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Enhanced decoding by error detection on a channel with correlated
2-dimensional errors.
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Abstract — We apply principles from digital im-

age correction to enhance the correction of two-
dimensionally correlated unidirectional errors on a
two-dimensional grid system.
A restoration technique presented in [1], based on
Markov random fields, is used to find an estimate of
the error pattern. This estimate then in turn provides
a prior:i information for use in a soft decoder for the
actual code (e.g. LDPC decoder).

J. CHANNEL MODEL

We will study encoded information on a two dimensional
lattice with 2D correlated errors. Further, we will assume that
erroTs are asymmetric so that only the transition 0 — 1 occurs
in a received codeword.

Definition 1 (Matrix OR) Assume A and B are matrices
with dimnensions dy X da where di - d2 = n, and with coordi-
nates ay and b respectively. Then the OR of these matrices is
defined as

AVvBEa,vh, 1<i<n

The received word Y can then be defined as the combina-
tion of

Y=0CvX

Y - received word

C - original codeword

A - error pattern

V - OR operator on matrices as defined above

The channel model can also be illustrated as a two dimen-
sional grid with black and white squares denoting 1 and 0 bits
respectively, as seen in Fig. 1.
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Fig. 1: Graphic description of channel model
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II. ERROR MODEL

We will use an error model with correlated errors. The er-
rors are assumed to be correlated in the sense that the value
of a bit in the error pattern depends on the values of its neigh-
boring bits. To model the correfation between the bits, we will
use a Markov Random Fietd (MRF), and this implies that the
Gibbs distribution gives the statistical properties of the er-
rorg. We are studying a system where local dependencies in
a 2-dimensional space are very important. To describe such
dependencies, we will introduce the concept of neighborhoods
and the related concept of cliques.

A, Neighborhoods and cliques

Consider a set of random variables A = {A;|i € I} for
some index set I, where the variables are organized in a two
dimensional grid. Let the variables correspond to the vertices
and the statistical dependencies between the vartables corre-
spond to edges in an undirected graph G. We shall use this
setup to model both codewords and errors in our system. Two
connected vertices in & are said to be neighbors, and a neigh-
borhood N of a vertex a; can be defined as the set of vertices
that are connected to a; in G. Different sizes of neighborhoods
can be defined for an MRF. By convention, a node is not a
neighbor of itself, On a regular lattice we define the first or-
der neighborhood to be the four closest neighbors of a node as
seen below, the second order neighborhood as the eight clos-
est neighbors and so on. The collection of all neighborhoods
N = {N; | Vi € I} in a graph, is called a neighborhood system.
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Within the neighborhood of a vertex a;, we define a clique
to be any collection of vertices that contains a; and forms a
fully connected subgraph of G, i. e. that the vertices are mu-
tual neighbors relative to the neighborhood system A, In the
case of a first order neighborhood, all nodes within distance 1
of the center are said to be neighbors, and the cliques become



the center node a; and all pairs of (a;,a;) where a; is a neigh-
bor of a:. In a second order neighborhood, all nodes within
distance v2 are defined as netghbors:

and in this case the cliques becomes any configuration of

a; a; O
m\\o x——0
o o—o

The collection of all cliques of size ¢ in a neighborhood
system A is called Ci. The set C of all cliques in a graph can
then be partitioned into the subsets C; for 1 <i<n

B. Markov random fields (MRF)

An MRF can be seen as a generalization of Markov chains,
but while a Markov chain is often defined over a domain of
time as a sequence of random variables, an MRF can be de-
fined in space to describe dependencies between variables on
a grid of dimension 2 or higher.

Just as a Markov chain {...,ak,¢r-1,0k-2, ...} satisfles

Plaila;1.ai-2,...) = Plaiai1,8i-2, ... ,@i=n)

for some n, an MRF should satisfy
Plada;—(sy) = Pla: | N)

where [ is the set of indices of a and A; is the neighborhood
of a; as defined above.

In the following we shall use an MRF defined over a second
order neighborhood system to model the 2-D correlated errors.

C. Probability distribution

The fact that the errors of our channel can be represented
by an MRF does not immediately enable us to analyze the er-
ror patterns statistically. By assuming that the dependencies
in a collection of random variables can be represented by an
MRF, the joint probability of the variables is given by the so
called Gibbs distribution.

