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Abstnct  - We app ly  principles from dig i ta l  im- 
age correct ion to enhance  t h e  correct ion of two- 
dimensional ly  correlated unidirectional errors on a 
two-dimensional gr id  sys t em.  
A res tora t ion  technique presented in  [l], based o n  
Markov r a n d o m  fields, is used t o  find a n  e s t i m a t e  of 
t h e  error p a t t e r n .  T h i s  e s t ima te  t h e n  in  t u r n  provides  
a priori information for use in a soft d e c o d e r  for  t h e  
ac tua l  c o d e  (e.g. LDPC decoder).  

1. CHANNEL MODEL 

11. ERROR MODEL 

We will use an error niodel with correlated errors. The er- 
rors are assunied to be correlated in the sense that the value 
of a hit in the error pattern depends 011 the d u e s  of its ncigh- 
boring hits. To model t.he correlation hetween thc hit.s, we will 
use a Markov Handom Field (MKF), and this implies that the 
Gibbs distrihution gives the statistical propert,ies of the er- 
rors. We arc studying a, system where local dependcncies in 
a 2-dimemional space are very important. To describe such 
dependencics, \r-e will introduce the concept of neighborhoods 
and the relat'd concept of cliques. 

We will srndv encoded information on a two dimensional A. Neighborhoods a n d  cliques 
lattice wi th  2D correlated BTIOTS. Further, we will ammie  that 
errors arc asymmetric so that only the transition 0 - 1 occurs 
in B received codeword. 

Consider a set of random variahles A = {Ai l i  E I }  for 
some index set I !  where the variables are organized in a two 
dimensional grid. Let the variables correspond to the vertices 
and the statistical dependencirs hetween thc variables corre- 
spond to edges in an undirmted graph G. We shall usc this 
setup to model both codewords and errors in OUT system. Two 
connected vertices in G are said to be neighhors. and a neigh- 
borhood JV, of a vertex a, can be defined as the set of vertices 
that are connected to ai in G. Different sizes of neighborhoods 
can he defined for an MRF. By convention, a node is not a 
neighbor of itself. On a regular lartice we define the first or- 
der neighborhood to be the four closest neighbon: of a node as 
seen helow, the second order neighborhood the eight clos- 
est neighhors and so on. The collection of all neighborhoods 
N = {,U, 1 V i  E I }  in a graph, is called a neighborhood system. 

~ ~ f i ~ i ~ i ~ ~  1 ( ~ ~ ~ ~ i ~  OR) A~~~~~~~~ A B are matrices 
,"ith dimensions n, dz , l ,  . dz = ~, and ?"it,,, coordi. 
nates a~ and b, respectiuell/, ~ l , , ~ , ,  the OR oj these ma,,nce,y is 
defined as 

A V  B Pa,, V b i ,  15  i 5 n 

The received word y cBn then he defined as the combion. 
tion of 

y = c v x  

Y - received word 
C - a r i g i d  codeword 
X - error pattern 

I I I 
I I I 

V - OH operator on matrices  EL^ defined above I I I ---(--O---O--- 
I I 

I I I ;  o--- 
The channel model can also he illustrated a5 a two dimen- 

sional grid with black and white squares denoting 1 and 0 hits 
a, - 0- 

I I 1 

respectively, as seen in Fig. 1. - - _  

I I I 

I I I 

Within the neiglihorhood of a vertex a;,  we define a clique 
tn he any collection of vertices that contains a, and forms a Fig. 1: Graphic description of channel iriodel 

fully connected subgraph of G; i. e. that the vertices are mu- 
tual neighhors relative tn the neighborhood system N. In the 
c a ~ e  of a first order neighborhood, d l  nodes within distance 1 
of the center are said to he neighhors, and the ciiqneu heconie 
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the center node a, and all pairs of (.<,ai) where a, is a neigh- 
bor of a,. In  il second order neighborhood, all nodes within 
distance are defined as neighbors: 

Z is a constant called the padition, fun.ctiun and can be 
expressed s Z = C z t x e - ~ u ( r ' .  so that  2-' becomes 
a normalizing t on st ant in the expression. 

