (d, k)-constrained binary
sequences. The above definition can be extended to the case k =∞ by not imposing
an upper bound on the lengths of zero-runs. In other words, a binary sequence is said
to be (d,∞)-constrained if any two successive ones are separated by at least d zeros,
and a (d,∞)-constrained system is defined to be the set of all finite-length (d,∞)-
constrained binary sequences. From now on, when we refer to (d, k)-constrained
systems, we shall also allow k to be ∞.

Let S(d, k) be a (d, k)-constrained system, and let qd,k(n) be the number of length-
n sequences in S(d, k). The Shannon capacity, or simply capacity, of S(d, k) is defined
as

C(d, k) = lim
n→∞

1

n
log2 qd,k(n).(1)

It is well known (see, e.g., [2]) that C(d, k) = log2 ρd,k, where ρd,k is the unique largest-
magnitude root of a certain polynomial, χd,k(z), called the characteristic polynomial
of the constraint. When k is finite, χd,k(z) takes the form

χd,k(z) = zk+1 −
k−d∑
j=0

zj ,(2)

and when k =∞,
χd,∞(z) = zd+1 − zd − 1.(3)

ρd,k is always real and lies in the interval (1, 2] so that 0 < C(d, k) ≤ 1. In fact,
C(d, k) = 1 if and only if (d, k) = (0,∞).
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Interest in constrained systems and their capacities dates back to the work of
Shannon [8]. In the mathematical literature, constrained systems are the subject of
study of symbolic dynamics (cf. [3]), where the capacity of a constrained system is
referred to as its entropy. (d, k)-constrained systems in particular have applications
in magnetic and optical recording systems [5].

It is easily verified that certain pairs of (d, k)-constrained systems have the same
capacity. For example, we have the identities

C(d, 2d) = C(d+ 1, 3d+ 1),(4)

C(d, 2d+ 1) = C(d+ 1,∞)(5)

true for all d ≥ 0. The first equality is a consequence of the fact that χd+1,3d+1(z) =
(zd+1+1)χd,2d(z), since all the roots of z

d+1+1 lie on the unit circle so that ρd,2d =

ρd+1,3d+1. Similarly, the factorization χd,2d+1(z) = χd+1,∞(z)
∑d

i=0 z
i yields (5),

since
∑d

i=0 z
i = (zd+1 − 1)/(z − 1) has all its roots on the unit circle as well.

Repeatedly applying the two identities above also yields the chain of equalities

C(1, 2) = C(2, 4) = C(3, 7) = C(4,∞).(6)

It is the aim of this paper to show that (4), (5), and (6) capture all the equalities
possible among the capacities of (d, k)-constrained systems. More precisely, we shall
prove the following theorem.

Theorem 1. If C(d, k) = C(d̂, k̂) for (d, k) �= (d̂, k̂), then one of the following
holds:

(i) {(d, k), (d̂, k̂)} = {(
, 2
), (
+ 1, 3
+ 1)} for some integer 
 ≥ 0,

(ii) {(d, k), (d̂, k̂)} = {(
, 2
+ 1), (
+ 1,∞)} for some integer 
 ≥ 0,

(iii) (d, k), (d̂, k̂) are among the pairs listed in (6).
The key to our proof of this result is an explicit factorization we obtain for the

characteristic polynomials of the (d, k)-constraints. We show that χd,k(z) can be
factored as

χd,k(z) = Φd,k(z)Ψd,k(z),

where Φd,k(z),Ψd,k(z) ∈ Z[z], Ψd,k(z) is irreducible (over Z), and Φd,k(z) either is 1 or
has all its roots on the unit circle. We can, in fact, determine an explicit form for the
polynomials Φd,k(z), from which we can deduce an expression for Ψd,k(z) for certain

(d, k) pairs. An immediate consequence of this result is that C(d, k) = C(d̂, k̂) if and
only if Ψd,k(z) = Ψd̂,k̂(z). Theorem 1 is then obtained by identifying all the cases

where we can have Ψd,k(z) = Ψd̂,k̂(z). This last step relies heavily on the explicit
form we derive for the Φ and Ψ polynomials.

The rest of the paper is organized as follows. In section 2, we present the factor-
ization of χd,k(z), which we use in section 3 to prove Theorem 1.

2. Factorization of χd,k(z). We shall first consider the factorization of χd,∞(z),
as it follows directly from existing results. Throughout this paper, we shall be con-
cerned only with polynomials with integer coefficients. Any such polynomial is called
reducible if it can be factored over the integers, and irreducible otherwise.

If F (z) ∈ Z[z] is a polynomial of degree n, then F ∗(z) = znF (1/z) is called the
reciprocal polynomial of F (z). Thus, for example, if F (z) = z5 − 4z4 + 6z3 − 4z2 − 1,
then F ∗(z) = 1− 4z + 6z2 − 4z3 − z5 is its reciprocal polynomial.
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Observe that χ∗
d,∞(z) = 1 − z − zd+1, so that when d is odd, −χ∗

d,∞(−z) =
zd+1 − z−1, and when d is even, χ∗

d,∞(−z) = zd+1+ z+1. The following result deals
with the irreducibility of the polynomials zn − z − 1 and zn + z + 1.

Theorem 2 (see [7, Theorem 1]). (i) zn − z − 1 is irreducible for all n. (ii) For
n > 2, zn + z + 1 is irreducible if and only if n �≡ 2 (mod 3). If n ≡ 2 (mod 3), then
z2 + z + 1 is a factor and the other factor is irreducible.

Thus, by part (i) of the above theorem, for odd d, −χ∗
d,∞(−z) is irreducible and

hence so is χd,∞(z). When d is even, it is either 0, 2, or 4 (mod 6). In the first two
cases, d+1 �≡ 2 (mod 3), and so by part (ii) of the above result, χ∗

d,∞(−z) is irreducible
and therefore so is χd,∞(z). When d ≡ 4 (mod 6), we have d + 1 ≡ 2 (mod 3), and
applying part (ii) of the theorem again, we see that χ∗

d,∞(−z) = (z2 + z + 1)p(z) for

some irreducible p(z). Therefore, in this case, we have χd,∞(z) = (z2−z+1)Ψd,∞(z),
with Ψd,∞(z) = p∗(−z) being irreducible. In fact, one can easily verify by means of
an inductive argument that when d ≡ 4 (mod 6), then

Ψd,∞(z) = z3 − z − 1 +
(d+2)/6∑

l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8).(7)

We summarize these results in the following theorem.
Theorem 3. For d �≡ 4 (mod 6), χd,∞(z) is irreducible. For d ≡ 4 (mod 6),

χd,∞(z) = (z2−z+1)Ψd,∞(z), with Ψd,∞(z) irreducible and of the form given by (7).
When k is finite, the factorization we obtain for χd,k(z) is based on a technique

originally due to Ljunggren [4], which was further developed by Filaseta [1]. We
briefly describe this technique here.

We define F (z) ∈ Z[z] to be self-reciprocal if F (z) = ±F ∗(z). Note that F (z) is
self-reciprocal if and only if λ being a root of F (z) implies that λ−1 is also a root. An
example of a polynomial that is self-reciprocal is z5 − 10z3 + 10z2 − 1.

Now, any F (z) ∈ Z[z] can always be written as F (z) = Φ(z)Ψ(z), where Φ(z)
is the product of all the irreducible self-reciprocal factors of F (z) that have positive
leading coefficients. If F (z) has no irreducible self-reciprocal factors, then we take
Φ(z) = 1 and Ψ(z) = F (z). We call Φ(z) the reciprocal part of F (z), while Ψ(z) is
called the nonreciprocal part of F (z). It is worth pointing out that this definition does
not preclude Ψ(z) from being self-reciprocal itself. For example, F (z) = z6 + z5 +
z4 + 3z3 + z2 + z + 1 = (z3 + z2 + 1)(z3 + z + 1), and both the factors are irreducible
but not self-reciprocal. Thus, the nonreciprocal part of F (z) is F (z) itself, which is a
self-reciprocal polynomial. On the other hand, the reciprocal part of any polynomial
is always self-reciprocal.

Note that if we take F (z) = χd,∞(z), then Theorem 3 shows that the reciprocal
part of F (z) is 1 when d �≡ 4 (mod 6) and is z2 − z + 1 when d ≡ 4 (mod 6). Thus,
the nonreciprocal part of F (z) is F (z) itself in the former case and is Ψd,∞(z) as given
by (7) in the latter case. Observe that in either case, the nonreciprocal part of F (z)
is irreducible.

The following result [1, Lemma 1] tells us precisely when the nonreciprocal part
of a polynomial is reducible.

Lemma 4 (Ljunggren–Filaseta lemma). The nonreciprocal part of F (z) ∈ Z[z] is
reducible if and only if there exists G(z) different from ±F (z) and ±F ∗(z) such that
G(z)G∗(z) = F (z)F ∗(z).