Definition 2 (Gibbs distribution) A sel of random vari-
ables is suid to be a Gibbs random field (GRF) if the joint
distribution of the variables takes the following form:

PX=g)= —;—ex‘p [—%U(X)} {1

This distribution is called a Gibbs distribution.
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e 7 is a constans called the partition function and can be
L7, _
expressed ag Z =% .. e~ TU) gq that 271 becomes

a normalizing constant in the expression.

Ulx) is called the energy function and is a function of
the values of the variables forming cliques in the field.
It can be written as

Ulz) = Vilz)

cel

We can expand this expression further by summing over
the cliques of the same degree separasely

S vz = Vi(a)+

cell a€lq
Z Vala,b) + Z Va(a,b,e) +. ..
a,bECy a,b,0E€C3

where C; is the collection of all cliques of degree i, so
that V; is a function of ¢ variables forming a clique, and
2 ¢, Vi mean that we sum over ail possible cliques in
the field of degree i

T is called the temperature (this is a legacy from the
distribution’s origin in statistical physics). The param-
eter T influences the degree of cohesion between the
variables on a grid, so thaf a higher temperature corre-
sponds to a lower degree of cohesion in the sense that
the values of the variables becomes more and more in-
dependent, while a lower temperature gives a higher
probability of the formation of large clusters of variables
with the same value. We shall assume that the temper-
ature is I in our simulations, even if the parameter will
be used in the theoretical treatment of the decoding
élgorithm.

The Clifford-Hammersley theorem states that for a set of
variables F with a neighborhood system A, F is an MRF
with respect to A if and only if F is a GRF with respect to
N. See [3].

Untortunately, Z is very hard to compute. Since we have
to consider all possible of values of x in order to find Z, the
computational complexity of the task is a formidable O(2"),
effectively preventing us from computing the absolute proba-
bilities for the configurations of X. [t is nevertheless possible
to use the Gibbs distribution to find an estimate of the error
patterns generated by the channel.

{II. ERROR ESTIMATION

We want to find an estimate of the error pattern that was
added to the codeword, based on the assumptions about the
dependence between errors given in the previous sections. In
order to avoid computing the constant Z in the Gibbs dis-
tribution, we will do a MAP estimation of the errors. That
is, given a received word Y, we want to find an estimate of
the most likely error pattern X that was added to C'. Some
terminoiogy is needed in order to develop this. Let A be a set
of random variables defined on the set £, and let the elements
of A be indexed by 1 <1 < n. If A; = a; for each variable A;,
where a; € £, we call {a1,....aa} = a a configuration of A



A. MAP estimation

MATP estimation of the error pattern X based on the re-
ceived word Y can be formulated as the maximization of the
a posteriori probability P{X = z|Y = y) with respect to 2.
That is, we want to find a configuration z that makes the
probability P(X = z|Y = y) as high as possible.

Bayes rule gives us

P(X =5)P(Y = ylX = a)
PY =y}

PX=aly =y) =

Since P(Y = y) does not depend on P{X =), we can maxi-
mize over

P(X = 2)P(Y =y|X = 2) @

To find the probabilities P{Y = y|X = x), we must take
care to remember that the error pattern X is now considered
as the original information that we want to estimate, and the
codeword C is to be considered as errors obseuring the infor-
mation. In the following, we shall make some assumptions
about X and C.

e The variables are bipolar, with 1 corresponding to 0 and

—1 corresponding to 1 in the channel model.

The codeword ', when treated as errors, can be seen
as random bipolar variables so that

= [T 7t = G

P(C = ¢}

Under these assumptions only the transition 1 — —1 takes
place, and the possibility of deing so is ; since ¢; is supposed
to be a random binary variable. The value of P(Y].X) is given
by the channel characteristics and the assumption that there is
an equal probability that a 1 bit and a —1 bit in the codeword
will coincide with a —1 bit in the error pattern. The resulting
probabilities are seen in Table 1.