I I I 
I I I 

I \  I / I  

l I I 

and in this case the cliques becomes any configuration of 

U ,  a; - 0 

The collertion of all cliques of size i in a neighborhood 
system Ad is called Ci. The set C of all cliques in a graph can 
then be partitioned into the subs& Ci for 1 5 i 5 n 
B. Markov random fields (MFW) 

An MRF can be seen as a generalization of Markov chains, 
but while a Markov chain is often defined over a domain of 
time as a sequence of random variabies, an MRF can be de- 
fined in space to describe dependencies between vvrishlcs on  
a grid of dimension 2 or higher. 

Just as a Markov chain {. . .,a*, ai-1, ar-2, . . .} satisfies 

P(a,la,-,:a,-n,. . .) = P(ai/ai-i,a,-z, .. . ,at-") 

for sonLe n, an MRF should satisfy 

P(a,lar-{i}) = P(a* I ni,) 
where I is the set of indices of a and .U, is the neighborhood 
of ai as defiiied above. 

In the following we shall use an MRF defined over a second 
order neighborhood system to model the 2-D correlated errors. 

C .  Probabi l i ty  d i s t r ibu t ion  
The fact that the errors of our channel can be represented 

by an MRF does not immediately enable us to analyze the er- 
ror patterns statistically. By assuming that the dependencies 
in a collect.ion of random variables can he represented by an  
MRF, the joint probability of the variables is given by the so 
called Gibbd distribution. 

Definition 2 (Gibbs  dis t r ibut ion)  A set of m n h m  uari- 
ables is said to be (L Gihhs random field (GRF) if the joint 
distrihlion of the vadobles laker the following form: 

P(X = 2) = - exp --U(X) (1) Z I [:. I 
This distribution is called U Gihbs distribution. 

U ( z )  is called lhe e n q y  fun,ction and is a function of 
t h r  values of the variables forming cliques in the ficld. 
It can he written as 

We can expand this expression further by summing over 
the cliques of the sanie degree separately 

1 VI(a ,b )+  C h ( a : b , c ) +  
o . b t ( l z  a.b.cECa 

where C, is the collection of all cliques of degree i, so 
that V, is a function of z variables forming a clique, and 
Cc, C: mean that we sum over all possible cliques in 
the field of degree i :  

T is called the tempemlure (this is U legacy from the 
distribution's origin in statistical physics). The param- 
eter T influences the degree of cohesion between the 
variables on B grid. so that  a higher temperature COIIP 

sponds t.o a lower degree of cohesion in the sense that 
the values of the variables becomes more and more in- 
dependent, while a lower temperature gives a higher 
probability of the formation of large clusters of variables 
with the same d u e .  Vie shall msume that the temper- 
ature is 1 in our simulations, even if the parameter will 
he used in the theoretical treatment of the decoding 
algorithm. 

The Clifford-Hammersley theorem states that for a set of 
variables 3 with a neighborhood system .A/, 3 is an  MRF 
with rcspect to JV if and only if 3 is a GRF with respect to 

Unfortunately, Z is very hard to compute. Since we have 
to consider ail possible of values of I in order to find Z,  the 
computational complexity of the task is a formidable O(?"), 
effectively preventing us from computing the absolute proba- 
hilities far the configurat,ions of X. It is nevertheless possihle 
to use the Cibbs distribution to  find an  estimate of the error 
patterns generated by the charmel. 

ni. See [SI. 

111. ERROR ESTIMATIOX 

We want to  find an estimate of the error pattern that wag 
added to the codeword, based on the assumptions about the 
dependencc between errors given in the previous sections. In 
order to avoid computing the constant Z in the Gibbs dis- 
tribution, we will do a MAP estimation of the errors. That 
is, given a received word Y, we want to find an estimat,e of 
the mast likely error pattern X that  was added to C. Some 
terminology is needed in order to develop this. Let A be a set 
of random variables defined on the set C> and let the elements 
of A be indexed by I 5 i 5 n. If .4, = ai for each variable .+I;, 
where ai E C, we call {al.. . . ~a,) = a a configuration of A 



A. MAP estimation 

MAP est.iniation of the error pattern X based on the re- 
ceived rwrd Y- can be formulated i i  the marinriaation of rhe 
a posterion probahility P(.Y = zlY = y) with respect to x. 
That  is. we want to find a configuration x that makes the 
probability P ( X  = xll' = 7,) as high ati possible. 