The “only if” part of this lemma is sufficient for our purposes. To verify this
part, note that if the nonreciprocal part, Ψ(z), is reducible, then Ψ(z) = A(z)B(z) for
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some non-self-reciprocal polynomials A(z) and B(z). Setting G(z) = A(z)B∗(z)Φ(z),
where Φ(z) is the reciprocal part of F (z), we see that G(z) has the properties stated
in the lemma.

We shall use the Ljunggren–Filaseta lemma to prove the irreducibility of the
nonreciprocal part of χd,k(z) (k < ∞). Once this is done, we shall study the reciprocal
part of the polynomial. Recall that χd,k(z) is a polynomial of the form f(z) =
zn − zm − zm−1 − · · · − z − 1 for some n > m > 0. It is well known (see, e.g., [9])
that when n = m + 1, the polynomial f(z) is itself irreducible. So, we need only
consider the case when n ≥ m+ 2. We shall show that if g(z) ∈ Z[z] is a polynomial
such that g(z)g∗(z) = f(z)f∗(z), then g(z) = ±f(z) or ±f∗(z). The “only if” part
of the Ljunggren–Filaseta lemma then shows that the nonreciprocal part of f(z) is
irreducible.

So, let g(z) =
∑n

i=0 giz
i be a polynomial in Z[z] such that g(z)g∗(z) = f(z)f∗(z).

Note that g(z) must itself be a polynomial of degree n. Without loss of generality, we
may assume that gn > 0 (else, replace g(z) by −g(z)).

Lemma 5. The coefficients gi of g(z) must satisfy the following equations:

gn = 1 , g0 = −1,(8)

g1 − gn−1 = −1,(9)
n−2∑
i=1

gigi+1 = m− 1,(10)

n−1∑
i=1

g2
i = m.(11)

Proof. Let f(z) =
∑n

i=0 fiz
i so that fn = 1, fi = 0 for m + 1 ≤ i ≤ n − 1, and

fi = −1 for 0 ≤ i ≤ m.

Equating the constant coefficients of f(z)f∗(z) and g(z)g∗(z), we see that g0gn =
−1. Since g0, gn ∈ Z and gn > 0, we must have gn = 1, g0 = −1.

(9) is obtained by equating the coefficients of z in f(z)f∗(z) and g(z)g∗(z). The
coefficient of z in g(z)g∗(z) is g0gn−1 + g1gn = g1 − gn−1. Now, note that since n ≥
m+2, we have fn−1 = 0. Hence, the coefficient of z in f(z)f

∗(z) is f0fn−1+f1fn = −1.
To get (10), we equate the coefficients of zn−1. In g(z)g∗(z), this coefficient is∑n−1

i=0 gigi+1, while in f(z)f
∗(z), it is

∑n−1
i=0 fifi+1 =

∑m−1
i=0 fifi+1, since fi+1 = 0 for

m ≤ i ≤ n−2, and fi = 0 for i = n−1. But in the range 0 ≤ i ≤ m−1, fi = fi+1 = −1,
which shows that

∑m−1
i=0 fifi+1 = m. Thus, we have

∑n−1
i=0 gigi+1 = m, which reduces

to (10) upon using (8) and (9).

Finally, the coefficient of zn in g(z)g∗(z) is
∑n

i=0 g
2
i , and correspondingly, in

f(z)f∗(z) is
∑n

i=0 f
2
i = m + 2. Hence,

∑n
i=0 g

2
i = m + 2, and since g2

0 = g2
n = 1, we

see that
∑n−1

i=1 g2
i = m, which proves (11).

We use this lemma to prove the following proposition.

Proposition 6. The nonreciprocal part of f(z) = zn − zm − zm−1 − · · · − z − 1,
n > m > 0, is irreducible.

Proof. As noted above, we need only prove the result for n ≥ m + 2. Lemma 5
(which applies for n ≥ m+2) shows that any g(z) =

∑n
i=0 giz

i such that g(z)g∗(z) =
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f(z)f∗(z) and gn > 0 must satisfy (8)–(11). Now, observe that

n−2∑
i=1

(gi − gi+1)
2 =

n−2∑
i=1

g2
i +

n−2∑
i=1

g2
i+1 − 2

n−2∑
i=1

gigi+1

= 2

n−1∑
i=1

g2
i − g2

1 − g2
n−1 − 2

n−2∑
i=1

gigi+1

= 2m− g2
1 − g2

n−1 − 2(m− 1)

with the last equality using (10) and (11). Thus, we see that

g2
1 + g2

n−1 +

n−2∑
i=1

(gi − gi+1)
2 = 2.(12)

Since all the gi’s are integers, this equation is satisfied if and only if exactly n− 2 of
the quantities g1, gn−1, gi − gi+1 (i = 1, 2, . . . , n − 2) are 0, and the remaining two
nonzero quantities take values from the set {−1, 1}. In particular, g1 ∈ {−1, 0, 1}.
We consider each of the three choices for g1 in turn.

If g1 = −1, then (9) shows that gn−1 = 0. Hence, there exists a k ∈ {1, 2, . . . , n−
2} such that gk − gk+1 = ±1 and gi − gi+1 = 0 for i = 1, 2, . . . , n − 2, i �= k. Now,
if gk − gk+1 = 1, then we must have gi = −1 for 1 ≤ i ≤ k, and gi = −2 for
k+1 ≤ i ≤ n−1, which contradicts gn−1 = 0. Hence, gk−gk+1 must be −1, in which
case gi = −1 for 1 ≤ i ≤ k, and gi = 0 for k + 1 ≤ i ≤ n− 1. Using (11), we see that
k = m, which forces g(z) to be zn − zm − zm−1 − · · · − z − 1 = f(z).

If g1 = 0, then (9) yields gn−1 = 1. As above, we must have gk − gk+1 = ±1 for
some k ∈ {1, 2, . . . , n− 2}, and gi − gi+1 = 0 for i = 1, 2, . . . , n− 2, i �= k. This time,
choosing gk − gk+1 to be 1 leads to gn−1 = −1, which contradicts gn−1 = 1. Thus,
gk−gk+1 = −1, so that gi = 0 for 1 ≤ i ≤ k, and gi = 1 for k+1 ≤ i ≤ n−1. From (11),
we now get k+1 = n−m. Hence, g(z) must be zn+ zn−1+ · · ·+ zn−m−1 = −f∗(z).

If g1 = 1, then (9) implies that gn−1 = 2, which means that (12) cannot be
satisfied. So, g1 cannot be 1.

Thus, we have shown that if g(z) is such that g(z)g∗(z) = f(z)f∗(z) and gn > 0,
then g(z) = f(z) or g(z) = −f∗(z). For any g(z) with gn < 0, we can apply the above
reasoning to −g(z). This proves that if g(z) ∈ Z[z] is such that g(z)g∗(z) = f(z)f∗(z),
then g(z) = ±f(z) or ±f∗(z). The proposition now follows from the Ljunggren–
Filaseta lemma.

Having shown the irreducibility of the nonreciprocal part of f(z) = zn − zm −
zm−1 − · · · − z − 1, we move on to analyzing the reciprocal part, φ(z), of f(z). Our
first goal is to show that all the roots of φ(z) are in fact certain roots of unity, which
will help us in determining the exact form of φ(z).

Lemma 7. If λ is a root of φ(z), then λ is a root of either
∑m−1

i=0 zi or
∑m+1

i=0 zi.
In other words, λ is either an mth or an (m+ 2)nd root of unity, distinct from 1.

Proof. Let λ be a root of φ(z). Note that λ �= 0 because 0 cannot be a root of
f(z), as f(0) = −1. Since φ(z) is a self-reciprocal polynomial, λ−1 is also a root of
φ(z). Since φ(z) is a factor of f(z), we have f(λ) = f(λ−1) = 0. This implies that

λn − λm − λm−1 − · · · − λ− 1 = 0,(13)

λn + λn−1 + · · ·+ λn−m+1 + λn−m − 1 = 0.(14)
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Equating the left-hand sides of these two equations, cancelling out the common terms,
and rearranging, we obtain

(λn−1 + λn−2 + · · ·+ λn−m) + (λm + λm−1 + · · ·+ λ) = 0.

Dividing through by λ �= 0, we see that the above equation simplifies to
(λn−m−1 + 1)(λm−1 + λm−2 + · · ·+ 1) = 0.

Hence λ is a root of either zn−m−1+1 or
∑m−1

i=0 zi. However, if λ is a root of zn−m−1+
1, then λn−m−1 = −1. Now, note that (14) can be rewritten as λn−m−1(λm+1+λm+
· · ·+λ)− 1 = 0, which reduces to −λm+1 −λm−· · ·−λ− 1 = 0, since λn−m−1 = −1.
Hence if λ is a root of zn−m−1 + 1, then it is also a root of

∑m+1
i=0 zi, which proves

the lemma.
We can actually say something more about the roots of φ(z), as we shall see in

the next few lemmas.
Lemma 8. If λ is a root of φ(z) that is also a root of

∑m−1
i=0 zi, then λ is in fact

a root of
∑q−1

i=0 z
i, where q = gcd(m,n).

