
Error Analysis and Inter-Cell Interference
Mitigation in Multi-Level Cell Flash Memories

Veeresh Taranalli∗, Hironori Uchikawa∗† and Paul H. Siegel∗
∗University of California, San Diego, La Jolla, CA 92093, USA

†Toshiba Corporation, Japan
{vtaranalli, huchikawa, psiegel}@ucsd.edu

Abstract—With an aim to characterize, model and understand
the types of errors caused by the inter-cell interference (ICI)
effect in flash memories, we perform a series of program/erase
(P/E) cycling experiments designed to quantify the effects of ICI.
We create a database of errors at various levels of granularity
such as bit, cell, page, block and record the neighborhood data
patterns of cells in error to provide a quantitative understanding
of the underlying channel model in multi-level cell (MLC)
flash memories. We then utilize this empirical data to model
and study the flash memory channel as a time-varying 4-ary
discrete memoryless channel (DMC). We also present results
from experiments to quantify the error rate performance gain
obtained by the use of constrained codes, which prevent some
ICI-susceptible data patterns from being written to the flash
memory.

I. INTRODUCTION

NAND Flash memory has become a widely used non-
volatile data storage technology and its application areas
are only expected to grow in the future. This has led to
aggressive scaling down of the NAND flash memory cell
sizes and also increased adoption of multi-level cell (MLC)
and three-level cell (TLC) technologies. The scaling down
of the flash memory cell sizes has caused an increase in
the parasitic capacitance coupling between the neighboring
floating gate transistors (cells) in a flash memory block. Thus
floating gate interference [1] or inter-cell interference (ICI)
has become a leading cause of errors in flash memories
affecting their reliablity. The other major error mechanisms in
flash memories include program disturb, charge loss and read
disturb [2], [3]. In this paper, we study and present results on
the characterization and mitigation of errors observed due to
the ICI effect in 1x-nm MLC flash memories.

A. Flash Memory Structure

The fundamental data storing unit in NAND flash memories
is a floating-gate transistor commonly referred to as a cell. A
cell can be programmed to hold different levels of charge and
these charge levels represent the data bits stored in a cell.
The most commonly used cells in today’s flash memories
are capable of holding 2, 4 and 8 distinct charge levels (1,
2, 3 bits/cell respectively) and are referred to as single-level
cell (SLC), multi-level cell (MLC) and three-level cell (TLC)
respectively. These flash memory cells are organized into a
rectangular array interconnected through horizontal wordlines
(WL) and vertical bitlines (BL) to form a flash memory

e c f

a X b

g d h

WLi−1

WLi

WLi+1

WLi+2

BLi−2 BLi−1 BLi BLi+1 BLi+2

Fig. 1. Simplified diagram representing the block structure in flash memories.
The rectangles depict the flash cells connected to horizontal wordlines (WL)
and vertical bitlines (BL). The 8-neighborhood of a cell is represented using
the letters a to h as shown.

“block” [2]. A collection of such blocks makes up the flash
memory chip. A simplified high level diagram of the block
structure of flash memory is shown in Fig. 1.

The two bits belonging to a multi-level cell (MLC) are
separately mapped to logical units of programming, called
pages. A page is also the smallest unit for program and read
operations whereas a block is the smallest unit for the erase
operation. The most significant bit (MSB) is mapped to the
lower page while the least significant bit (LSB) is mapped
to the upper page. The lower page of a cell always precedes
the corresponding upper page in the programming order. We
represent the four charge levels in MLC flash memory as 0, 1,
2, 3 in the increasing order of charge levels respectively. The
corresponding 2-bit patterns written to the lower (MSB) and
upper (LSB) pages are ‘11’, ‘10’, ‘00’ and ‘01’ respectively.

B. Error Characterization and Flash Channel Modeling

Typically, error correction coding (ECC) schemes have
been used to ensure reliability of flash memory operation
at the cost of sacrificing a small percentage of the storage
capacity. However as reported in recent studies [4]–[6], the
errors observed in flash memories are asymmetric in nature
and hence ECC schemes assuming an underlying symmetric
channel model may not be the most efficient. Therefore to aid
the design of better ECC schemes it is important to develop
an understanding of the dominant types of cell and bit errors
and be able to use such error characterization to construct
channel models based on empirical data. We describe our



flash memory error characterization experiment procedure in
Section II. In Section III, we present results on the character-
ization of cell errors in MLC flash memories and identify and
study the evolution of dominant cell error characteristics over
the lifetime of the flash memory. Next, we model the flash
memory channel as a time-varying 4-ary asymmetric discrete
memoryless channel (DMC) and compare the capacity gain
(may translate to a coding gain with suitable ECC schemes)
that can be achieved by this model when compared to a time-
varying binary symmetric channel (BSC) model frequently
used in practice.