Yy
2 1| -1
1| 3|4
-1 0 1

Tab. 1: Transition probabilities

The conditional probabilities in the table can be expressed
as an exponential function by

We can then express the probability of a given y conditioned
on & configuration = by

—yi(1 —2)In2

1

—y4i(1 — ;) In2
1—4i+e

PY = yX = ¢) = H lim % oxp [ ] (3)

Substituting (1) and (3) into (2), we can find the joint
probability by
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P X=zY=y)=
7] mg e | )

Since the natural logarithm is strictly increasing, the fol-
lowing equality holds:

—pif{l — z)In2
L—yi+e

arg max(P(X, ¥)) = arg max(In(P(X, ¥)))

In order to avoid computing Z in the above expression, we
take the logarithm of both sides and eliminate constants to

get
=U(x) + }: lim { }

where Viz) =In[P(X =z,Y =y}
We define the partial functions V; of I/ () according to [3, 4]

pi(l—z)In2

Viz
1—y;+e

Vi(e:) = oz
Vo(ziyzg) = Bivzizy
]/ (31.’1‘1 fL‘.H) - =0
Note that the expression for Va2 Iimplies that
Va(ws, o) = Biw for 2 = xzpand Vol i) —3; yfor
x; # Ty

From this we get a new expression for V(z):

Viz) = Z axs + 5 ¢ Z 3Ty
i YEN;
+1lim [M’j” ,
€0 l—yi+e€

and splitting the last term into a constant and a non-constant
terim yields

Viz) = Z az; + By Z Tiky
P VEN;
. —yln2
+lim | =22 n? + lim | —% 02 1 .
e ].—’Q‘i'f‘ﬁ e—0 l—yz‘-{-é

Since the last term only depends on y, we can find the MAP
configuration by simplifying the expression to:

|
[|= @

XLl In2

V=) t—yite

z oz + 6 Z T:Zy + l1m

i HEN;

yiln2
11—y +€

Z a+ 3 Z Itr-l-llm

i HEMN;

i

B. Optimization of V{z)

To do a global optimization of the expression above with
respect to z would become computationally infeasible as the
size of x increases. Instead we can use the iocal depen-
dencies between bits to do a local optimization along the



lines of the PDFE in [I, 2| or the partial binary segmenta-
tion algorithm of [4]. It is apparent that when V{x) is fac-
tored as in (4), we can always choose the value of z; so that
each term in the sum becomes positive, and thus the sum
is non-decreasing. For each pixel we compute the value of

wr = li —wilnd
[a + ﬁZi'e;\’; ir — lime—a J:l—-y,--}-z
50 that this expression is positive. This procedure is iterated
until we converge on a solution or a maximum number of it-

erations is reached.

]] and set the value of =;

IV, ERROR GENERATION

Ceneration of two dimensional burst errors is done by
the use of a Monte Carlo Markov chain technique called the
Metropolis algorithm.We do not have very strict requirements
for the generated sample configurations, other than that they
should be “somewhat likely” to occur given the condition that
the variables’ distribution is given by the Gibbs distribution.

The Metropolis algorithm is a general method for generat-
ing samples from a joint distribution of two or more variables,
and can be applied to distributions that are either continuous
or discrete as long as it is possible to compute the difference
of the likelihoods for two configurations of the variables.

We would like to sample the joint distribution A
{41,..., A,}. This is achieved by generating random changes
to the components A; of A, and accepting or rejecting these
changes based on how they affect the likelihood of the config-
uration. In our case, the natural change to a component of a
configuration would be to Hip the bit value.

Given an initial configuration 4, a new configuration A"
is obtained as explained above by flipping a bit. Then, the
difference of the likelihood of the new configuration and the
old configuration is calculated by

AU = U(A") - U(4) =

S i@+ Y Va(e b+ Do Va(a'bet)+
atel) a* 4*€Cy a*,b",c*ECy
=Y vilay+ Y Va(ab)+ Y Va(abo) ...
a&ly a,beCs ab,eeCy

and the new configuration is accepted with probability 1 if
the new likelihood is higher than the old one. Otherwise, the
new configuration is accepted with probability e~ 2T g the
probability of accepting the new configuration becomes:

AU >0

{e AU <0

A pass through all the components in A in this way is called
a sweep over the variables in A. In our case, we generate a
sample from the distribution by doing 4 sweeps over A, result-
ing in the evaluation of a total of 4n new configurations. This
should result in & sampie that has high enough probability to
be detected by the estimation algorithm described above.