Proof. Suppose that λ is as in the hypothesis of the lemma. Since φ(λ) = 0, we
also have f(λ) = 0, which means that

λn −
m∑
i=0

λi = 0.(15)

But since λ is a root of
∑m−1

i=0 zi, we have
∑m−1

i=0 λi = 0 and, moreover, λm = 1. Hence
(15) reduces to λn = 1. Hence λ is also an nth root of unity distinct from 1, i.e., λ

is a root of
∑n−1

i=0 zi. Therefore, λ is a root of gcd(
∑m−1

i=0 zi,
∑n−1

i=0 zi) =
∑q−1

i=0 z
i,

where q = gcd(m,n).
When λ is an (m+ 2)nd root of unity, things get a little more complicated.

Lemma 9. If λ is a root of φ(z) that is also a root of
∑m+1

i=0 zi, then (i) m is
even, (ii) λ is a root of zr + 1, where r = gcd(m2 + 1, n + 1), and (iii) (n + 1)/r is
odd.

Proof. Let λ be as in the hypothesis of the lemma. Again, the fact that f(λ) = 0

leads to (15). This time, since λ �= 1 is an (m+2)nd root of unity, we have∑m+1
i=0 λi =

0, which implies that −∑m
i=0 λ

i = λm+1 = 1/λ, using λm+2 = 1. Therefore, (15)
reduces to λn + 1/λ = 0 or, equivalently, λn+1 = −1.

Now, since λ is a root of
∑m+1

i=0 zi, it is of the form λ = e2πi
k

m+2 for some k ∈
{1, 2, . . . ,m+1}. Therefore, −1 = λn+1 = e2πi

k
m+2 (n+1). Hence 2k

m+2 (n+1) = 2j +1
for some integer j, which upon rearrangement becomes

(2k)(n+ 1) = (2j + 1)(m+ 2).(16)

Since the left-hand side (LHS) of the above equation is even, so is the right-hand side
(RHS). This means that m must be even, since 2j + 1 is odd. This proves (i).

Rearranging (16), we get k n+1
m/2+1 = 2j + 1. Defining r to be gcd(m2 + 1, n + 1),

we let m′ = (m2 + 1)/r and n′ = (n + 1)/r. Thus, m′, n′ are integers such that
gcd(m′, n′) = 1, and n+1

m/2+1 =
n′
m′ . Therefore, we have

k
n′

m′ = 2j + 1.(17)
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Since gcd(m′, n′) = 1, the fact that k n′
m′ is an integer implies that m

′|k. Writing
k = lm′ and plugging into (17), we get ln′ = 2j + 1. Therefore, n′|(2j + 1), which
shows that n′ is odd, thus proving (iii). Note that as l|(2j + 1), l is also odd.

Finally, λ = e2πi
k

m+2 = eπi
k

m/2+1 = eπi
lm′
rm′ = eπi

l
r . Since l is odd, λr = −1, which

shows that λ is a root of zr + 1, thus completing the proof of the lemma.
Now, from Lemmas 7, 8, and 9, we see that every root of φ(z) is also a root of

(
∑q−1

i=0 z
i)(zr + 1). In fact, for odd m, Lemma 9(i) shows that no root of φ(z) can be

a root of zr + 1, so that every root of φ(z) is actually a root of
∑q−1

i=0 z
i. Now, if we

can show that φ(z) has no repeated roots, it immediately follows that φ(z) is a factor

of
∑q−1

i=0 z
i for odd m, and of (

∑q−1
i=0 z

i)(zr + 1) for even m. We proceed to show this
next.

Lemma 10. φ(z) has no repeated roots.
Proof. Suppose that λ is a repeated root of φ(z). Note that |λ| = 1 since any

root of φ(z) is some root of unity. Define g(z) = (z− 1)f(z) = zn+1 − zn − zm+1 +1.
If λ is a repeated root of φ(z), then it must be a repeated root of g(z) as well. Hence
g(λ) = g′(λ) = 0, which implies that

λn+1 − λn − λm+1 + 1 = 0,(18)

(n+ 1)λn − nλn−1 − (m+ 1)λm = 0.(19)

Multiplying (18) by (n+ 1) and subtracting the result from λ times (19), we get

λn + (n−m)λm+1 = n+ 1.(20)

However, this leads to a contradiction because

n+ 1 = |λn + (n−m)λm+1| ≤ |λ|n + (n−m)|λ|m+1
= 1 + n−m ≤ n,

with the last inequality arising from the fact that m > 0. This contradiction proves
the lemma.

As observed prior to the statement of Lemma 10, we can now conclude that φ(z)

is a factor of
∑q−1

i=0 z
i for odd m and of (

∑q−1
i=0 z

i)(zr + 1) for even m.

In fact, for odd m, we can show that φ(z) =
∑q−1

i=0 z
i. Since we already know

that φ(z)|(∑q−1
i=0 z

i) in this case, we need only to show that (
∑q−1

i=0 z
i)|φ(z). It actu-

ally suffices to show that (
∑q−1

i=0 z
i)|f(z). This is because any factor, irreducible or

otherwise, of
∑q−1

i=0 z
i is always self-reciprocal (recall that φ(z) is the product of all

irreducible self-reciprocal factors of f(z)): if π(z) is a factor of
∑q−1

i=0 z
i and λ is a

root of π(z), then so is its complex conjugate, λ = λ−1.

So, to show that (
∑q−1

i=0 z
i)|f(z), we write n = n′q, m = m′q, so that

f(z) = zn
′q −

m′q∑
i=0

zi

= zn
′q − zm

′q −
m′q−1∑
i=0

zi

= zm
′q(z(n′−m′)q − 1)−

(
q−1∑
i=0

zi

)m′−1∑
l=0

zlq



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= zm
′q(zq − 1)


n′−m′−1∑

l=0

zlq


−

(
q−1∑
i=0

zi

)m′−1∑
l=0

zlq




= zm
′q(z − 1)

(
q−1∑
i=0

zi

)n′−m′−1∑
l=0

zlq


−

(
q−1∑
i=0

zi

)m′−1∑
l=0

zlq




=

(
q−1∑
i=0

zi

)zm′q(z − 1)
n′−m′−1∑

l=0

zlq −
m′−1∑
l=0

zlq




=

(
q−1∑
i=0

zi

)n′−1∑
l=m′

zlq+1 −
n′−1∑
l=0

zlq


 .(21)

Thus, we have proved that (
∑q−1

i=0 z
i)|f(z), which implies that φ(z) =∑q−1

i=0 z
i. Note

that the factorization in (21) is true for any m and n, not just for odd m. However,

odd m ensures that
∑q−1

i=0 z
i is the reciprocal part of f(z) and the other factor is the

nonreciprocal part.

The above argument, in conjunction with Proposition 6, proves the following
theorem.

Theorem 11. Let f(z) = zn−∑m
i=0 z

i, n > m > 0, m odd, and let q = gcd(m,n).

Then, f(z) = (
∑q−1

i=0 z
i)ψ(z), with ψ(z) =

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq irreducible. In

particular, for odd m, f(z) is irreducible if and only if gcd(m,n) = 1.

We next tackle the case when m is even, which is a little less clean. The first
observation to be made here is that when (n+ 1)/r is also even, where r = gcd(m2 +
1, n + 1), then it follows from Lemma 9(iii) that φ(z) cannot share any roots with∑m+1

i=0 zi. So, it must share all its roots with
∑q−1

i=0 z
i, q being gcd(m,n) as above,

implying that φ(z)|∑q−1
i=0 z

i. So, applying the argument given prior to the statement

of Theorem 11, we see that in this case as well, we have f(z) = (
∑q−1

i=0 z
i)ψ(z),

with ψ(z) irreducible and of the form stated in the theorem. This situation holds,
for example, when n is odd and 4|m, since then m

2 + 1 is odd and so is r because
r|(m2 + 1), leading to the conclusion that (n+ 1)/r is even.

So, we are left with the case when m is even, but (n+ 1)/r is odd. This is dealt
with in the following proposition.

Proposition 12. When m is even and (n + 1)/r is odd, then φ(z) is the least

common multiple (lcm) of
∑q−1

i=0 z
i and zr + 1.

Proof. From Lemmas 7, 8, and 9, we know that φ(z) is a factor of φ1(z)φ2(z),

where we have defined φ1(z) = zr + 1 and φ2(z) =
∑q−1

i=0 z
i. In fact, as φ(z) has

no repeated roots, it must be a factor of φ1(z)φ2(z)
gcd(φ1(z),φ2(z))

= lcm(φ1(z), φ2(z)), since

dividing by gcd(φ1(z), φ2(z)) takes out some roots common to φ1(z) and φ2(z).

