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Abstract—Two algorithms for characterization of input error events
producing specified distance at the output of certain binary-input partial-
response (PR) channels are presented. Lists of error events are tabulated
for PR channels of interest in digital recording.

Index Terms—Constrained codes, error events, intersymbol interfer-
ence, magnetic recording, partial-response channels.

I. INTRODUCTION

Consider a communication system in which a sequencex(D)
drawn from a finite alphabetA is transmitted over a channel with
finite impulse response given by a polynomialh(D) = h0 + h1D+
� � � + h�D

� of degree�: The noiseless output of the channel is
y(D) = h(D)x(D): Let n(D) be a sequence of uncorrelated zero-
mean Gaussian random variables with variance�2: A Viterbi detector
observes the noisy channel output sequencey(D)+n(D) and forms
the maximum-likelihood estimatex0(D) of the transmitted sequence
x(D):

Define the input error sequence"x(D) = x(D)� x0(D) and the
output error sequence"y(D) = h(D)"x(D): The performance of the
system is largely dictated by input error sequences"x(D) that result
in an output with small squared Euclidean distance

k"y(D)k2 =
k

"2y;k:

By characterizing the error sequences with a small Euclidean distance,
one can design codes which can eliminate them giving a performance
improvement [3], [11], [10], [8], [4], [7]. For channels whereh(ej!)
has zeros on the unit circle, the characterization is complicated by
the presence of input sequences withkh(D)"x(D)k2 = 0: These
sequences preclude a simple tree-search for all"x(D) with small
Euclidean distance. The purpose of this note is to give two algorithms
for characterizing the low distance error sequences. These algorithms
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are applied to binary-input partial-response (PR) channels of the form

h(D) = (1�D)m(1 +D)n (1)

for integersm;n � 0 which are good models for magnetic and
optical recording channels.

II. ERROR STATE DIAGRAM

For convenience, the following taxonomy of error sequences will
be employed. Aclosed error eventis a polynomial input error
sequence

"x(D) =

k

k=k

"x;kD
i

wherek1 and k2 are finite integers and"x;k 6= 0 and "x;k 6= 0:
A closed error event is said to besimple if the condition "x;k =
"x;k+1 = � � � = "x;k+��1 = 0 is not true for any integerk1 � k �
k2��: Otherwise, the closed error event is said to becompound. An
open error eventis a right-infinite input error sequence of the form

"x(D) =

1

k=k

"x;kD
k

where infinitely many"x;k are nonzero and yet the squared Euclidean
distance is finite,k"y(D)k2 < 1:

Let A be the binary alphabet,A = f0; 1g: The corresponding
alphabet for the input error sequences will beB = f�1; 0;+1g: At
times, the characters “�,” “ 0,” and “+” will be used as shorthand
for the elements ofB: Input error sequences together with their
corresponding squared output error sequences can be described as
paths through a labeled directed graphG known as anerror state
diagram [12, p. 279]. The graphG consists of a set of3� states, a
finite set of edges, and an assignment of labelsL(e) to each edgee in
G: Each states in G is denoted by a distinct block of� symbols from
B; s = "x;k�� � � � "x;k�2"x;k�1; representing the portion of an error
sequence in the channel memory. Each edgee in G has an initial
stateiii(e) = "x;k�� � � � "x;k�2"x;k�1 corresponding to a particular
channel history and terminal statettt(e) = "x;k��+1 � � � "x;k�1"x;k
determined by the next error input symbol"x;k: This edgee has an
input labelLin(e) = "x;k given by the current error symbol input and
an output labelLout(e) = "2y;k given by the corresponding squared
output symbol. The full edge label is given in input/output form by
L(e) = Lin(e)=Lout(e): An example of an error state diagram for
the channelh(D) = (1 +D)2, denoted PR2, is shown in Fig. 1.

