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Correspondence

Error-Event Characterization are applied to binary-input partial-response (PR) channels of the form

on Partial-Response Channels WD) = (1—-D)"(1+ D)" 1
Shirish A. Altekar, Magnus Berggren, for integersm,n > 0 which are good models for magnetic and
Bruce E. Moision,Student Member, IEEE optical recording channels.
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and Jack K. Wolf,Fellow, IEEE Il. ERROR STATE DIAGRAM

For convenience, the following taxonomy of error sequences will

Abstract—Two algorithms for characterization of input error events ~be employed. Aclosed error eventis a polynomial input error
producing specified distance at the output of certain binary-input partial-  sequence
response (PR) channels are presented. Lists of error events are tabulated

for PR channels of interest in digital recording. 2 )
. . . ex(D)= ) enpD’
Index Terms—Constrained codes, error events, intersymbol interfer- Pyl

ence, magnetic recording, partial-response channels.
wherek; andk, are finite integers and, », # 0 ande, , # 0.

A closed error event is said to ®@mpleif the conditions, =

. INTRODUCTION Epki1 = - = £nh40_1 = 0 is not true for any integek, < k <

Consider a communication system in which a sequeng®) k2 —v. Otherwise, the closed error event is said tocbenpoundAn
drawn from a finite alphabetl is transmitted over a channel with open error evenis a right-infinite input error sequence of the form

finite impulse response given by a polynomidlD) = ho + hi D + o
-+ + h, D" of degreerv. The noiseless output of the channel is e.(D) = Z Sm,k:Dk
y(D) = h(D)x(D). Let n(D) be a sequence of uncorrelated zero- k=ky

mean Gaussian _random variables with varianteA Viterbi detector where infinitely many.  are nonzero and yet the squared Euclidean
observes the noisy channel output seque{d@) +n(D) and forms  jiciance is finite,||ey(b)||2 < .
the maximume-likelihood estimate (D) of the transmitted sequence Let A be the binary alphabetd = {0,1}. The corresponding
I(D)'_ . alphabet for the input error sequences willBe= {—1.0,+1}. At
Define the input error sequenee(D) = «(D) — (D) and the  ines ‘the characters=" *0,” and “+” will be used as shorthand
output error sequencg (D) = (D). (D). The performance of the ¢ e elements ofs. Input error sequences together with their
system is largely dictated by input error sequenced) that result o a5 onding squared output error sequences can be described as
in an output with small squared Euclidean distance paths through a labeled directed graghknown as anerror state
ey (D) = Z _ diagram[12, p. 279]. The graply consists of a set 08" states, a
Y Tyk finite set of edges, and an assignment of laligls) to each edge in
k G. Each states in G is denoted by a distinct block of symbols from
By characterizing the error sequences with a small Euclidean distanBe,s = ¢z, k—» - - - £2,k—2%2,6—1, FEPresenting the portion of an error
one can design codes which can eliminate them giving a performarsegjuence in the channel memory. Each eddge G has an initial
improvement [3], [11], [10], [8], [4], [7]. For channels whehge’~)  statei(e) = e, k—. - Suk—25.,4—1 COrresponding to a particular
has zeros on the unit circle, the characterization is complicated dyannel history and terminal statée) = . k—v41- - Cx,k—162,k
the presence of input sequences wjith(D)z=,(D)||*> = 0. These determined by the next error input symbml ;. This edgee has an
sequences preclude a simple tree-search foe glD) with small inputlabelli,(e) = ., given by the current error symbol input and
Euclidean distance. The purpose of this note is to give two algorithras output labellqy:(¢) = :jk given by the corresponding squared
for characterizing the low distance error sequences. These algorithengout symbol. The full edge label is given in input/output form by
L(e) = Lin(e)/Lous(e). An example of an error state diagram for
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Fig. 2. Reduced error state diagram for the PR2 chamé),) = (1+D)2.

Thusz. (e/*) has all of its mass concentrated at the nullg <)
atw = km, k € Z, and must be of the form
51(6”) = Z 2waob(w + 277) + 2wa18(w — 7 + 277).