C. ICI Error Characterization

Cell errors due to ICI are dependent on the data patterns
written to the flash memory with some data patterns being
more susceptible to ICI than others. A characterization of
errors due to such susceptible data patterns will also be useful
in designing coding/signal processing/programming schemes
to prevent/correct ICI errors in an efficient manner. In Sec-
tion IV, we present results that clearly highlight and quantify
the data dependent nature of ICI by studying the correlation
of cell errors with their neighborhood data patterns. We also
study and quantify the effect of wordline ICI along horizontal
direction and bitline ICI along vertical direction in isolation.

D. ICI Mitigation using Constrained Codes

Constrained codes can prevent certain ICI-susceptible data
patterns from being written to the flash memory. Various tech-
niques for the design and use of constrained codes to mitigate
ICI were previously proposed in [7]–[10]. In [7], the authors
proposed using binary (d, k)-RLL codes to forbid the ICI-
susceptible data patterns 1-0-1 and 3-0-3 (along the wordlines)
from being written to SLC and MLC flash memories respec-
tively. They also evaluated this constrained coding scheme
along with an ECC concatenation for the SLC case using an
ICI channel model. In Section V, we extend their constrained
coding scheme to forbid the most ICI-susceptible data patterns
found in our error characterization. We also experimentally
evaluate the effectiveness of the proposed coding schemes on
our MLC flash memory chips.

II. EXPERIMENTAL PROCEDURE

To characterize and quantify the effect of ICI in terms
of the number and types of errors observed, we perform
program/erase (P/E) cycling of the MLC flash memory which
consists of repeating the following steps which collectively
represent one P/E cycle:

1) Erase MLC flash memory block(s).
2) Program MLC flash memory pages with pseudo-random

(PR) data generated using a linear feedback shift regis-
ter (LFSR). The LFSR is initialized with a randomly
generated seed for every page in every P/E cycle.

3) Starting with the first cycle, perform a read operation
on the MLC flash memory block(s) at intervals of every
100th cycle. Record bit errors, their locations in the
block(s) and the programmed values of every victim

0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it 

Er
ro

r R
at

e 
(B

ER
)

Programming all pages in a block
Programming only alternate wordlines in a block
Programming only alternate bitlines in a block

Fig. 2. Measured average raw bit error rate over 16 blocks of flash memory
by programming all pages in a block, only alternate wordlines in a block and
only alternate bitlines in a block with pseudo-random data in every P/E cycle.

0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it 

Er
ro

r R
at

e 
(B

ER
)

Lower page
Upper page

Fig. 3. Measured average raw bit error rate over 16 blocks of flash memory for
lower and upper pages when all pages are programmed with pseudo-random
data in every P/E cycle.

cell (X) and its 8-neighborhood section (cells a to h)
as shown in Fig. 1.

We arbitrarily choose 16 contiguous blocks in an MLC flash
memory chip for our experiments. Hence, the reported results
may not capture the variability in performance of different
blocks on a single chip and across different chips. However,
our experimental results across different blocks and different
chips from the same vendor do show enough consistency so
as to be sufficient for a fairly accurate error characterization.
The MLC flash memory blocks are P/E cycled up to 10,000
P/E cycles and the P/E cycling experiments are performed at
room temperature in a continuous manner with no wait time
between the erase/program/read operations.

III. CHARACTERIZATION OF CELL ERRORS AND FLASH
CHANNEL CAPACITY

A. Programming all pages with pseudo-random data

The first step in the error characterization of a flash memory
chip is to study its raw bit error rate (BER) performance when
all the pages in all the blocks under test are programmed with
pseudo-random data. This closely resembles the most common



0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

0

20

40

60

80

100

%
 o

f S
ym

bo
l E

rr
or

s/
C

yc
le

10 (1) to 00 (2)
11 (0) to 10 (1)
00 (2) to 01 (3)
11 (0) to 01 (3)

Fig. 4. Evolution of dominant cell (symbol) errors across P/E cycles measured
as a percentage of cell (symbol) errors occurring in each P/E cycle.

use in practice, where random data are stored and retrieved.
Fig. 2 shows the average raw BER across the P/E cycles when
all pages are programmed. The raw BER is averaged over all
16 blocks tested. Fig. 3 shows the average raw BER separately
for the lower and upper pages of the MLC flash memory.
Although the lower page is expected to have a smaller BER
compared to the upper page [5], we observe that this is only
the case up to a certain number of P/E cycles in the beginning
and as the P/E cycles increase, the lower page begins to show
a larger number of errors than the upper page.