So, we need to show the converse, i.e., that lcm(φ1(z), φ2(z)) is a factor of φ(z).
Equivalently, we need to show that φ1(z)|φ(z) and φ2(z)|φ(z). Recalling that φ(z)
is the product of all the irreducible self-reciprocal factors of f(z), it suffices to show
that φ1(z)|f(z) and φ2(z)|f(z). This is because any factor, irreducible or otherwise, of
either φ1(z) or φ2(z) is self-reciprocal. Indeed, if π(z) is a factor of either polynomial
and λ is a root of π(z), then so is its complex conjugate λ. But as λ, being a root
of φ1(z) or φ2(z), lies on the unit circle, we have λ = λ−1, implying that π(z) is
self-reciprocal.
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We have already seen (see (21)) that φ2(z)|f(z). To prove that φ1(z)|f(z), we
shall show that f(λ) = 0 for any root λ of φ1(z), which is sufficient because φ1(z) has
no repeated roots. Since λ /∈ {0, 1}, it is enough to show that λ(λ− 1)f(λ) = 0, i.e.,
λn+2−λn+1−λm+2+λ = 0. Now, λn+1 = (λr)

(n+1)/r
= (−1)(n+1)/r

= −1 as (n+1)/r
is odd. Moreover, defining m′ = (m2 + 1)/r, we have λ

m+2 = (λr)2m
′
= (−1)2m′

= 1.
Hence λn+2 − λn+1 − λm+2 + λ = −λ− (−1)− 1 + λ = 0, as desired.

The next lemma explicitly determines the lcm of
∑q−1

i=0 z
i and zr + 1.

Lemma 13. If q is even, then

lcm

(
q−1∑
i=0

zi, zr + 1

)
=

zr + 1

z + 1

q−1∑
i=0

zi =

(
r−1∑
i=0

(−z)i
)(

q−1∑
i=0

zi

)
.

Otherwise,

lcm

(
q−1∑
i=0

zi, zr + 1

)
= (zr + 1)

q−1∑
i=0

zi.

Proof. Let φ1(z) = zr +1 and φ2(z) =
∑q−1

i=0 z
i. Since gcd(φ1, φ2) · lcm(φ1, φ2) =

φ1(z)φ2(z), the lemma is proved once we show that gcd(φ1, φ2) is z + 1 if q is even,
and 1 otherwise.

We first show that if gcd(φ1, φ2) �= 1 then q is even and gcd(φ1, φ2) = z + 1.
Suppose that π(z) is a nontrivial factor of both φ(z) and φ2(z), so that there exists

a λ such that φ1(λ) = φ2(λ) = 0. Such a λ must be of the form λ = e2πi
k
q for some

k ∈ {1, 2, . . . , q − 1} and must satisfy λr = −1. Hence e2πi kr
q = −1, which means

that 2k r
q must be an odd integer.

Now, as q|n and r|(n+1), gcd(q, r) = 1. So, for 2k r
q to be an integer, 2k must be

a multiple of q. Let 2k = ql so that 2k r
q = lr. Thus, lr is an odd integer, which shows

that r and l are both odd. Furthermore, since 2k = ql, the fact that l is odd implies

that q is even. In fact, this also forces λ to be −1, because λ = e2πi
k
q = eπil = −1,

since l is odd.
Thus, if π(z) is a nontrivial factor of both φ1(z) and φ2(z), then λ = −1 is the

only root that π(z) can have. Since neither φ1(z) nor φ2(z) has repeated roots, −1
must be a simple root of π(z), which shows that π(z) = z + 1. We have thus shown
that if gcd(φ1, φ2) is nontrivial, then q is even and gcd(φ1, φ2) = z + 1.

It remains to show only that if q is even, then gcd(φ1, φ2) = z + 1. Note that
if q = gcd(m,n) is even, then so is n. Therefore, n + 1 is odd, and since r|(n + 1),
so is r. But, for even q and odd r, it is clear that φ1(−1) = φ2(−1) = 0. Hence
(z + 1)| gcd(φ1, φ2), meaning that gcd(φ1, φ2) is nontrivial. But as we have already
shown, this implies that gcd(φ1, φ2) = z + 1.

We compile all the results proved above for the case when m is even in the
following theorem.

Theorem 14. Let f(z) = zn −∑m
i=0 z

i, n > m > 0, m even, and let q =
gcd(m,n), r = gcd(m2 +1, n+1), n

′ = (n+1)/r. Then, f(z) = φ(z)ψ(z), where ψ(z)
is irreducible and

φ(z) =



∑q−1

i=0 z
i if n′ is even,(∑r−1

i=0 (−z)i
)(∑q−1

i=0 z
i
)
if q is even,

(zr + 1)
∑q−1

i=0 z
i otherwise.
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We would like to remark that when q is even, n′ = (n+ 1)/r is odd, so that the
statement of the theorem is indeed consistent.

At this stage, it is worth pointing out that the results of Theorems 11 and 14
can be partially obtained from results in the existing literature, specifically [4] and
[6]. Observe that, as noted in the proof of Lemma 10, we may define g(z) = (z −
1)f(z) = zn+1 − zn − zm+1 + 1. Now, Ljunggren [4] considered the factorization
of polynomials of the form q(x) = xn ± xm ± xp ± 1 with n > m > p > 0 and
claimed to show that all such polynomials can be factored as q(x) = φ(x)ψ(x), where
φ(x) is self-reciprocal and has all its zeros on the unit circle and ψ(x) is either 1
or a non-self-reciprocal irreducible polynomial. However, there was a minor error
in Ljunggren’s work, which was subsequently corrected by Mills [6]. Mills’s work
shows that Ljunggren’s claim is in fact true for any polynomial g(z) as above. Since
m+ 1 ≥ 2, g(z) is not self-reciprocal and hence must have a nontrivial nonreciprocal
part ψ(z). Thus, these results show that g(z), and hence f(z), can be written as
the product of a self-reciprocal polynomial having all its roots on the unit circle and
a nontrivial, irreducible, non-self-reciprocal polynomial. Of course, these results do
not go so far as to provide the specific forms of the reciprocal and nonreciprocal
parts of f(z) that we have derived above. So, in the interest of keeping our paper self-
contained, we have chosen to include complete proofs of the aforementioned theorems.

3. Identifying equalities among (d, k) capacities. We shall use the factor-
ization obtained in the previous section for the characteristic polynomials of (d, k)
constraints to determine all possible equalities among the capacities of such con-
straints. We begin by showing that this problem is equivalent to the one of deter-
mining when the nonreciprocal parts of the characteristic polynomials of two such
constraints can be equal. Throughout this section, we consider (d, k) pairs such that
0 < d < k ≤ ∞, and Φd,k(z) and Ψd,k(z) will be used to denote the reciprocal and
nonreciprocal parts, respectively, of the characteristic polynomial χd,k(z). Also, given
polynomials f(z), g(z), we shall use f(z) = g(z) to denote that the two polynomials
are identical.

Theorem 15. C(d, k) = C(d̂, k̂) if and only if Ψd,k(z) = Ψd̂,k̂(z).

Proof. We shall show that ρd,k = ρd̂,k̂ if and only if Ψd,k(z) = Ψd̂,k̂(z), the ρ’s
being the largest roots of their respective characteristic polynomials.

Observe first that since the reciprocal parts of the characteristic polynomials have
all their roots on the unit circle, and the ρ’s are strictly greater than 1, the ρ’s must
be roots of the nonreciprocal parts. So, if Ψd,k(z) = Ψd̂,k̂(z), then their largest roots
must be identical, i.e., ρd,k = ρd̂,k̂.

Conversely, suppose that ρd,k = ρd̂,k̂. Since Ψd,k(z) is irreducible and has ρd,k as

a root, it must be the minimal polynomial (over Z) of ρd,k. Similarly, Ψd̂,k̂(z) is the
minimal polynomial of ρd̂,k̂. Hence by the uniqueness of the minimal polynomial of

an algebraic integer, ρd,k = ρd̂,k̂ implies that Ψd,k(z) = Ψd̂,k̂(z).

With this theorem in hand, we can begin our investigation of equalities among the
capacities of (d, k)-constrained systems. We shall first consider the case when at least
one of the (d, k) constraints has k =∞. Observe that since Ψd,∞(z) is either χd,∞(z)
itself or of the form given in (7), we can have C(d,∞) = C(d̂,∞), or equivalently,
Ψd,∞(z) = Ψd̂,∞(z), if and only if d = d̂. So, we need only concern ourselves with the

situation when C(d,∞) = C(d̂, k̂) with k̂ finite.

At this point, we shall find it convenient to introduce some definitions.
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Definition 16. A polynomial f(z) = zn −∑m
i=0 z

i, n > m > 0, is defined as
being of

• Type I if its reciprocal part, φ(z), is of the form ∑q−1
i=0 z

i, with q ≥ 1 odd;

• Type II if φ(z) is of the form (zr + 1)
∑q−1

i=0 z
i, with q ≥ 1 odd, r ≥ 1; and

• Type III if φ(z) is of the form (
∑r−1

i=0 (−z)i)(
∑q−1

i=0 z
i), with q ≥ 2 even and

r ≥ 3 odd.