Therefore, by the Fourier inversion formula
Fig. 1. Error state diagram for PR2 channe{D) = (1 + D)?. g
g g meiD) = ( ) r— i / g:(e’™) dw = ap + a1e’"". 4

' 2 Jor

Error state diagrams for the linear channels considered here confaiMen thatsx,,lz € 15’ the only possible values for the paifo, a1)
at least one zero-cycle, namely, the self-loop at the zero-state. PR (0,0), £(5.%£35).(0,%1). and (£1,0). These values result in
channels of the form considered in this note have other zero-cycl8§ null error sequences of part c) of the lemma. -
in the_lr error state diagrams. The_sg stem from the presence of ;peg&(aheduced Error State Diagram
nulls in the frequency responage’) at DC(w = 0) and at Nyquist A ho' b duced frorg foll Th
(w = ). Associated with every zero-cycle is a periodic bi-infinite new grapht” can be produced frong as follows. The states

! ~/
input error sequence. (D), known as thenull error sequencewith Of.thg. aret :hs lstatesdl?.g’a Thef elijges ?éfg are tze edg?s Otf\
the property that with input labels modified as follows. If is an edge ofg’ wi

9 i(e) = o kv Exp—28r k1 ANAL(€) = Cu ki1 Cu ke 1Eu k
|R(D)z.(D)]I” = 0. (2)  such thati(e) is not the zero-state, it has an input label given by
The null error sequence is obtained by reading the input edge labels Lin(e)=cph o yn (5)
on a bi-infinite walk along the zero-cycle. The sequence of states foh

: 2 : where
a zero-cycle can be retrieved by sliding a window of lengthlong . . ’
its null error sequence. Jo=max{jls. ; # 0.k —v < j <k}

Let (c0,1. 65,2+ -+, £,)™ represent an infinite periodic sequenceyng. denotes multiplication. The edge has a corresponding output
of input error symbols with periodic pattern given by the string withifabel given by£.,,(¢) = 2 . The full edge label in input/output
the bracketq-). Then the following lemma characterizes null errokgrm is given by £'(e) = \,CL,(C)/C’QM(C)- The edge labels with
sequences for PR channels of the form given by (1). i(e) = 0---0, the zero-state, are unchanged from their representation
Lemma 1: Let h(D) = (1 — D)™(1 + D)". a) If m > 0 and in C} The graphg_}’ repregents all input error sequences togethe'r with
n = 0 then the null error sequences afs>, (+)> and (—)>. b) their squared dlstar_1ce in a form (_jfffe_rentla,l notatl_on The_ main
If m = 0 andn > 0 then the null error sequences &>, (+ —)> advantag_e of the differential notation is thait contamsequwglent
and(—+)*°. ¢) If m > 0 andn > 0 then the null error sequencess'[ateswhICh can be merged. TW.O states §h are equivalent if the
are(0), (4)°°, (=), (+ =)™, (= +)°°, (+0)™, (04)>, (=0)> collection of labels of paths starting at each of the states, denoted the
and (0_)/00' ’ ’ ' * follower setsare equal. It c;n be shown that the two state§'of =
. P Sok—v " Eak—2C0k—1 ANA —8 = —Cp p—p """ —Cx k=2 — Eak—1
Proqf. .A proof of part c) of th’e lemma 'S given. The other partsare equivalent by using a state minimization algorithm. By merging
have a similar proof. By Parseval's relation, any input error Sequenge ¢ o equivalent states 6F one obtains a new gragh, known as
€2(D) that sat|sf|e§ (2) must also satisfy areduced error state diagrafi2, p. 281], [9] which has; (3" —1)+1
/ |h(e7)e0 (e7)]? dw = 0. (3) states. Fig. 2 shows the reduced error state diagram for the PR2
27 channel.
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Search( state s, squared distance d?, depth j ) by a depth-first search starting from each stat€inThe depth-first

If &% < d2 search backtracks when a statedris reached, in which case it also
I ;e"éax prints out families of error fragments corresponding to the search
path, or when the maximum distandd ... has been accumulated.
fd2>0 A recursive subroutine for this search is described via pseudocode
Print d” and families of error fragments in Fig. 3. The subroutine assumes that global storage for the path
with initial part (1], 72}, -, «{j]; 7[i] is available, and some representation of the underlying géaph
%)lse has been defined. The subroutine is invoked using Seareh)) for
For each edge e leaving state s eachs € Z.
The second part of the search constructs a gfapthose vertices
wlj] + € are the states €. An edgee is present inF if there is a family of
Search(t(e), & + Louw(€), 5 +1); error fragments iy which start ati(¢) and end at(e). The input
} label for the edge is the string of input error symbols representing

this family, and the output label is the squared distance accumulated

by these error fragments. A depth-first search7ofstarting at the

zero-state, similar to that of Fig. 3, can be used to determine the
The reduced error state diagram still contains zero-cycles, wiibts of closed and open error events. Such a grapfor the PR2

some pairs of period-cycles mapped into periotieycles. The search channel,h(D) = (1 + D)?, is given in Fig. 4. All error fragments

algorithms presented are independent of the labeled graph usedvhich acquire squared distance no greater thame shown.

describe the error events. The algorithm presented in Section IlI-A

will refer to the graphg while the algorithm in Section 1lI-B will B | ocal Higher Power Algorithm

refer to the grapt.