TABLE I
FREQUENCY OF CELL (SYMBOL) ERRORS MEASURED AS A PERCENTAGE

OF TOTAL NUMBER OF CELL ERRORS OBSERVED ACROSS ALL P/E CYCLES
WHEN ALL 16 BLOCKS ARE PROGRAMMED WITH PSEUDO-RANDOM DATA.

Write Cell Read Cell Values

Values 11 (0) 10 (1) 00 (2) 01 (3)

11 (0) 0.00% 17.37% 0.42% 2.32%

10 (1) 0.02% 0.00% 63.64% 0.61%

00 (2) 0.00% 0.03% 0.00% 15.47%

01 (3) 0.00% 0.01% 0.11% 0.00%

We also record the specific cell (symbol) errors corre-
sponding to all the bit errors observed. The frequencies of
all possible cell errors as a percentage of the total number
of cell errors observed across all the blocks in all the P/E
cycles are shown in Table I. We observe that the cell errors
“10 (1) → 00 (2)”, “11 (0) → 10 (1)” and “00 (2) → 01 (3)”
are the most frequent and together make up about 96.5% of
all the cell errors observed. The evolution of these dominant
cell errors across P/E cycles is shown in Fig. 4. The frequency
of cell errors across P/E cycles is represented as a percentage
of the total cell errors observed in each P/E cycle. We note
that the “11 (0)→ 10 (1)” error is the dominant error initially,
but beyond a certain P/E cycles count the “10 (1) → 00 (2)”
error becomes the dominant error and remains so throughout
the lifetime of the flash memory. Such knowledge about
dominant cell errors can be very useful in utilizing ECC

0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

1.80

1.85

1.90

1.95

2.00

C
ha

nn
el

 C
ap

ac
ity

 (B
its

/C
el

l) Capacity gain estimate

4-ary DMC model
BSC(lower page raw BER) + BSC(upper page raw BER) model
BSC(average raw BER) model for both lower and upper pages

Fig. 5. Comparison of evolution of the flash memory channel capacity with
P/E cycles with 4-ary DMC and BSC channel models.

redundancy more effectively. This was demonstrated in [4],
where the authors designed two BCH codes with different
error correction capabilities for the lower and upper pages of
an MLC flash memory and proposed a stagewise combined
decoding algorithm for both pages. Their scheme gave better
results than using a single BCH code independently for all
pages.

B. MLC Flash Memory Channel Modeling and Capacity

Based on the cell errors and the percentages of each type of
cell error recorded across P/E cycles, we model the MLC flash
memory channel as a time-varying 4-ary discrete memoryless
channel (DMC). In every P/E cycle where errors are recorded,
we compute a 4 × 4 conditional probability matrix which
represents a 4-ary DMC. The rows of the matrix represent the
4-ary DMC input symbols and the columns represent its output
symbols. As already observed from Table I, this 4-ary DMC
model is asymmetric and hence we use the Blahut-Arimoto
iterative algorithm to estimate its capacity (bits/cell) [11], [12].
The evolution of the estimated capacity of the 4-ary DMC
model as a function of the number of P/E cycles is shown
in Fig. 5.