Bayes nile gives 11s 

P(X = x ) P ( Y  = I,/X = x) 
P(Y = Y) 

P ( X  = 21Y = y) = 

Since P(Y = U )  does not depend on P(.Y = x), we can m u i -  
mize olier 

P(.Y = z ) P ( U  = ylX = x) ( 2 )  

To find the probshilities P(Y = ylX = x): we milst take 
care to remember ihst  the error pattern X is now considered 
as the original infcormation that wc want to estimate, and the 
codcword C is to be considercd as errors obscuring the infor- 
mation. In the following, we shall make some assumptions 
about X and C:. 

The variables are bipolar, with 1 corresponding to 0 and 

. The codeword C ,  when treated as errors, can he seen 

-1 corresponding to I in the channel model. 

as random hipolar variables so that 

1 
P(C = c) = fl P ( C j )  = (5)" 

Under these assumptions only the transition 1 + -1 takes 
place, and the passibility of doing so is 4 since c1 is supposed 
to be a random binary variable. The value of P(U1-U) is givcn 
hy the channel characteristics and the assumption that there is 
an erpal probability that a I hit and a -1 hit in the codeword 
will coincide with a -1 hit in  the error pattern. The resulting 
probabilities arc seen in Table 1. 

1 - 1 1  0 1 1  I 
Tah. 1: Transitiori probabilities 

P(U = x. Y = y) = 

y i ( l  - xi) In2  
I - ? / , + €  

Since the natural logarilhrn is strictly increasing, the fol- 
lowing eqiialit,y holds: 

arg max( P ( X :  Y ) )  = arg max(ln( P(.Y: Y ) ) )  s X 

In order to avoid computing Z in the above expression, we 
take the logarithm of both sides and eliminate constants to 

where V ( z )  = in [P(X = z. Y = y)]. 
We define the partial functions Vi of U(.) according to [3,4] 

T 4 ( X i )  = ax< 
Vz(.,,x,.) = 8.. , ,zzx, ,  

V3(3;i>I,,.x,#!) = . I .  = o  

Note that the expression for Vz implies that 
V > ( X ; > X , , )  =D;,;, for xi = %,rand V2(xilx,r) = -@;,;,for 

From this we get a new expression for V ( x ) :  
I% # X I ' .  

and splitting the last term into a constant and a non-constant 
term yields 

r 

I - :y; + t 
Since the last term only depends on y, we can find the MAP 

configuration by simplifying the expression to: 

%'EN* 

The conditional probabilities in t.he table can be expressed 
as an exponential function by 

1 e-0 2 [ -  1 - y i + e  
g;(1 - Z<) In 2 P(U, = al.Y{ = xi) = lini - exp 

We can then express the prohahilily of a given y conditioned 
on a configuration x by 

B. Optimizat ion of V ( x )  

To do a global optimization of the expression above with ] ( 3 )  
1 V i ( ]  - x , ) h 2  

P(Y = y1.x = .E) = n lim - exp [ - 
I-0 2 l - y i + €  

respect t o  3: would become computationally infeasible as the 
size of I increases. Instead we can use the local depen- 
dencies between bits to do a local optimization along the 

Substituting (1) and (3) into (2), we c m  find the joint 
probability by 
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lines oi  the PDFE in [I, 21 01 the partial binary segmenta- 
t.ian algorithm of [.l]. It is apparent that when V ( x )  is iac- 
lored as in (4): we can always choose the value of 2, so that 
each term in the sum bccomes positive, and thus the sum 
is non-decreesine. For each ~ixd we cumDutc the value of 

are hard to correct. Therefore, F is m important measure o i  
the reliability of the algorithm. As can be seen in Fig. 2. 
P ( E )  is high for p < 0.5, reHecting the fact tliat sinall and 
very irregular error clusters appear in this range. P ( E )  drops 
sharply initially, but levels out when 0 > I as a result of the . .  