1
—AU/T

P{A — A")

V. PERFORMANCE OF ESTIMATION ALGORITHM

The performance of the estimation algorithm depends heavily
on the value of 8, which determines the degree of clustering
in the error pattern. A critical performance parameter is the
probability ¢ that not all bits in the error pattern are detected
by the estimation algorithm. A bit that belongs to the error
pattern, but is not detected as such, is given a high probability
of being correct, and can hence be the source of errors that
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are hard to correct. Therefore, = is an important measnre of
the reliability of the algorithm. As can be seen in Fig. 2,
P(z) is high for 8 < 0.5, reflecting the fact that small and
very irregular error clusters appear in this range. P(c) drops
sharply initially, but levels out when F > 1 as a result of the
clusters becoming bigger and more coherent. As we shall see
later, this is also reflected in the performance of the algorithm.
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Fig. 2: P(e) for fixed # = 0.2 in the estimation algorithm.

V1. DECODING

Having obtained an estimaie
K ={%0, 0 Ry, X

of the error pattern, it can be used to find likelihood ratios for
input to the decoder. For each bit, we set the likelihood ratio
to
L‘ _ P(C; = —ll}/;_,xq;)

PG =1, X))
The resulting probabilities can be seen in Table 2. In the

N |
r

-1 140
1| o

Tab. 2: Input probabilities to the decoder

table, p is the probability that a bit belonging to the error
pattern is incorrectly estimated as a l-bit. The parameter p
must be estimated by simuiation, but should in general be
small, indicating a relatively certain —1-bit.

VII. SIMULATIONS

A regular LDPC code is used as the error correcting code
component We shall use different values of § in the simula-
tions, and assume o« = ¥ = --- = 0 in the estimation algo-
rithm. We shall also assume that the receiver does not know
the value of 3 used by the noise generating process. The com-
ponents of the simulator is then connected as shown in Fig. 3
The simulations show that there is a large performance gain
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Fig. 3: System model
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Fig. 4: Performance under varying 8 with rate 3

for some choices of parameter using the LDPC-MRF combi-
nation described above. The value of 3 has great influence
over the relative performance of the two decoding methods.
Looking in Fig. 4 at the performance of a code in combina-
tion with the MAP error estimate and alone, under varying 3,
we can observe that the performance difference between the
two decoders increases as 3 increases. This is due to the effect
described in Section V: as § increases, the reliability of the
error estimate also increases. We also notice that the drop in
BER levels off at about 2 = | corresponding to the reliability
of the estimate leveling off from the same point. The perfor-
mance of the decoder could also be measured under varying
bit error probabilities, but because $he bit error probability
depends on the parameter 3 in the Gibbs distribution in a
way that makes it hard to predict the average error proba-
bility over cedewords, we fix the value of # to 3 = 0.2 and
3 = L.0 which gives an average error rate of about 0.12 and
0.02 respectively, and study the performance of joint LDPC
- MRF decoding for different code rates using these parame-
ters. We see in Fig. 5 that the effect of the MRF estimator
gives very good results in combination with the LDPC code
when the code rate is sufficiently low, while the performance
gap between the two decoders gets smaller as the code rate
grows. This oceurs because the MRF-LDPC decoder needs
a certain amount of information from the code itself to de-
termine the value of the bits in the error pattern, even if the
MRF estimator provides a perfect estimate of the errors.

VIII. CONCLUSIONS

We have observed significant performance gains using the
combined error detection and correcsion methods described
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above. We have also seen that the performance of the al-
gorithm depends on the reliability of the error estimate. We
have however not done any optimization of the error correcting
codes used in the simulations. There should be a potential for
further performance improvements by either constructing the
codes to assure a maximum spatial spread of the bits in each
parity check, or use interleaving to achieve the same result. It
is also possible to extend the use of cluster error detection to
other channels like the binary symmetric channel.

BER
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Rate
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Fig. 5: Performance under varying rate with # =02 and 3 =1.0
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