We also model the MLC flash memory channel as a
union of two binary symmetric channels (BSCs) correspond-
ing to the lower page and the upper page, with respective
crossover probabilities pL and pU . The crossover probabilities
are dependent upon the P/E cycle count and are obtained
by measuring the lower page raw BER and upper page
raw BER in the corresponding P/E cycle. These page-level
raw BERs are shown in Fig. 3. Denoting the capacity of
a BSC(p) channel by C(p), the capacity of this page-based
BSC model, expressed in terms of bits/cell, is given by
C1 = C(pL)+C(pU ) = (1− h2(pL))+ (1− h2(pU )), where
h2(p) = −plog2(p)− (1−p)log2(1−p) represents the binary
entropy function. This model is appropriate in a scenario where
the lower page and the upper page are coded separately with
individually optimized codes. If one assumes the two pages
are coded together, then one could arguably use the union of
two identical BSC(pave) models, where pave is the average of



pL and pU . This average crossover probability pave is shown
in Fig. 2. The corresponding capacity is C2 = 2(1−h2(pave)).
Both C1 and C2 are plotted as a function of the P/E cycle count
in Fig. 5. Note that there is very little difference between C1

and C2.
The BSC model of the MLC flash memory channel is

frequently used for design and hard decision decoding of
error correcting codes (ECC) for flash memories. However
from Fig. 5, we see that with increasing P/E cycle count the
difference in capacity estimates between the 4-ary DMC model
and the BSC model also increases, with the maximum gap in
capacity being ∼0.025 bits/cell at 10,000 P/E cycles. At the
4,000 P/E cycle point, we observe that the capacity estimate
using the BSC model is ∼1.953 bits/cell. The corresponding
P/E cycle point with the same capacity estimate on the 4-ary
DMC model capacity curve is at around 4,700 P/E cycles.

These observations quantify in terms of P/E cycles (or
device lifetime) the achievable gain (∼17%) obtained by
moving from binary, page-oriented ECC design based upon a
BSC model to non-binary, wordline-oriented ECC design and
decoding using the asymmetric 4-ary DMC model. Some ECC
schemes utilizing this capacity advantage of the asymmetric
q-ary DMC model for flash memories were proposed in [13],
[14].

We also computed the symmetric information rate (SIR),
which is the mutual information of the 4-ary DMC with a
uniform distribution of input symbol probabilities. We found
that the SIR is very close to the capacity estimate for our 4-ary
DMC model, with the maximum difference across all P/E
cycles being only about 10−4. This observation suggests that
using the asymmetric 4-ary DMC model for decoding ECCs
with uniform input symbol distributions may be sufficient to
obtain a coding gain since, in practice, the cell levels are
almost always uniformly distributed in the data being written
to the flash memory.

IV. CHARACTERIZATION OF INTER-CELL INTERFERENCE

A. Correlation of ICI errors with cell neighborhood patterns

To characterize the ICI effect of neighbor cells on the victim
cell, we classify the cell errors observed into different groups
identified by the programmed values of the neighbor cells in
a 8-neighborhood section as shown in Fig. 1. The four types
of neighbor groups considered are the neighbors along

1) the same wordline as the victim cell (a, b)
2) the same bitline as the victim cell (c, d)
3) the diagonals on the previous wordline (e, f)
4) the diagonals on the next wordline (g, h)

Fig. 6 shows the percentage of cell errors that were observed in
each type of neighbor group for all possible programmed levels
of the neighbors. We observe a strong correlation between the
programmed levels of the wordline (a, b) and bitline (c, d)
neighbors and the cell errors, whereas there is very little
correlation of the cell errors with the programmed levels of
the neighbor cells along the diagonals (e, f, g, h). For example,
we see that the neighbor patterns of (3, 3) are dominant

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Neighbors of Victim Cell

0

5

10

15

20

25

30

%
 o

f S
ym

bo
l E

rr
or

s

Wordline neighbors (a, b)
Bitline neighbors (c, d)
Diagonal neighbors on previous wordline (e, f)
Diagonal neighbors on next wordline (g, h)

Fig. 6. Contribution of victim cell neighbors to cell (symbol) errors measured
as a percentage of total cell (symbol) errors across all P/E cycles.

ones for the wordline and bitline neighbors whereas for the
diagonal neighbor cells we do not see a dominant neighbor
pattern. This clearly suggests that it is sufficient to consider
only the wordline and bitline neighbor cells in the design
of ICI mitigating/correcting codes. We also observe that the
wordline neighbor patterns that have at least one neighbor
programmed to the highest level 3 correspond to a significant
percentage of the cell errors. It is also interesting to note
that wordline patterns such as (2, 3) and (3, 2) correspond
to approximately the same percentage of errors indicating that
the relative position of the wordline neighbor cell programmed
to a 3 does not affect the ICI it causes. This is consistent
with the flash memory programming model where all the cells
in a wordline are programmed at the same time. However,
for the bitline neighbors we see that neighbor patterns where
the bitline neighbor cell immediately below the victim cell is
programmed to the highest level 3 correspond to about 60% of
the total cell errors observed. These are the (3, 3), (2, 3), (1, 3)
and (0, 3) bitline neighbor patterns. From our results, it is easy
to see that the bitline neighbor cells are the most correlated
with the cell errors observed, implying that the bitline ICI is
stronger than the wordline ICI.