[a + P ~ j , E , v ~  z, - of a, 
so that this exprcssiou is positive. This procedure is iterated 

[e]] and set the clusters beconling higger and more coherent. As we shall See 
later, this is also rcHrcted in the performance of the algorit,lim. 

until we converge on a solut,ion or a maximum nuniber of it- 
erations is reached. 

IV. ERROR GENERATION 

Generation of two dimeiisional burst errors is done by 
the use of a Monte Carlo Markov chain technique called the 
Metropolis algorithm.We do not have very strict requirements 
far the generated sample configurations, other than that they 
should bc "somewhat likely" to occur given the condition that 
the variables' distribution is given by the Gibbs distribution. 

The Metropolis algorithm is a general method for generat- 
ing samples from B joint distribution of two or more variables, 
and can he applied to distributions that are either continuous 
OT discrete as long as it is possible to compute the difference 
of the likelihoods for two configurations of the variables. 

We would like to sample the joint distribution A = 
{ A I , .  . . I A,). This is achieved by generating random changes 
to the components A, of A ,  and accepting or rejecting these 
changes based on hour they affect the likeiihoad of the config- 
uration. In our case, the natiiral change to a component of a 
configuration would be to flip the hit value. 

Given an initial configuration A, a new configuration A' 

0,s 1 5  

I 

Fig. 2: P ( E )  for k e d  /? = 0.2 in the estimation algoritlini 

VI. DECODING 
Having obtained an estimate 

1 = {.%, . . . ,X&, . . . ,I) is ohtained a explained above by Hipping B hit. Then, the 
difference of the likelihood of the new configuration and the 
old configuration is calculated by 

of the error pattern, it can be used to find likelihood ratios for 
input to the decoder. For each hit, we set the likelihood ratio 
to 

Li = P(C, = -llYL,XJ ALJ = LJ(A') - U ( 4 )  = 

V,(a')+ V>(a*,b*)+ Vz(a*,b',c')+ . . .  P(C, = Ill;,-?,) 

a-tc ,  r i ' , b - t C z  a*.b..c.tCg The resukine Drobabilities can be seen in Table 2. In  the 
- E  V,(a)+ K(u;b)+  Vs(a ,b ,c )+ 

and the new configuration is accepted with probability 1 if 
the new likelihood is higher than the old one. Otherwise, the 
new configuration is accepted with probability so the 
probability of accepting the new configuration becomes: 

OEC, o .bEC2 o,b,cEC. 

A pass through all the components in A in this way is called 
a sweep over the variables in A. In our case, we generate a 
sample from the distribution by doing 4 sweeps over A, result- 
ing in the evaluation of a total of 4n new configurations. This 
should result in a sample that has high enough probability to 
be detected by the estimation algorithm described above. 

v. PERFORMANCE OF ESTIMATION ALGORITHM 

The periormance of the estimation algorithm depends heavily 
on the value of 0, which determines the degree of cliistering 
in the error pattern. A critical performance parameter is the 
probability E that not ail bits in the error pattern are detected 
hy the estimation algorithm. A hit that belongs to the error 
pattern, hiit is not detected a such, is given a high probability 
of being correct; and can hence be the source of errors that 

1-11 I 0  I 

Tab. 2: Input probabilities to the decoder 

table, p is the probability that a hit belonging to the error 
pattern is incorrectly estimated as a I-hit. The parameter p 
must be estimated by simulation, but shonld in general be 
small: indicating a relatively certain -1-bit. 