Theorems 11 and 14 show that any such f(z) is always of Type I, II, or III, with
q = gcd(m,n) and r = gcd(m2 + 1, n+ 1). These theorems can be used to determine
exactly when f(z) is of a particular type. For example, f(z) is of Type I precisely
when one of the following three conditions holds: (i) m is odd, (ii) m and (n + 1)/r
are even, and (iii) m and n are even and r = 1. Note that when f(z) is of Type I, its

nonreciprocal part, ψ(z), is of the form
∑n

q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq, as shown by (21).

The following simple fact about f(z)’s of Type II or III will be used often.

Lemma 17. Let m be even and let f(z) be of Type II or III. If q = gcd(m,n) and
r = gcd(m2 + 1, n+ 1), then q �= r.

Proof. If q = r, then f(z) cannot be of Type III, since the definition requires q
to be even and r to be odd. So, suppose that f(z) is of Type II, with q = r. Note
that since q|n and r|(n + 1), we must have gcd(q, r) = 1, and hence q = r = 1. As
zr + 1 = z + 1 is a factor of f(z), we must have f(−1) = 0. Now, it is easily verified
that since f(z) has the form zn −∑m

i=0 z
i, f(−1) can be 0 only if m and n are both

even. So, q = gcd(m,n) is even, which is impossible since q = 1.

We will also find the following set of definitions to be useful.

Definition 18. Given a polynomial g(z) =
∑n

k=0 ckz
k, we define

• εi(g), i ≥ 1, to be the ith smallest k > 0 such that ck �= 0;
• ξi(g), i ≥ 1, to be the ith largest k > 0 such that ck �= 0.

Thus, for example, with g(z) = z6 − z3 − z2 − z − 1, we have εi(g) = i for
i = 1, 2, 3, ε4(g) = 6, ξ1(g) = 6, and ξi(g) = 5− i for i = 2, 3, 4. Note that if g(z), h(z)
are polynomials such that g(z) = h(z), then εi(g) = εi(h) and ξi(g) = ξi(h) for all
i ≥ 1.

We tackle the equality C(d,∞) = C(d̂, k̂) through a series of lemmas, each of
which considers a special case in which χd,∞(z) is either irreducible (d �≡ 4 (mod 6))
or reducible (d ≡ 4 (mod 6)), and χd̂,k̂(z) is of one of the three types defined above.

Lemma 19. Let d �≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type I. Then,

C(d,∞) = C(d̂, k̂) only if (d̂, k̂) = (d− 1, 2d− 1).
Proof. Let n̂ = k̂ + 1, m̂ = k̂ − d̂ so that χd̂,k̂(z) = zn̂ −∑m̂

i=0 z
i, and let q̂ =

gcd(m̂, n̂). Under the assumptions of the lemma, Ψd,∞(z) = χd,∞(z) = zd+1 − zd−1,
and Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂.

If C(d,∞) = C(d̂, k̂), then by Theorem 15, Ψd,∞(z) = Ψd̂,k̂(z), i.e.,

zd+1 − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(22)

Now, note that ξ1(Ψd,∞) = d+ 1, while ξ1(Ψd̂,k̂) = n̂− q̂+ 1. Equating these, we get

d = n̂− q̂.(23)
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Next, observe that ε1(Ψd,∞) = d. Additionally, we claim that ε1(Ψd̂,k̂) = q̂. This

is because the smallest k > 0 such that the coefficient of zk in −∑ n̂
q̂ −1

l=0 zlq̂ is nonzero

is precisely q̂, and the term −zq̂ cannot be cancelled out by any term in
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1.

The reason that −zq̂ cannot get cancelled out is that the smallest exponent of z in∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 is m̂+1, which is larger than q̂, since q̂ = gcd(m̂, n̂). Therefore, equating

ε1(Ψd,∞) and ε1(Ψd̂,k̂), we get

d = q̂.(24)

From (23) and (24), we see that n̂ = 2d. Plugging this and q̂ = d into (22),

we get zd+1 − zd − 1 =
∑1

l= m̂
d
zld+1 − zd − 1. It follows that m̂ = d, and since

(m̂, n̂) = (k̂ − d̂, k̂ + 1) by definition, the fact that (m̂, n̂) = (d, 2d) implies that

(d̂, k̂) = (d− 1, 2d− 1).
The proof of the above lemma involves arguments typical of those used in the

proofs to follow. One especially important fact used in the above proof that should

be kept in mind is that the function ε1, when applied to the polynomial
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1−∑ n̂
q̂ −1

l=0 zlq̂, yields q̂. Also, in all that is to follow, we shall continue to take (m̂, n̂) to

be (k̂ − d̂, k̂ + 1) and q̂ to be gcd(m̂, n̂).

Lemma 20. If d �≡ 4 (mod 6) and d̂, k̂ are such that χd̂,k̂(z) is of Type II, then

C(d,∞) �= C(d̂, k̂).

Proof. With d, d̂, k̂ as in the statement of the lemma, we have Ψd,∞(z) = zd+1 −
zd − 1, and

Ψd̂,k̂(z) =
χd̂,k̂(z)

Φd̂,k̂(z)
=

zn̂ −∑m̂
i=0 z

i

(zr̂ + 1)
∑q̂−1

i=0 z
i
=

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
,

where r̂ = gcd( m̂2 + 1, n̂+ 1), and the last equality above comes from (21).

Suppose that C(d,∞) = C(d̂, k̂), so that Ψd,∞(z) = Ψd̂,k̂(z). Since the Ψ’s are as

given above, we have (zr̂ + 1)(zd+1 − zd − 1) =∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂, which upon

expanding out the LHS becomes

zd+r̂+1 + zd+1 − zd+r̂ − zr̂ − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(25)

Our goal is to show that such an equality cannot arise for any d, d̂, k̂ satisfying the
hypothesis of the lemma, leading to a contradiction that proves the lemma.

Applying ξ1 to both sides of (25), we get d+ r̂ + 1 = n̂− q̂ + 1, implying

d+ r̂ = n̂− q̂.(26)

Next, note that the function ε1, when applied to the RHS of (25), yields q̂ and, when
applied to the LHS, yields either d or r̂, depending on whether d ≤ r̂ or d > r̂. So, if
d ≤ r̂, then d = q̂, and if d > r̂, then q̂ = r̂. However, we cannot have d > r̂, since
q̂ = r̂ is ruled out by Lemma 17.
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Thus, we see that d ≤ r̂, so that d = q̂. Plugging this into (26), we get n̂
q̂ = 2+

r̂
d .

Using this and d = q̂, the RHS of (25) becomes

r̂
d+1∑
l= m̂

q̂

zld+1 −
r̂
d+1∑
l=0

zld =

r̂
d∑

l= m̂
q̂

zld+1 −
r̂
d∑

l=0

zld + zd+r̂+1 − zd+r̂.

Therefore, upon cancelling out some terms common to both sides, (25) simplifies to

zd+1−zr̂−zd−1 =∑ r̂
d

l= m̂
q̂

zld+1−∑ r̂
d

l=0 z
ld. Applying ξ1 to both sides of this equality,

we get d + 1 = r̂ + 1, i.e., d = r̂. We thus have q̂ = d = r̂, which is impossible by
Lemma 17.

Lemma 21. If d �≡ 4 (mod 6) and d̂, k̂ are such that χd̂,k̂(z) is of Type III, then

C(d,∞) �= C(d̂, k̂).
Proof. An argument similar to that at the beginning of the proof of Lemma 20

shows that if C(d,∞) = C(d̂, k̂), with d, d̂, k̂ as above, then

(
r̂−1∑
i=0

(−z)i
)
(zd+1 − zd − 1) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.

Equivalently, multiplying both sides by z + 1, we have

(zr̂ + 1)(zd+1 − zd − 1) = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Expanding out both sides of the above equation, we get

zd+r̂+1 + zd+1 − zd+r̂ − zr̂ − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+2 −
m̂
q̂ −1∑
l=0

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(27)

Now, by definition of Type III, r̂ ≥ 3, so that the term −zd+r̂ on the LHS of the
above equation cannot get cancelled out by another term on the LHS. Therefore, the
RHS must also have a −zd+r̂ term, and due to the negative sign, it must be one of

the terms in −∑ m̂
q̂ −1

l=0 zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂. In other words, d + r̂ must be one of the
exponents of z in these two summations. Observe that the maximum exponent of z
in these summations is max(m̂ − q̂ + 1, n̂ − q̂) = max(m̂ + 1, n̂) − q̂ = n̂ − q̂, since
n̂ > m̂. Therefore, d+ r̂ ≤ n̂− q̂.

However, if we apply ξ1 to both sides of (27), we find that d+ r̂+1 = n̂− q̂+2, so
that d+ r̂ = n̂− q̂+1, which contradicts d+ r̂ ≤ n̂− q̂. So, (27) cannot hold under the

assumptions of the lemma, implying that C(d,∞) cannot be equal to C(d̂, k̂).
The last three lemmas show that when d �≡ 4 (mod 6), then C(d,∞) = C(d̂, k̂)

only if (d̂, k̂) = (d− 1, 2d− 1). The next three lemmas consider the case when d ≡ 4
(mod 6). Recall that for any such d, Ψd,∞(z) is as given in (7).