B. Errors due to isolated wordline ICI

In another P/E cycling experiment, we isolate wordline ICI
effects by programming only pages belonging to alternate
wordlines (WLi, WLi+2, . . . ), using pseudo-random data. The
objective is to eliminate the bitline ICI effect in the vertical
direction by ensuring that the bitline neighbor cells (c, d) of
any programmed cell remain unprogrammed. The raw BER
across P/E cycles in this case is shown in Fig. 2. We observe
a significant BER reduction (∼100X at 4,000 P/E cycles)
compared to the case when all wordlines are programmed.

C. Errors due to isolated bitline ICI

To isolate the bitline ICI, we only programmed cells on
alternate bitlines (BLi, BLi+2, . . . ), using pseudo-random
data. This ensures there is no wordline ICI in the horizontal
direction. Fig. 2 shows the observed raw BER across P/E



cycles in this case. The reduction in the raw BER due to
the absence of wordline ICI is only about 5X at 4,000 P/E
cycles. Comparing this with the previous experiment where
bitline ICI was suppressed, it is clear that the bitline ICI in
the vertical direction is the dominant part of the ICI seen in
flash memories.

V. ICI MITIGATION USING RLL CONSTRAINED CODES

From the ICI characterization results presented in the pre-
vious section, it is clear that the ICI effect on a victim cell is
strongly correlated to the programmed levels on its wordline
(horizontal) and bitline (vertical) neighbors. It is also observed
that the probability of a flash memory cell being in error is
the largest if its immediate neighbors along the same wordline
and the same bitline are programmed to the highest level
‘3’. More specifically, our results show that the patterns most
susceptible to ICI, considering only immediate wordline and
bitline neighbors, are ‘3-0-3’, ‘3-1-3’ and ‘3-2-3’. Hence the
number of cell errors due to ICI can be reduced by ensuring
that these cell-level symbol patterns are never written to the
flash memory.

In [7], the authors observed that a ‘3-0-3’ pattern in an
MLC flash memory consists of a ‘1-1-1’ pattern in the upper
page; that is, the binary representation of the ‘3-0-3’ pattern is
‘01-11-01’, where the left bit represents the lower (MSB) page
and the right bit represents the upper (LSB) page. Hence to
forbid ‘3-0-3’ patterns from being written to the flash memory,
it is sufficient to forbid ‘1-1-1’ patterns from being written to
the upper page of any wordline. As shown in [7], this can be
done efficiently by encoding the data to be stored in the upper
page using a suitably chosen binary (d, k)-runlength-limited
(RLL) code.

Binary (d, k)-RLL codes are a popular class of constrained
codes which have been successfully applied in magnetic
recording to mitigate the adverse effects of inter-symbol inter-
ference (ISI). The codewords of a (d, k)-RLL code are a subset
of binary sequences that satisfy the (d, k)-RLL constraint,
which requires that the lengths of consecutive runs of zeros
are at least d and at most k. In particular, as noted in [7], the
‘1-1-1’ pattern is forbidden by any (d, k)-RLL code such that
d = 1.

A (d, k)-RLL constraint can be easily represented using a
directed graph with labeled states (nodes) and labeled edges,
where the constrained sequences are obtained by reading the
edge labels in a sequential manner while traversing a path in
the graph. A graph representation of the (1, 7)-RLL constraint
is shown in Fig. 7. The directed graph can be described by an
adjacency matrix A, and the capacity of the binary (d, k)-RLL
constraint is given by

C = log2 λmax(A) (1)

where λmax(A) is the largest positive eigenvalue of the
matrix A [15], [16]. (The capacity represents the supremum
of achievable rates of codes satisfying the constraint.)