The state in the error state diagram denoted by a block of all-zero
error input symbols is distinguished and called thezero-state. A path
in the error state diagrame1e2 � � � en is a finite sequence of edges
ei such thatttt(ei) = iii(ei+1) for 1 � i < n: A cycle is a path that
starts and ends at the same state. Asimple cycleis a cycle that does
not intersect itself. Azero-cyclein the error state diagram is a simple
cycle whose output edge labels are all zero. LetZ denote the set of all
states that are a part of some zero-cycle inG: For the PR2 error state
diagram shown in Fig. 1, the states shaded in gray form the setZ:

Closed error events are represented by paths which start at the
zero-state on the error state diagram and end at the zero-state. Open
error events start at the zero-state and end in some zero-cycle other
than the self-loop at the zero-state.
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Fig. 1. Error state diagram for PR2 channel,h(D) = (1 +D)2:

Error state diagrams for the linear channels considered here contain
at least one zero-cycle, namely, the self-loop at the zero-state. PR
channels of the form considered in this note have other zero-cycles
in their error state diagrams. These stem from the presence of spectral
nulls in the frequency responseh(ej!) at DC(! = 0) and at Nyquist
(! = �): Associated with every zero-cycle is a periodic bi-infinite
input error sequence"x(D), known as thenull error sequence, with
the property that

kh(D)"x(D)k2 = 0: (2)

The null error sequence is obtained by reading the input edge labels
on a bi-infinite walk along the zero-cycle. The sequence of states for
a zero-cycle can be retrieved by sliding a window of length� along
its null error sequence.

Let ("x;1; "x;2; � � � ; "x;k)1 represent an infinite periodic sequence
of input error symbols with periodic pattern given by the string within
the brackets(�): Then the following lemma characterizes null error
sequences for PR channels of the form given by (1).

Lemma 1: Let h(D) = (1 � D)m(1 + D)n: a) If m > 0 and
n = 0 then the null error sequences are(0)1; (+)1 and (�)1: b)
If m = 0 andn > 0 then the null error sequences are(0)1; (+�)1

and (�+)1: c) If m > 0 andn > 0 then the null error sequences
are(0)1; (+)1; (�)1; (+�)1; (�+)1; (+0)1; (0+)1; (�0)1;

and (0�)1:

Proof: A proof of part c) of the lemma is given. The other parts
have a similar proof. By Parseval’s relation, any input error sequence
"x(D) that satisfies (2) must also satisfy

2�

jh(ej!)"x(e
j!)j2 d! = 0: (3)

Fig. 2. Reduced error state diagram for the PR2 channel,h(D) = (1+D)2:

Thus"x(ej!) has all of its mass concentrated at the nulls ofh(ej!)
at ! = k�; k 2 ; and must be of the form

"x(e
j!) =

1

r=�1

2�a0�(! + 2�r) + 2�a1�(! � � + 2�r):

Therefore, by the Fourier inversion formula

"x;n =
1

2� 2�

"x(e
j!) d! = a0 + a1e

jn�: (4)

Given that"x;n 2 B, the only possible values for the pair(a0; a1)
are (0; 0); �( 1

2
;� 1

2
); (0;�1); and (�1; 0): These values result in

the null error sequences of part c) of the lemma.

A. Reduced Error State Diagram

A new graphG0 can be produced fromG as follows. The states
of G0 are the states ofG: The edges ofG0 are the edges ofG
with input labels modified as follows. Ife is an edge ofG0 with
iii(e) = "x;k�� � � � "x;k�2"x;k�1 andttt(e) = "x;k��+1 � � � "x;k�1"x;k
such thatiii(e) is not the zero-state, it has an input label given by

L0in(e) = "x;k � "x;j (5)

where

j� = maxfjj"x;j 6= 0; k � � � j < kg

and � denotes multiplication. The edge has a corresponding output
label given byL0out(e) = "2y;k: The full edge label in input/output
form is given byL0(e) = L0in(e)=L

0

out(e): The edge labels with
iii(e) = 0 � � � 0, the zero-state, are unchanged from their representation
in G: The graphG0 represents all input error sequences together with
their squared distance in a form ofdifferential notation. The main
advantage of the differential notation is thatG0 containsequivalent
stateswhich can be merged. Two states inG0 are equivalent if the
collection of labels of paths starting at each of the states, denoted the
follower sets, are equal. It can be shown that the two states ofG0; s =
"x;k�� � � � "x;k�2"x;k�1 and�s = �"x;k�� � � � �"x;k�2 � "x;k�1
are equivalent by using a state minimization algorithm. By merging
all of the equivalent states ofG0 one obtains a new graphH, known as
a reduced error state diagram[12, p. 281], [9] which has1

2
(3��1)+1

states. Fig. 2 shows the reduced error state diagram for the PR2
channel.
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Fig. 3. Pseudocode for depth-first search.