Fig. 3. Pseudocode for depth-first search.

The reduced error state diagram still contains zero-cycles of period
1 and period2. It can be modified to effectively eliminate the zero-

Ill. SEARCH ALGORITHMS cycles by introducing variable-length edges. For any stateH, let
&s be the set of outgoing edges ©fA period-1 zero-cycle with edge
A. Modified Depth-First Search Algorithm sequence, in H is modified as follows. The full label of each edge

A simple depth-first search of the error state diagram can be use@ Ei(e,) SUch thatf # eq is changed t@ Li, (€0)) Lin (f)/ Lo (£)-
to find all open and closed error events of up to a specified maximurien the self-loop edge, is removed from the diagram. A pericd-
squared distance. The only complication is the presence of zero-cydgEo-cycle with edge sequenegr; is modified as follows. For each
in the error state diagram. There are many ways in which this seaR#gee:.i = 0,1, the following steps are taken.
can be done [2], [1]. A two-stage search is described here. 1) The full edge label of each edge€ &, such thatf # e;

A pathei,ea, -+, ex,exq1,- -+, e, iNn the error state diagram is is changed to
called anerror fragmentif

" . (Ei’n((«)i)/:i’n((«)i+l mod Z))EI,D(-’)/L"/OHt(f)

> Lowled) > 0.i(er) € Z,
=t 2) For each edgg € .,y such thatg # eit1 mod 2, an edge
i(e;) € Z, and there is an integet such thatt(c;) € Z for I is added to the diagram. The initial state of the new edge is

k <i<nandt(e;) ¢ 2 for 1 < i < k. In other words, an error i(h) = i(e;) and the terminal state i§%) = #(g). This new
fragment is a path that accumulates positive squared distance, begins edge is labeled

at a state inZ, and ends on a zero-cycle without having visited any
other zero-cycle. It is convenient to group families of error fragments
which start at a common state and share the same sequence of initial
edges, but differ in the number of edges on the ending zero-cycle. )
By Lemma 1, zero-cycles for the PR channels of (1) are either Hftér this procedure, the edges and ¢, are removed from the
period1 or of period2. A family of error fragments that end in the diagram. The final diagram contains no zero-cycles, possibly an

(El{“ (Ei)‘ci,“ (€i+1 mod 2‘))£i’n (6i)£i/n (g)/ﬁ';mf (g)

periodd zero-cyclee; are represented by the string increase in the number of edges, and variable-length input labels.
An example of the resulting modified reduced error state diagram is
Lin(e1)Linlez) -+ Lin(er)(Lin(er+1)) shown in Fig. 5, again for the PR2 channel.

where the brackets.) around a substring of input error symbols The modified diagram represents the zero-cycles in a manner that

are used to represent repetition of that substring zero or more tim%lé(.)ws,a simple search for open and closed error ev.ents. The error
Families of error fragments which end in the peribd:ero-cycle eveqt I!sts_may be generateo_l bye_lsequence OT symbolic vector—matrix
erirenss are represented by the two strings multlpllcatlons on thes_ymbollc adjacency matrixx [5, p. 65]. The
entry Ax(I,.J) contains the formal sum of the labels of all edges
Lin(er) Lin(e2) - Lin(er)(Lin(ert1)Lin(err2)) from I to J, or a null symbol{ if there are no such edges. The
matrices are multiplied using concatenation of error sequences. The

and multiplication is not commutative, and the null symbblsatisfies
Lin(e1)Lin(en) - Lin(er)(Lin(ekt1) Lin(er+2)) Lin(ert1) 0=z, = £,0 = (. The matrix corresponding to Fig. 5 is given by
which correspond to the two possible ending phases for the zero- + 0 0 0 0
cycle. In this representation, it is assumed that the initial s(ate 0 -+ 0 0 0
is known. A= [(=)+ (=)0 0 0 0
The first part of the search determines all error fragments that + 0 - 0 0
acquire squared distance no greater ttiggn,. This is accomplished 0 0 0 (0O)+0)—- 0
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-+{-+)/8
0-+(-+)/6
O+~ (+=)+/2
0+0-+(-+)/6