The capacity of the (1, 7)-RLL constraint computed using
(1) is ∼0.6793. An efficient rate 2/3 (1, 7)-RLL encoder

0 1 2 3 4 5 6 7

0 0

1

0

1

0

1

0

1

0

1

0

1
1

Fig. 7. Graph representation of the (1, 7)-RLL constraint

based on table lookup was used in [7] to encode the upper
pages of an MLC chip, thereby guaranteeing that the symbol
pattern ‘3-0-3’ would not be written1. Since the lower page is
uncoded, corresponding to a rate of 1, the overall rate of this
encoding scheme is therefore given by (1 + 2/3)/2 ≈ 0.83.

Referring to Table I, we see that in our MLC flash memory
the cells programmed to level ‘1’ are the most affected by ICI
and “10 (1)→ 00 (2)” is the dominant error. Thus, forbidding
only the ‘3-0-3’ pattern to mitigate ICI effects is inadequate, so
we extend the approach of [7] and show how to use (d, k)-RLL
codes to forbid the ‘3-1-3’ and ‘3-2-3’ patterns in addition to
the ‘3-0-3’ pattern.

Note that the bit representations of these two additional
patterns are given by ‘01-10-01’ and ‘01-00-01’, respectively,
and that both patterns induce a ‘1-0-1’ bit pattern in the upper
page. Hence to forbid all three ICI-susceptible patterns it is
sufficient to forbid the bit patterns ‘1-1-1’ and ‘1-0-1’ in the
upper page of every wordline. This is easily accomplished
by using a (d, k)-RLL code satisfying a d = 2 constraint,
which would ensure at least two zeros between any two ones
in the encoded upper page data. A graph representation of
the (2, 7) constraint can be obtained from the graph in Fig. 7
by eliminating the directed edge from state 1 to state 0. The
capacity of the (2, 7)-RLL constraint computed using (1) is
∼0.5174. We can use an efficient 6-state rate-1/2 encoder,
proposed in [17], for our (2, 7)-RLL constrained code. Since
the lower page is again left uncoded, the overall rate of
our encoding scheme is given by (1 + 1/2)/2 = 0.75.
Although a specific value of k is not required to forbid
ICI-susceptible data patterns, we choose k = 7 due to the
availability of efficient encoders for the (1, 7)-RLL and (2, 7)-
RLL codes [15]–[17]. We also note that there exist practical
constrained codes with higher rates than the (d, k)-RLL codes
examined here that can be used to avoid ICI-susceptible
data patterns. For example, maximum transition run (MTR)
codes [18], originally designed for magnetic recording appli-
cations, forbid the bit pattern ‘1-1-1’ and achieve rates close
to the capacity, ∼0.8791, of the corresponding constraint. We
leave a comprehensive assessment of such codes for future
work.

1The authors of [7] also used the (1,7)-RLL code with an NRZI precoder to
forbid writing the ‘0-1-0’ pattern into an SLC flash memory, where ‘1’ denotes
the erased state. They evaluated the resulting performance improvement using
a mathematical model of ICI.



0 2000 4000 6000 8000 10000
Program/Erase (P/E) Cycle Count

10-7

10-6

10-5

10-4

10-3

10-2

B
it 

Er
ro

r R
at

e 
(B

ER
)

Programming all pages in a block
Programming 3-0-3 forbidden patterns along wordlines in a block
Programming 3-x-3 forbidden patterns along wordlines in a block
Programming 3-x-3 forbidden patterns along bitlines in a block

Fig. 8. Measured average raw bit error rate comparison when all pages are
programmed with pseudo-random data and when (1, 7)-RLL and (2, 7)-RLL
coded data are programmed to forbid ‘3-x-3’ patterns along wordlines or
bitlines.

To evaluate the error rate performance gain due to the (d, k)-
RLL coding, we perform P/E cycling experiments as described
in Section II with the (d, k)-RLL coded data being written and
read from the flash memory blocks. We separately consider
the encoding of data using (1, 7)-RLL and (2, 7)-RLL codes
along the wordlines (horizontal) and the bitlines (vertical) of
the flash memory block to measure the effect of forbidding the
ICI-susceptible data patterns in each direction. Fig. 8 shows
the raw BER results obtained from our experiments using the
(d, k)-RLL coded data.