The reduced error state diagram still contains zero-cycles, with
some pairs of period-2 cycles mapped into period-1 cycles. The search
algorithms presented are independent of the labeled graph used to
describe the error events. The algorithm presented in Section III-A
will refer to the graphG while the algorithm in Section III-B will
refer to the graphH:

III. SEARCH ALGORITHMS

A. Modified Depth-First Search Algorithm

A simple depth-first search of the error state diagram can be used
to find all open and closed error events of up to a specified maximum
squared distance. The only complication is the presence of zero-cycles
in the error state diagram. There are many ways in which this search
can be done [2], [1]. A two-stage search is described here.

A path e1; e2; � � � ; ek; ek+1; � � � ; en in the error state diagram is
called anerror fragment if

n

i=1

Lout(ei) > 0; iii(e1) 2 Z;

iii(ei) 2 Z, and there is an integerk such thatttt(ei) 2 Z for
k � i � n and ttt(ei) =2 Z for 1 < i < k: In other words, an error
fragment is a path that accumulates positive squared distance, begins
at a state inZ, and ends on a zero-cycle without having visited any
other zero-cycle. It is convenient to group families of error fragments
which start at a common state and share the same sequence of initial
edges, but differ in the number of edges on the ending zero-cycle.
By Lemma 1, zero-cycles for the PR channels of (1) are either of
period1 or of period2. A family of error fragments that end in the
period-1 zero-cycleek+1 are represented by the string

Lin(e1)Lin(e2) � � � Lin(ek)(Lin(ek+1))

where the brackets(�) around a substring of input error symbols
are used to represent repetition of that substring zero or more times.
Families of error fragments which end in the period-2 zero-cycle
ek+1ek+2 are represented by the two strings

Lin(e1)Lin(e2) � � � Lin(ek)(Lin(ek+1)Lin(ek+2))

and

Lin(e1)Lin(e2) � � � Lin(ek)(Lin(ek+1)Lin(ek+2))Lin(ek+1)

which correspond to the two possible ending phases for the zero-
cycle. In this representation, it is assumed that the initial stateiii(e1)
is known.

The first part of the search determines all error fragments that
acquire squared distance no greater thand2max: This is accomplished

by a depth-first search starting from each state inZ: The depth-first
search backtracks when a state inZ is reached, in which case it also
prints out families of error fragments corresponding to the search
path, or when the maximum distanced2max has been accumulated.
A recursive subroutine for this search is described via pseudocode
in Fig. 3. The subroutine assumes that global storage for the path
�[i] is available, and some representation of the underlying graphG

has been defined. The subroutine is invoked using Search(s; 0; 0) for
eachs 2 Z:

The second part of the search constructs a graphF whose vertices
are the states inZ: An edgee is present inF if there is a family of
error fragments inG which start atiii(e) and end atttt(e): The input
label for the edge is the string of input error symbols representing
this family, and the output label is the squared distance accumulated
by these error fragments. A depth-first search ofF starting at the
zero-state, similar to that of Fig. 3, can be used to determine the
lists of closed and open error events. Such a graphF for the PR2
channel,h(D) = (1 + D)2, is given in Fig. 4. All error fragments
which acquire squared distance no greater than8 are shown.

B. Local Higher Power Algorithm

The reduced error state diagram still contains zero-cycles of period
1 and period2. It can be modified to effectively eliminate the zero-
cycles by introducing variable-length edges. For any states 2 H, let
Es be the set of outgoing edges ofs: A period-1 zero-cycle with edge
sequencee0 in H is modified as follows. The full label of each edge
f 2 Eiii(e ) such thatf 6= e0 is changed to(L0

in(e0))L
0

in(f)=L
0

out(f):
Then the self-loop edgee0 is removed from the diagram. A period-2
zero-cycle with edge sequencee0e1 is modified as follows. For each
edgeei; i = 0; 1; the following steps are taken.