VII. SIMULATIONS 

A regular LDPC code is used as the error correcting code 
component We shall use different values of 0 in the simula- 
tions, and assume a = 7 = . . . = 0 in the estimation algw 
rithm. We shall also assume t.hat the receiver does not know 
the value of p used by the noise generating process. The  com- 
ponents of t.he simulator is then connected as shown in Fig. 3 
The simulations show that there is a iarge performance gain 
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MRF-MAP 
estimate 

2-D noise I Y" 
U 

Fig. 3 System model 

Fig. 4: Performance under wrying /3 with rate 

I 

above. W e  have also seen tliat the performance of the al- 
gorithm depends on the reliability of the error estimate. We 
have however not ~ O I I B  any optimization ai the error correcting 
codes used in the simulations. There should be a potential for 
further performance improvements b>- either constructing the 
codes to assure a maximum spatial spread of the bits in each 
parity checkl or usc interleaving to achieve the same result. It 
is also possible t o  cxtend the use of cluster error detection to 
other channels like the binary symmetric channel 

for some choices of parameter using the LDPC-MUF combi- 
nation described above. The value of 9 has great influence 
over the relative performance of the bwo decoding methods. 
Looking in Fig. 4 at the performance of a cork in combina- 
tion with the MAP error estimate and alone: under varying 0, 
we can observe that the performance difference between the 
two decoders increases as 8 increases. This is due to the effect 
described in Section V. as 0 increases, the reliability of the 
ermr estimate dm incrmses. \Ne also notice that the drop in 
BER levels off at about 8 = 1 corresponding to the reliability 
of the estimate leveling off from the same point. The perfor- 
mance of the decoder could also be measured under wrying 
hit error probabilities, hut because the hit error probability 
depends on the parameter 0 in the Gibbs distribution in a 
way that makes it, hard to predict, the average error proha- 
bility over codewords. we fix the value of 0 to ,L3 = 0.2 and 
B = 1.0 which gives a n  average error rate of about 0.12 and 
0.02 respectively. and study the performance of joint LDPC 
- Y R F  decoding for different code rates using these paranit  
trrs. We sce in Fig. 5 that the effect of the MRF estimator 
gives very good results in combination with the LDPC code 
when the code rate is sufficiently low, while the performancc 
gap between tho two decoders gets smaller as the code rate 
grows. This occurs because the MRF-LDPC decoder needs 
a certain amount of information from the code itself to de- 
termine the value of the bits in the error pattern, even if the 
MRF estimator provides a perfect estimate of the errors. 

VIII. CONCLUSIONS 
We have observed significant performance gains using the 

combined error detection and correction methods described 

,/" > O * l  .lii 
0.1 0,s 0 2  0 . z  0 1  O I  0.1 0.45 0. *,, 

, O * l  ' ' ' ' ' 

Fig. 5: Performance under varying rate with (3 = 0.2 and (3 = 1.0 

REFEREXES 
[I]  M. A. Neifield, K.  1w. C h u g  and B. M. King, "Parallel data 

detection in page-oriented optical memory", Optics Letters, vol. 
21, no. 18. pp. 1'181-1483, Sept. 1996. 

121 M . Neifeld and B. M. King, "Piuallel detection algorithna for 
page oriented opticd memories", Applied Optics, vol. 3i, no. 
26, pp. 6275-6297; Sept. 1998 

131 S. 2. Li. "Modeling image ~ ~ ~ a i y s i s  problems ?sing Markov ran- 
dom fieids", Handhook of Statisiics, vol. 2U1 pp. 1-43. 2000. 

[4] Shridhar, M.. Ahmadi, M., El-Cabuli, M.l "Restoration of noisy 
images modeled by Markov random fields with Gibbs distribu- 
tion". Circuits and Systems, IEEE Transactions on, vol. 36 , 
no. 6 , pp. 884 - 890, June 1!189. 

[5] R. Kindrrmvnn and .J. L. Snell, "Markov random fields and 
their applicutioils", AMS, Providence; R. I., 1980. 

161 R. M. Neal, "Probnbiiistic inference wing Markov chain Monte 
Carlo methods". Technical Report CRGTR-'33-1, Dep. of Com- 
puter Science, University of Toronto. 1993. 

[7] R. CheUappa, A. .lain (e&); "Markov Random Fields", Aca- 
demic Press, San Diego, 1993. 

21 