Note that forbidding the ‘3-0-3’, ‘3-1-3’ and ‘3-2-3’ data
patterns using (2, 7)-RLL coding for the upper page also
results in forbidding the ‘3-3-3’ pattern. We therefore denote
the results corresponding to this case as ‘3-x-3’ forbidden
data patterns in the plot legend in Fig. 8. We observe that
forbidding the ICI-susceptible patterns results in significantly
lower raw BER especially in the early life of the flash memory
(up to ∼1, 000 P/E cycles). However, at later stages in the P/E
cycling, forbidding the ‘3-x-3’ patterns across the wordlines
does not provide significant performance gain. This is due
to the fact that the ICI along the bitlines is dominant and,
consequently, coding along the bitlines to prevent ‘3-x-3’
patterns provides the largest performance gain compared to
an uncoded system.

VI. CONCLUSION

We performed P/E cycling experiments on MLC NAND
flash memories to characterize the error behavior at various
levels. At the cell level, our results indicate an asymmetric
distribution of cell errors which we utilize to model the flash
memory channel as a time-varying 4-ary discrete memoryless
channel (DMC). Our capacity estimation results for this 4-ary
DMC model show that using this channel model to design
and decode ECCs can potentially provide performance gain
compared to the binary symmetric channel (BSC) model
frequently used in practice. We also studied and characterized
the data dependence of ICI along with the wordline and bitline
ICI effect and our results clearly show that the bitline ICI
in the vertical direction is much more significant than the

wordline ICI in the horizontal direction. Using (d, k)-RLL
codes to mitigate ICI by forbidding ICI-susceptible patterns,
we observed that it is important to consider coding techniques
along the bitlines in flash memories for successful mitigation
of ICI errors.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grants CCF-1116739 and CCF-1405119.
The authors would like to thank Mr. Hung-Wei Tseng for
providing development support for the flash memory charac-
terization hardware platform.

REFERENCES

[1] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Letters, vol. 23, no. 5, pp. 264–266, May 2002.

[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502,
April 2003.

[3] J. Cooke, “The inconvenient truths about NAND flash memory,” in
Micron MEMCON 7, 2007.

[4] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swanson, and J. K.
Wolf, “Error characterization and coding schemes for flash memories,”
in Proc. IEEE Global Telecommunications Conference (GLOBECOM)
Workshops, December 2010, pp. 1856–1860.

[5] E. Yaakobi, L. Grupp, P. H. Siegel, S. Swanson, and J. K. Wolf,
“Characterization and error-correcting codes for TLC flash memories,”
in Proc. International Conference on Computing, Networking and Com-
munications (ICNC), January 2012, pp. 486–491.

[6] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,” in
Design, Automation and Test in Europe Conference Exhibition (DATE),
March 2012, pp. 521–526.

[7] Y. Kim, B. Kumar, K. L. Cho, H. Son, J. Kim, J. J. Kong, and
J. Lee, “Modulation coding for flash memories,” in Proc. International
Conference on Computing, Networking and Communications (ICNC),
January 2013, pp. 961–967.

[8] A. Berman and Y. Birk, “Error correction scheme for constrained inter-
cell interference in flash memory,” in Annual Non-Volatile Memories
Workshop (NVMW), 2011, March 2011.

[9] R. Motwani, “Hierarchical constrained coding for floating-gate to
floating-gate coupling mitigation in flash memory,” in Proc. IEEE Global
Telecommunications Conference (GLOBECOM), December 2011.

[10] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 836–
846, May 2014.

[11] R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Transactions on Information Theory, vol. 18, no. 4, pp.
460–473, July 1972.

[12] S. Arimoto, “An algorithm for computing the capacity of arbitrary dis-
crete memoryless channels,” IEEE Transactions on Information Theory,
vol. 18, no. 1, pp. 14–20, January 1972.

[13] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Transactions on Information Theory, vol. 56, no. 4,
pp. 1582–1595, April 2010.

[14] R. Gabrys, E. Yaakobi, and L. Dolecek, “Graded bit-error-correcting
codes with applications to flash memory,” IEEE Transactions on Infor-
mation Theory, vol. 59, no. 4, pp. 2315–2327, April 2013.

[15] P. H. Siegel and J. K. Wolf, “Modulation and coding for information
storage,” IEEE Communications Magazine, vol. 29, no. 12, pp. 68–86,
December 1991.

[16] K. A. S. Immink, Codes for Mass Data Storage Systems. Shannon
Foundation Publishers, 2004.

[17] P. A. Franaszek, “Run-length-limited variable-length coding with error
propagation limitation,” US Patent 3,689,899 (1972).

[18] J. Moon and B. Brickner, “Maximum transition run codes for data
storage systems,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp.
3992–3994, September 1996.