1) The full edge label of each edgef 2 Eiii(e ) such thatf 6= ei
is changed to

(L0

in(ei)L
0

in(ei+1 mod 2))L
0

in(f)=L
0

out(f):

2) For each edgeg 2 Ettt(e ) such thatg 6= ei+1 mod 2, an edge
h is added to the diagram. The initial state of the new edge is
iii(h) = iii(ei) and the terminal state isttt(h) = ttt(g): This new
edge is labeled

(L0

in(ei)L
0

in(ei+1 mod 2))L
0

in(ei)L
0

in(g)=L
0

out(g):

After this procedure, the edgese0 and e1 are removed from the
diagram. The final diagram contains no zero-cycles, possibly an
increase in the number of edges, and variable-length input labels.
An example of the resulting modified reduced error state diagram is
shown in Fig. 5, again for the PR2 channel.

The modified diagram represents the zero-cycles in a manner that
allows a simple search for open and closed error events. The error
event lists may be generated by a sequence of symbolic vector–matrix
multiplications on thesymbolic adjacency matrixAH [5, p. 65]. The
entry AH(I; J) contains the formal sum of the labels of all edges
from I to J , or a null symbol; if there are no such edges. The
matrices are multiplied using concatenation of error sequences. The
multiplication is not commutative, and the null symbol; satisfies
;"x = "x; = ;: The matrix corresponding to Fig. 5 is given by

AH =

+ 0 ; ; ;

; �;+ ; ; 0
(�)+ (�)0 ; ; ;

+ 0 � ; ;

; ; ; (0)+; (0)� ;

:
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Fig. 4. The graphF for the PR2 channel,h(D) = (1 +D)2, showing error fragments that accumulate no more than squared distance8.

Fig. 5. Modified reduced error state diagram for the PR2 channel,
h(D) = (1 + D)2:

The start of an error event is denoted by the first nonzero label
on a path starting at the zero-state. Closed and open error events at
depth n are listed in[AH]n((00); (00)); and [AH]

n((00); (+�)),
respectively. For generating only simple error events, sequences
returning to the zero-state are deleted fromAn�1

H
such thatAn

H =

An�1

H
AH contains no compound events. Parallel calculations are

made for the squared distance, and paths that have accumulated
distance greater thand2max may also be deleted fromAn�1

H
:

For the symbolic matrix generation of events, it is necessary to
have a method of determining when the search has completed. The
search may simply terminate when all entries in the matrixAn

H

have accumulated distance greater thand2max: The exact number of
matrix multiplications required is a function of the longest path in
the diagram with distance less than or equal tod2max: This search
depth can be determined by pruning paths from the error state
diagram (or a modified form of the error state diagram) as follows.
For any pathf1; � � � ; fm; if there exists a pathe1; � � � ; en with

Fig. 6. Modified diagram showing required search depth for PR2 channel,
h(D) = (1 + D)2:

iii(e1) = iii(f1); ttt(en) = ttt(fm) such that
n

k=1

Lout(ek) =

m

k=1

Lout(fk)

and n � m then remove the pathf1; � � � ; fm from the diagram,
since there is a longer path that accumulates the same distance.
Removing the path form = 1 corresponds to removing an edge from
the diagram, while longer paths may require graph manipulations to
isolate the path of interest. The result of applying the construction
to Fig. 5 is illustrated in Fig. 6. By examination of Fig. 6 one can
show the number of matrix multiplications required to list all closed
events of distanced2max is 3

2
d2max � 2 and the number required to

list all open events also is3
2
d2max � 2:

IV. ERROR EVENT LISTS

Tables I and II list open and closed error events for a number
of binary input partial-response channels. The lists contain all the
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TABLE I
OPEN ERROR EVENTS FOR CHANNELS h(D) = (1 � D)m(1 + D)n
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TABLE II
CLOSED ERROR EVENTS FOR CHANNELS h(D) = (1 � D)m(1 + D)n

error events at distances less than or equal to the maximum distance
listed for each channel. All error events have a corresponding
symmetrical event,kh(D)"x(D)k2 = kh(D)(�"x(D))k2: Only one
representative of the setf�"x(D)g is listed in the tables.