Lemma 22. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type I. Then,

C(d,∞) = C(d̂, k̂) only if d = 4 and (d̂, k̂) = (1, 2).
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Proof. If C(d,∞) = C(d̂, k̂) with d, d̂, k̂ as above, then we have

z3 − z − 1 +
(d+2)/6∑

l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(28)

Applying ε1 to both sides of this equation, we get 1 = q̂. Therefore, Φd̂,k̂(z) =∑q̂−1
i=0 z

i = 1, and hence Ψd̂,k̂(z) = χd̂,k̂(z). Thus, we must have Ψd,∞(z) = χd̂,k̂(z).

Now, the polynomial on the LHS of (28) can be of the form zn̂ −∑m̂
i=0 z

i only
if d = 4, since in this case it has no terms of the form z6l−3 − z6l−5 − z6l−6 + z6l−8.
So, Ψd,∞(z) = χd̂,k̂(z) implies that d = 4, in which case Ψd,∞ = z3 − z − 1 = χ1,2(z).

Hence, (d̂, k̂) = (1, 2), which proves the lemma.
For the proofs of the next couple of lemmas, it is convenient to introduce the

following notation: we shall use Ω(zk) to denote an arbitrary polynomial of the form∑l
i=k ciz

i, with l ≥ k.

Lemma 23. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type II. Then,

C(d,∞) = C(d̂, k̂) only if d = 4 and (d̂, k̂) = (2, 4).
Proof. Arguing as in the proof of Lemma 20, we find that for the above choice of

d, d̂, k̂, C(d,∞) = C(d̂, k̂) implies

(zr̂ + 1)


z3 − z − 1 +

(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8)


 =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.

As usual, we now apply ε1 to both sides of this equation, which yields 1 = q̂.
Hence Φd̂,k̂(z) = (zr̂ + 1)

∑q̂−1
i=0 z

i = zr̂ + 1. Therefore, χd̂,k̂(z) = Φd̂,k̂(z)Ψd̂,k̂(z) =

Φd̂,k̂(z)Ψd,∞(z), which shows that

χd̂,k̂(z) = (z
r̂ + 1)


z3 − z − 1 +

(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8)


 .(29)

Note that since q̂ = 1, by Lemma 17, r̂ ≥ 2.
Suppose first that d = 4 so that Ψd,∞(z) = z3 − z − 1. Then, (29) becomes

χd̂,k̂(z) = (z
r̂ + 1)(z3 − z − 1), which is the same as

χd̂,k̂(z) = zr̂+3 + z3 − zr̂+1 − zr̂ − z − 1.(30)

Since only the leading coefficient of the polynomial χd̂,k̂(z) is positive, either z
r̂+3 or

z3 must be eliminated by one of the other terms on the RHS of (30). As r̂ + 3 is
strictly larger than any other exponent of z on the RHS, z3 is the term that must
get eliminated, and this can happen only if either r̂ = 3 or r̂ + 1 = 3, i.e., r̂ = 2.
If r̂ = 3, then the RHS of (30) turns out to be z6 − z4 − z − 1, which is not of

the form zn̂ −∑m̂
i=0 z

i. So, we must have r̂ = 2, in which case the RHS of (30)

becomes z5 − z2 − z − 1 = χ2,4(z). So, one possible solution for C(d,∞) = C(d̂, k̂) is

(d, d̂, k̂) = (4, 2, 4).
Now, suppose that d > 4, so that d ≥ 10, as 10 is the next largest integer that is

equivalent to 4 (mod 6). Then, Ψd,∞(z) = −1−z+z3+z4+Ω(z5), and (29) becomes

χd̂,k̂(z) = zr̂+4 + zr̂+3 + z4 + z3 − zr̂+1 − zr̂ − z − 1 + Ω(z5).(31)
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Note that if r̂ ≥ 5, then the RHS above becomes z4+z3−z−1+Ω(z5), which cannot

be of the form zn̂ −∑m̂
i=0 z

i. So, we must have r̂ = 2, 3 or 4.

If r̂ = 2, then the RHS of (29) is of the form zd+r̂−1+
∑d+r̂−2

i=5 ciz
i+z4−z2−z−1,

which cannot be χd̂,k̂(z) for any d̂, k̂. Similarly, if r̂ = 4, then the RHS of (29) is of

the form zd+r̂−1 +
∑d+r̂−2

i=5 ciz
i + z3 − z − 1, which cannot be any χd̂,k̂(z).

Finally, if r̂ = 3, then the RHS of (29) becomes zd+r̂−1 +
∑d+r̂−2

i=5 ciz
i − z − 1,

which can at best be zd+r̂−1 − z − 1 = zd+2 − z − 1 = χd,d+1(z). But this too does

not yield a solution to C(d,∞) = C(d̂, k̂), since it is clear that C(d,∞) �= C(d, d+ 1)
for any d. This completes the analysis of the d > 4 case and hence the proof of the
lemma.

Lemma 24. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type III. Then,

C(d,∞) = C(d̂, k̂) only if (d̂, k̂) = (d− 1, 2d− 1).
Proof. With d, d̂, k̂ as in the above statement, if C(d,∞) = C(d̂, k̂), then the

usual argument shows that we must have

(
r̂−1∑
i=0

(−z)i
)
Ψd,∞(z) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂(32)

with Ψd,∞(z) having the form given in (7).
Note that as χd̂,k̂(z) is of Type III, we must have r̂ ≥ 3 odd. Suppose first that

r̂ = 3. Then the LHS of the above equation is (z2 − z + 1)Ψd,∞(z) = χd,∞(z) =
zd+1 − zd − 1 by Theorem 3. Therefore, (32) in this case is identical to (22) in the

proof of Lemma 19. As analyzed there, this equation implies (d̂, k̂) = (d− 1, 2d− 1).
So, we are left with the case r̂ ≥ 5. Note that the LHS of (32) may be written as(

z2 − z + 1 +

r̂−1∑
i=3

(−z)i
)
Ψd,∞(z) = (z2 − z + 1)Ψd,∞(z)− z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z)

= zd+1 − zd − 1− z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z).

Therefore, if we multiply both sides of (32) by
∑q̂−1

i=0 z
i and use (21), then the resulting

equation can be written as

χd̂,k̂(z) = (z
d+1 − zd − 1)

q̂−1∑
i=0

zi − z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z)

q̂−1∑
i=0

zi

= zd+q̂ − zd −
q̂−1∑
i=0

zi + z3 +Ω(z4),(33)

where we have used the fact that (zd+1 − zd − 1)∑q̂−1
i=0 z

i = zd+q̂ − zd −∑q̂−1
i=0 z

i.
Now, the fact that r̂ = gcd( m̂2 + 1, n̂ + 1) ≥ 5 implies that m̂

2 + 1 ≥ 5, which

means that m̂ ≥ 8. Therefore, χd̂,k̂(z) = zn̂ −∑m̂
i=0 z

i must contain the sequence

−z8 − z7 − · · · − z − 1. In particular, the coefficient of z3 in χd̂,k̂(z) is −1. However,
on the RHS of (33), there are at most two z3 terms, one of which is +z3, and the

other is −z3 from the summation −∑q̂−1
i=0 z

i if q̂ − 1 ≥ 3. So, the coefficient of z3
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on the RHS of (33) can either be 0 or +1, which implies that the RHS cannot be of

the form required by χd̂,k̂(z). Therefore, we cannot have C(d,∞) = C(d̂, k̂) when
r̂ ≥ 5.

Lemmas 19–24 together prove the following result, which is the part of Theorem 1
dealing with the case when one of the (d, k) constraints involved is a (d,∞) constraint.

Theorem 25. If d, d̂, k̂ are nonnegative integers such that C(d,∞) = C(d̂, k̂),
then one of the following holds:

(i) (d̂, k̂) = (d− 1, 2d− 1),
(ii) d = 4 and (d̂, k̂) is either (1, 2) or (2, 4).

We now move on to analyze the equality C(d, k) = C(d̂, k̂) when k, k̂ are both
finite. Once again, we perform a case-by-case analysis of the various situations that
arise when each of the characteristic polynomials involved is of one of the three types
defined earlier. Because of symmetry, there are only six cases to be considered—three
when χd,k(z) and χd̂,k̂(z) are of the same type and three more as follows: (a) χd,k(z)

of Type I, χd̂,k̂(z) of Type II, (b) χd,k(z) of Type I, χd̂,k̂(z) of Type III, and (c) χd,k(z)

of Type II, χd̂,k̂(z) of Type III.

The situation when χd,k(z) and χd̂,k̂(z) are both of Type I is the easiest to deal

with, and we dispose of this first. As usual, we define (m,n) = (k − d, k + 1),

(m̂, n̂) = (k̂ − d̂, k̂ + 1), q = gcd(m,n), and q̂ = gcd(m̂, n̂).

Lemma 26. Let d, k, d̂, k̂ be such that χd,k(z) and χd̂,k̂(z) are both of Type I.

Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d̂, k̂).