-00(0)/6
+00(0) /6

+0=+{=+)~/6
+-(+-)/2

A

+0-+(-+)/6
+=(+=)+/2

~+{~+)/2 -+(-+)/2
=0+=(+=) /6 =0+=(+=)+/6
J 00 )
00(0)/2 0-00(0)/6
~+(-+)-/8 0+00(0) /6 00(0) /2 004~ (+=)+/6
0-+(-+)-/6 0-+(-+)/2
0+-(+-) /2 0+=(+-)+/6
0+0—+(-+)-/6 —(+2)/8 +=(+=)+/8
0+-(+-)/6
0-+(-+)~-/2
0-04-(+-)/6

Fig. 4. The graphF for the PR2 channek(D) = (1 4+ D)?, showing error fragments that accumulate no more than squared distance

+/16

Fig. 5. Modified reduced error state diagram for the PR2 channdiig- 6. Modified giagram showing required search depth for PR2 channel,
hD) = (14 D)2 h(D) = (1 + D)%

The start of an error event is denoted by the first nonzero laféf1) = i(f1),t(cn) = ¢(fm) such that
on a path starting at the zero-state. Closed and open error events at "L L i
Z Lout(ck) = Z /v’aut(fk)
k=1 k=1

depthn are listed in[A#]™((00), (00)), and [Ax]™((00), (+—)),

respectively. For generating only simple error events, sequences

returning to the zero-state are deleted frafy~' such thatA}, = andn > m then remove the patlfi,- -, f,. from the diagram,

A%7"Ay contains no compound events. Parallel calculations ag#ice there is a longer path that accumulates the same distance.

made for the squared distance, and paths that have accumuldiégoving the path fom = 1 corresponds to removing an edge from

distance greater thaif,,, may also be deleted fromf;[l_ the diagram, while longer paths may require graph manipulations to
For the symbolic matrix generation of events, it is necessary igplate the path of interest. The result of applying the construction

have a method of determining when the search has completed. fhd9- 5 is illustrated in Fig. 6. By examination of Fig. 6 one can

search may simply terminate when all entries in the matiy show the ngmber c;f mgtr|:< njnzultlphcatlons required to list aI_I closed

have accumulated distance greater tHap.. The exact number of €vents of distancdy,.. is 5 Dnax = 2 and the number required to

matrix multiplications required is a function of the longest path iHSt all open events also 'é D = 2.

the diagram with distance less than or equakifp,.. This search

depth can be determined by pruning paths from the error state

diagram (or a modified form of the error state diagram) as follows. Tables | and Il list open and closed error events for a number
For any pathfi,---, f.., if there exists a patke;,---,e, with of binary input partial-response channels. The lists contain all the

IV. ERROR EVENT LISTS
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TABLE |
OPEN ERROR EVENTS FOR CHANNELS A(D) = (1 — D)™(1 4+ D)"
[mn] e2(D)/[lez(D)R(D)[ |

0 [1[[+(5/1
=0+ /5
+=(+-)=(+-) /5

A+ (/9

+ (=) 4= (+) = (+-) /9

= (+-) = (+2) = (+-) /9

4= (42) =+ (1) + (=4) /9
FHH R+ (-1 + (1) /13
1[0 [[+®/1

*M-()/5

(=) +(—+)+=(+-)-(+-) /13
(=) 4= (+-) = (+-) - (+-) /13
= (=)= (+-) = (=)= (+-) /13
= (=) =+ (=) + () +(-4+) /13
(=) 4= (=) =+ (-4)+(-+) /13
+= (=)= (=) =+ (=) +(-+) /13
= (=) =+ (=) 4= (+-) = (+-) /13

+H(#H)-()+(H)-()+(+H)-(-)/21

()= (D+H) -+ (#)-(-)+(+) /25
+(+)-(-)+(+)/9 H(F) - (I +(H) -+ () -()+(+)-(-) /29
+H(H)-()+(H)-(-)/13 +(#H)-(D+(H) -+ () - () +(#)-(-)+(+) /33
+(#H)-()+(H)-(I+(+) /17 [ +(H)-()+(H) - () +(H) -+ (+) - (=) +(+)-(~) /37

+=(+=)/2

F= ()0 () /4
F-H(-+)0-+(-+) /4

+0-+(-+)/6
+=(+-)04= (+-)0+-(+-) /6

= (+=) 0b=4+ (~+) 0=+ (~+) /6
+=+(=+)0~+(~+)0—+(~+) /6
+=+(—+)0-+-(+~-) 0+~ (+-) /6