V. CONCLUSIONS

Two algorithms for characterizing error events on partial-response
channels have been presented. Lists of low-distance open and closed
error events for binary input partial-response channels found in
magnetic and optical recording applications were provided. The lists

can be used to develop coding techniques to improve noise immunity
on these channels [3], [11], [10], [8], [4], [7]. The lists can also be
used to obtain the first few terms of the generating function for these
channels [13].
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On the Distance Distribution of Duals of BCH Codes

Ilia Krasikov and Simon Litsyn,Member, IEEE

Abstract—We derive upper bounds on the components of the distance
distribution of duals of BCH codes.

Index Terms—BCH codes, distance distribution.

I. INTRODUCTION

Let C be the code dual to the extendedt-error correcting Bose-
Chaudhuri–Hocquenghem (BCH) code of lengthq = 2m, and let
B = (B0; � � � ; Bq) stand for the distance distribution ofC. Our aim
is to deriveupper boundsonBi’s. The following theorems summarize
our present knowledge.

The first one shows that outside a certain intervalBi’s vanish.
This is a refinement of the celebrated result by Weil [18] and
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Carlitz–Uchiyama [3] due to Serre [14] (it has been adapted for duals
of BCH codes in [6] and [12]).

Theorem 1: If jq=2 � ij > 2(t � 1)[2 � 2m=2], i 6= 0; q, then
Bi = 0.

The next result deals with divisibility properties and is based on
the Ax theorem [2], see [7], [11], [13], and [16].

Theorem 2: Let a be the smallest positive integer�m=[log2 2t].
If i is not a multiple of2a thenBq=2�i = 0.

Apart from some particular cases, namelyt = 1; 2; 3; when all
the values of the distribution were computed explicitly, to the extent
of our knowledge, no general estimates ofBi’s were published.

In this correspondence we derive upper bounds onBi’s. Roughly
speaking, these bounds show that the distance distribution can be
upper-bounded by the corresponding normal distribution. To derive
the bounds we use the linear programming approach along with some
estimates on the magnitude of Krawtchouk polynomials of fixed
degree in a vicinity ofq=2:

II. PRELIMINARIES

Let F = FFF q be the finite field ofq = 2m elements andTr denote
the trace function fromF to FFF 2. Let Gt be an additive subgroup
of F [x]

Gt = G(x) =

t

i=1

aix
2i�1: ai 2 F :

Let � be a primitive element inF . For everyG(x) 2 Gt and� 2 FFF 2

we define a vector inFFF q
2

ccc(G; �) = (Tr (G(0)) + �; Tr (G(1)) + �;

Tr (G(�)) + �; � � � ; Tr (G(�q�2)) + �):

WhenG(x) runs overGt, the set of vectorsccc(G; ") constitute the
code dual to the extended BCH codes of lengthq and with minimum
distance2t + 2, see, e.g., [1], [10], and [15]. Letw(ccc(G; �)) stand
for the number of nonzero coordinates inccc(G; �). For i 2 [0; q]

Bi = jfG(x) 2 Gt; � 2 FFF 2: w(ccc(G; �)) = igj:

It is easy to check thatB0 = 1 and q
i=0Bi = 2jGtj = 2qt. By

the MacWilliams identity

q

j=0

BjPi(j) =
2qt; i = 0
0; 1 � i < 2t+ 2.

(1)

HerePi(j) are Krawtchouk polynomials (orthogonal on the interval
[0; q] with weight q

j
) defined by the following recurrence (for their

properties see, e.g., [5], and [8]–[10]):

(k + 1)Pk+1(x) = (q � 2x)Pk(x)� (q � k + 1)Pk�1(x) (2)

P0(x) = 1 P1(x) = q � 2x:

We need the following facts about Krawtchouk polynomials:
Orthogonality Relation:

q

i=0

q

i
P`(i)Pk(i) = �`; k2

q q

`
:
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