Proof. By Theorem 15, C(d, k) = C(d̂, k̂) implies Ψd,k(z) = Ψd̂,k̂(z). Since χd,k(z)

and χd̂,k̂(z) are both of Type I, we have an explicit form for their nonreciprocal parts,
using which we get

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(34)

Applying ε1 to both sides of the above equation, we get q = q̂. But this means
that Φd,k(z) =

∑q−1
i=0 z

i =
∑q̂−1

i=0 z
i = Φd̂,k̂(z). Thus, the polynomials χd,k(z) and

χd̂,k̂(z) have identical reciprocal parts and identical nonreciprocal parts, which shows

that χd,k(z) = χd̂,k̂(z), i.e., (d, k) = (d̂, k̂).

When χd,k(z) and χd̂,k̂(z) are both of Type II or Type III, the analysis involves
the use of the following technical lemma, whose proof we defer to the end of this
paper.

Lemma 27. Let m,n, r, m̂, n̂, r̂ be positive integers such that n > m and n̂ > m̂.
If (zr + 1)

(
zn −∑m

i=0 z
i
)
= (zr̂ + 1)(zn̂ −∑m̂

i=0 z
i), then (m,n, r) = (m̂, n̂, r̂).

In all that is to follow, we shall take r = gcd(m2 +1, n+1) and r̂ = gcd(
m̂
2 +1, n̂+1),

whenever m, m̂ are even.
Lemma 28. Let d, k, d̂, k̂ be such that χd,k(z) and χd̂,k̂(z) are either both of Type II

or both of Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d̂, k̂).
Proof. Suppose first that χd,k(z) and χd̂,k̂(z) are both of Type II. As shown in

the proof of Lemma 20, we have

Ψd,k(z) =

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq

zr + 1
, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
.
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Therefore, if C(d, k) = C(d̂, k̂), then we have Ψd,k(z) = Ψd̂,k̂(z), from which it follows
that

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(35)

We shall consider the following four cases individually: (i) r ≤ q̂ and q < r̂,
(ii) r ≤ q̂ and q ≥ r̂, (iii) r > q̂ and q < r̂, and (iv) r > q̂ and q ≥ r̂. Observe,

however, that (iv) is the same as (i), with the roles of (d, k) and (d̂, k̂) reversed. So,
it suffices to consider the first three cases only.

We consider case (i) first. In this case, applying ε1 to both sides of (35), we find
that q = r, which is impossible by Lemma 17.

In case (ii), applying ε1 to both sides of (35) yields r = r̂. Hence (35) reduces to
(34) in the proof of Lemma 26, which as shown in that proof, leads to the conclusion

that (d, k) = (d̂, k̂).
Moving on to case (iii), applying ε1 to (35) here yields q = q̂. Hence multiplying

both sides of (35) by
∑q−1

i=0 z
i, we get via (21) (zr̂+1)

(
zn −∑m

i=0 z
i
)
= (zr+1)(zn̂−∑m̂

i=0 z
i). But now Lemma 27 shows that (m,n) = (m̂, n̂), which implies that (d, k) =

(d̂, k̂) in this case as well. Thus, we have shown that when χd,k(z) and χd̂,k̂(z) are

both of Type II, then C(d, k) = C(d̂, k̂) is possible only if (d, k) = (d̂, k̂).
If χd,k(z), χd̂,k̂(z) are both of Type III, then using (21), we find that

Ψd,k(z) =

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq∑r−1
i=0 (−z)i

, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂∑r̂−1
i=0 (−z)i

.

So, from Ψd,k(z) = Ψd̂,k̂(z), we obtain

(
r̂−1∑
i=0

(−z)i
)

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 =

(
r−1∑
i=0

(−z)i
)

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Multiplying both sides of the above equation by z+1, we obtain (35), which as shown

above, leads to (d, k) = (d̂, k̂).
At this point, we would like to remark that Lemmas 26 and 28 actually prove

the following interesting fact: if two polynomials of the same type (I, II, or III) have
identical nonreciprocal parts, then the polynomials themselves are identical. In other
words, within each of the three type classes, a polynomial is uniquely determined by
its nonreciprocal part.

We are now only left to deal with the three cases where the characteristic poly-
nomials are of different types. The next three lemmas consider each case in turn.

Lemma 29. Let d, k, d̂, k̂ be such that χd,k(z) is of Type I and χd̂,k̂(z) is of Type II.

Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1).

Proof. With d, k, d̂, k̂ as above, we have

Ψd,k(z) =

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
.
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So, if Ψd,k(z) = Ψd̂,k̂(z), then it follows that

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(36)

Note that if r̂ ≤ q, then applying ε1 to both sides of (36), we get r̂ = q̂, which is
impossible by Lemma 17. Hence, we must have r̂ > q.

So, applying ε1 to (36) yields q = q̂. Therefore, multiplying both sides of (36) by∑q−1
i=0 z

i, we obtain, on account of (21), (zr̂ + 1)
(
zn −∑m

i=0 z
i
)
= zn̂ −∑m̂

i=0 z
i or,

equivalently,

zn+r̂ + zn −
m∑
i=0

zr̂+i −
m∑
i=0

zi = zn̂ −
m̂∑
i=0

zi.(37)

We claim that the equality in (37) is possible only if r̂ = m+1 and n = 2m+1, in
which case the LHS of the equation is χm+1,3m+1(z). To prove this claim, we observe
first that if r̂ ≤ m, then on the LHS of (37), the coefficient of zr̂ is −2. This is because
we have one −zr̂ term coming from the summation −∑m

i=0 z
r̂+i and another from

the summation −∑m
i=0 z

i, and neither of these terms can be cancelled out by zn or
zn+r̂, since n > m ≥ r̂. However, since there cannot be any term with coefficient −2
on the RHS, we must have r̂ > m.

Also, r̂ > m+1 is impossible, since if this were the case, zn−∑m
i=0 z

r̂+i−∑m
i=0 z

i

cannot be of the form −∑m̂
i=0 z

i, as can be easily verified. Thus, we are forced to
conclude that for (37) to hold, r̂ must be equal to m+ 1.

With r̂ = m+1, the LHS of (37) becomes zn+m+1+zn−∑2m+1
i=0 zi, which can be

of the form zn̂−∑m̂
i=0 z

i only if n = 2m+1, so that zn cancels out with −z2m+1. With

this choice of r̂ and m, the LHS of (37) reduces to z3m+2 −∑2m
i=0 z

i = χm+1,3m+1(z).

Hence we see that (d̂, k̂) = (m+1, 3m+1), and as (m,n) = (m, 2m+1), we also have
(d, k) = (m, 2m), which proves the lemma.

Lemma 30. Let d, k, d̂, k̂ be such that χd,k(z) is of Type I and χd̂,k̂(z) is of

Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1),

or (d, k) = (1, 2) and (d̂, k̂) = (3, 7).

Proof. For the above choice of d, k, d̂, k̂, it follows from Ψd,k(z) = Ψd̂,k̂(z) that

(
∑r̂−1

i=0 (−z)i)(
∑n

q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq) =
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂, which upon mul-

tiplying by z + 1 becomes

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(38)

Now, the RHS above can be written as (z + 1)(
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=1 zlq̂) − z − 1.

Note that the −z term cannot get cancelled out by any other term, since the smallest

exponent of z in (z + 1)
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 is m̂+ 1 ≥ 2. Therefore, ε1 applied to the RHS

of (38) yields 1.
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When ε1 is applied to the LHS of (38), we either get r̂ if r̂ ≤ q, or we get q if
r̂ > q. Therefore, either r̂ = 1 or q = 1. However, r̂ = 1 is impossible because r̂ ≥ 3
by definition of Type III polynomials. Hence, we must have q = 1.

Therefore, (38) reduces to

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
= (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(39)

We will show that if m ≥ 2, then the above equality is possible only if (d, k) =

(d, 2d) and (d̂, k̂) = (d+1, 3d+1), and if m = 1, then the equality above implies that

(d, k) = (1, 2) and (d̂, k̂) = (3, 7).
So, suppose first that m ≥ 2. The LHS of (39) can be written as zn+r̂ + zn −∑m

i=0 z
r̂+i −∑m

i=0 z
i. Since r̂ ≥ 3 and m ≥ 2, the coefficient of z2 in this polynomial

is −1. Now, since q̂ ≥ 2 by definition of Type III polynomials, there can be a −z2

term on the RHS of (39) only if q̂ = 2. Therefore, it follows from (21) that the RHS
of (39) is

(z + 1)
zn̂ −∑m̂

i=0 z
i∑q̂−1

i=0 z
i

= (z + 1)
zn̂ −∑m̂

i=0 z
i

z + 1
= zn̂ −

m̂∑
i=0

zi.

Thus, we see that whenm ≥ 2, we must have q̂ = 2, and furthermore, (39) reduces
to (37). But, as shown in the proof of Lemma 29, (37) holds only if (d, k) = (d, 2d)

and (d̂, k̂) = (d+ 1, 3d+ 1).
It only remains to consider the case when m = 1. In this case, the LHS of (39)

is (zr̂ + 1)(zn − z − 1) = zn+r̂ + zn − zr̂+1 − zr̂ − z − 1. Cancelling out −z − 1 from
both sides of (39), we get

zn+r̂ + zn − zr̂+1 − zr̂ = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=1

zlq̂


 .(40)

Now, ε1 applied to the RHS above yields q̂, and the coefficient of z
q̂ is −1. The −zq̂

term on the RHS must correspond to either −zr̂ or −zr̂+1 on the LHS. Since q̂ �= r̂
by Lemma 17, the −zq̂ term on the RHS must correspond to the −zr̂+1 term on the
LHS, showing that q̂ = r̂ + 1. Therefore, ε1 when applied to the LHS of (40) must
yield r̂ + 1, which means that −zr̂ must get cancelled by zn so that we must have
n = r̂. Finally, applying ξ1 to (40), we also obtain n+ r̂ = n̂− q̂+2. Using q̂ = r̂+1
and n = r̂ to eliminate q̂ and r̂ from this last equation, we get n̂ = 3n− 1.

Since q̂ = r̂ + 1 = n+ 1 and q̂|n̂, we find that n+ 1 must divide 3n− 1. Writing
3n−1 as 3(n+1)−4, we see that n+1 must be a factor of 4. Hence n = 0, 1, or 3. But
as n > m ≥ 1, n must in fact be 3. Hence n̂ = 3n−1 = 8. Furthermore, q̂ = n+1 = 4,
and so the facts that q̂|m̂ and m̂ < n̂ now imply that m̂ = 4. Thus, we have shown
that when m = 1, equality in (38) is possible only if n = 3 and (m̂, n̂) = (4, 8). As

these values of (m,n) and (m̂, n̂) are equivalent to (d, k) = (1, 2) and (d̂, k̂) = (3, 7),
the proof of the lemma is complete.

Lemma 31. Let d, k, d̂, k̂ be such that χd,k(z) is of Type II and χd̂,k̂(z) is of

Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+1, 3d+1).
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Proof. When χd,k(z) is of Type II and χd̂,k̂(z) is of Type III, from the equality

Ψd,k(z) = Ψd̂,k̂(z) we get, via (21),

(
r̂−1∑
i=0

(−z)i
)

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Upon multiplying both sides of this equation by z + 1, we obtain

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (z + 1)(zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(41)

Using (zr + 1)(z + 1) = zr+1 + zr + z + 1, we can write the RHS above as

(z + 1)(zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=1

zlq̂


− (zr+1 + zr + z + 1).(42)

Recall that the definition of Type III requires q̂ ≥ 2 even and r̂ ≥ 3 odd. Since

m̂ ≥ q̂ ≥ 2, the smallest exponent of z in (z + 1)(zr + 1)(
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1) is m̂+ 1 ≥ 3.

Hence the −z term in (42) cannot be cancelled out by any other term. It follows that
the coefficient of z on the RHS of (41) is nonzero, and so this must be true on the
LHS as well. But, the only way for the coefficient of z to be nonzero on the LHS is
if r̂ = 1 or q = 1. The former is impossible since r̂ ≥ 3. So, we must have q = 1,
and consequently the LHS of (41) simplifies to (zr̂ + 1)

(
zn −∑m

i=0 z
i
)
. Expanding

out the product (z+1)(
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂) on the RHS of (41), we can rewrite

(41) as

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
= (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+2 −
m̂
q̂ −1∑
l=0

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(43)

We have thus far shown that for Ψd,k(z) = Ψd̂,k̂(z) to be true for d, k, d̂, k̂ as in

the statement of the lemma, then we must have q = 1 and (43) must hold. Our aim
now is to show that for q = 1 and (43) to be true, we must also have r = 2 and q̂ = 4,

from which it will follow that (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1).
The first step in this process is to show that q̂ �= 2 so that (since q̂ is even) q̂ ≥ 4.

If we assume that q̂ = 2, then it is easily seen that the RHS of (43) simplifies to

(zr + 1)(zn̂ −∑m̂
i=0 z

i). Therefore, by Lemma 27, (43) holds only if (m,n) = (m̂, n̂),

or equivalently (d, k) = (d̂, k̂), which cannot happen since χd,k(z) and χd̂,k̂(z) are of
different types. Hence, q̂ = 2 is impossible, and so q̂ ≥ 4. We next show that this,
along with the fact that q = 1, implies that r = 2.

Note that m is even, for if it were odd, then by Theorem 11, χd,k(z) would be
of Type I. Hence m ≥ 2, from which it follows that the LHS of (43) contains a −z2

term, i.e., the coefficient of z2 on the LHS is −1. Therefore, the RHS of (43) must
also contain a −z2 term, which since q̂ ≥ 4, can happen only if r = 1 or 2. But since
q = 1, Lemma 17 forces r to be 2.



296 NAVIN KASHYAP AND PAUL H. SIEGEL

Setting r = 2, it can be verified that (43), upon multiplying out the product on
its RHS, becomes

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
=

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+4 −
m̂
q̂ −1∑
l=0

(zlq̂+3 + zlq̂+2 + zlq̂+1)−
n̂
q̂ −1∑
l=0

zlq̂.(44)

We now show that the above equality can hold only if q̂ = 4. Suppose, to the
contrary, that q̂ �= 4, so that q̂ ≥ 6. Observe that since q̂ ≥ 6, no cancellation of terms
is possible among the various summations on the RHS of (44), as the exponents in
different summations leave different remainders modulo q̂. It follows that the RHS of
(44) is of the form −1 − z − z2 − z3 + Ω(z6), where Ω(z6) denotes some polynomial
of the form

∑
k≥6 ckz

k. In particular, the RHS cannot contain any z4 or z5 terms.

On the other hand, the LHS of (44) is zn+r̂+zn−∑m
i=0 z

r̂+i−∑m
i=0 z

i. Note that
neither zn+r̂ nor zn can cancel out any term in the summation −∑m

i=0 z
i, so that

all the terms in this summation remain intact on the LHS. But as the LHS cannot
contain any z4 or z5 terms (because the RHS does not contain such terms), we find
that m ≤ 3. However, as observed earlier, m is even, so that we must in fact have
m = 2. But now, in order for the LHS to contain a −z3 term, we must either have
r̂ = 3, or n = r̂ and r̂ + 1 = 3. The latter is impossible as it implies that n = 2 = m,
which cannot happen. But r̂ = 3 is also impossible, since with r̂ = 3 and m = 2, the
LHS reduces to zn+r̂+zn−∑5

i=0 z
i, which will always contain a z4 or z5 term. Thus,

if we assume that q̂ �= 4, we are forced to conclude that (44) cannot hold.
Therefore, for (44) to hold, we must have q̂ = 4. But with q̂ = 4, it is readily

verified that the RHS of (44) simplifies to zn̂ −∑m̂
i=0 z

i. As a result, (44) becomes
identical to (37) in the proof of Lemma 29, and as shown there, equality in (37) is

possible only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1). This completes the proof
of the lemma.

Lemmas 26 and 28–31 together prove the following theorem, which in conjunction
with Theorem 25 forms Theorem 1.

Theorem 32. If d, k, d̂, k̂ are nonnegative integers such that C(d, k) = C(d̂, k̂),

but (d, k) �= (d̂, k̂), then one of the following holds:
(i) {(d, k), (d̂, k̂)} = {(
, 2
), (
+ 1, 3
+ 1)} for some integer 
 ≥ 0.

(ii) {(d, k), (d̂, k̂)} = {(1, 2), (3, 7)}.
There still remains a loose end that needs to be tied up, namely, a proof of

Lemma 27. We provide such a proof now.
Proof of Lemma 27. Suppose that m,n, r, m̂, n̂, r̂ are as in the statement of the

lemma and that

(zr + 1)

(
zn −

m∑
i=0

zi

)
= (zr̂ + 1)

(
zn̂ −

m̂∑
i=0

zi

)
.(45)

It suffices to show that r = r̂.
Multiplying both sides of (45) by z − 1, we obtain

(zr + 1)(zn+1 − zn − zm+1 + 1) = (zr̂ + 1)(zn̂+1 − zn̂ − zm̂+1 + 1).(46)

Observe first that upon comparing the degrees of both sides of the above equation,
we get

n+ r = n̂+ r̂.(47)
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Taking the derivative of both sides of (46) and setting z = 1 yields −2m = −2m̂,
so that m = m̂. Next, taking the second derivative of both sides of (46) and setting
z = 1, we get

4n− 2m2 − 2mr − 2m = 4n̂− 2m̂2 − 2m̂r̂ − 2m̂.

Using the fact that m = m̂, the above equation reduces to

4n− 2mr = 4n̂− 2mr̂.(48)

But now, using (47) and (48), we have

(2m+ 4)r = 4(r + n)− (4n− 2mr) = 4(r̂ + n̂)− (4n̂− 2mr̂) = (2m+ 4)r̂.

Since m �= −2, as m > 0, we must have r = r̂, as desired.
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