- (+)0-+(-+)/8
+-+(-+)04-(+-) /8
+-(+-)0+0-+(~+) /8

+0-+(-+)0-+(-+)/8
#=+(=+)0-0+- (+-) /8
+0-+=(+-) 0+~ (+-) /8
+=(+=)0+=(+=) 0+ (+-)0+-(+-) /8
= (+=) 0= (+-) 0=+ (=+) 0-+(—+) /8
#=(+=) 04—+ (—4) 0—+(~+)0—+(-+) /8
+-+(-+)0-+(~+)0-+(~-+)0-+(~-+) /8
+=+(-+)0-+-(+-) 0+- (+-) 0+-(+-) /8
+=(+2) 04—+ (=) 0-+-(+-) 0+ (+-) /8
+ot (=) 0=+ (=+) 0—+=(+-) 0+-(+-) /8
+=t (-+)0-+-(+-) 0+-+(-+) 0-+(-+) /8

+(0+)/1 +(0+) ~+(~+)0+(0+) - (+-) /4
+(0+)+(+)/2 +0(+0)-(0-)/5

+(0+)-(+-)/2 +(0+)+(+)0+(0+)+(+)0(+0) /5
+(0+)+(+)0(+0)/3 +{0+)+(+)0+(0+) - (+-)0(-0) /8

+(0+)-(+-)0(-0)/3
+(0+)-+(-+)0(+0)/3

+H(OH)+(H)0+(0+)+(+) /4
+(0H)+(+)0+(0+)-(+-) /4
+(04) - (+-)0-(0-)-(-) /4
+(04) - (+-)0-(0-)+(-+) /4
+(0+)—+(-H) 0+ (0+)+(+) /4

+(04) = (+-)0-(0-) = (-)0(~0) /5
H(OH) =+ (=+) 0+ (0+)+(+)0(+0) /5
H(OH)+(+)0+(0+) —+(~+)0(+0) /5
+(04) = (+-)0-(0-)+(~+)0(+0) /5
+(0H) =+ (=+) 0+ (0+) = (+-)0(-0) /5
+(0+) = (+-)0-(0-)+- (+-)0(-0) /5
+(0H) =+ (=+) 0+ (0H) =+(~+)0(+0) /5

+0(+0)/2
+-+(-+)/2

+0+(0+)++(+) /4

+0(+0)0+0(+0)/4
+=+(=+)0+(0+) /4
+0+(0+) =+ (~+) /4
+0(+0)0+-+(-+) /4

+—+-(+-)0-(0-)/4
+0+(0+)+0+(0+) /4
+-+(-+)00+0(+0) /4
+=+(-+)00+-+(-+) /4
+—+-(+-)00-0(-0)/4
+=+=(+-)00-+-(+-) /4

T+ (+-)/4

+0+(0+) /6
+-+00+0+(0+) /6
+—+00+-+-(+-) /6

+-+0+0(+0)/8
+00+0+(0+)/8
+00+-+-(+-)/8
+-+0-+-+(-+)/8
+-+000+-+-(+-)/8

+-+00+00+0+(0+) /8
+-+00+00+-+-(+-)/8
+=-+00+-+00+0+(0+) /8
+-+-(+-)00-0-(0-) /8
+-+00+-+00+-+~(+-) /8
+—+-(+-)00-+-+(-+)/8
+=+-+(=+)00+0+(0+) /8
+—+-+(-+)00+—+-(+-)/8
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TABLE I
CLoseD ERROR EVENTS FOR CHANNELS h(D) = (1 — D)™ (1 4+ D)™

ez(D)/llea(D)R(D)I]? |

Lm]nll

+(-+)0/2
+-(+-)0/2

+(=+)+(-1)0/6

#=(+-)=(+-)0/6
H(=4)+-(+-)0/6
= (+=)=+(=4)0/6

+(=+)+(~+)+(-+)0/10

+=(+=) - (+-)-(+-)0/10
+(=+)+-(+-)-(+-)0/10
+(=+)+(=+)+-(+-)0/10
+=(+=) - (+=)-+(-+)0/10
+(=+)+-(+-)-+(-+)0/10
+=(+=) =+ (-+)+(-+)0/10
+=(4=) =+ (-#)+-(+-)0/10

+(+)0/2

+H(+)-()+ () -(D+(+)-(-)0/22

+(+)-(-)0/86

H( )= () ()= () +(H) = (=) +(+)0/26

+(+)-(-)+(+)0/10

+(#H) - () + () - (=) +(+)-(-)+(+)~(-)0/30

+(+)-(=)+(+)-(-)0/14

+(+) = () +(+)-(-)+(+)0/18

+(H) =)+ ()= (D+(H)= () +(H)-(-)+(+)0/34

+-(+-)00/4 +0~+-(+~)00/8
+-+(-+)00/4 +=(+-)0+-(+-) 0+-(+-)00/8
+00/6 +=(+=)0+- (+-) 0+-+(-+)00/8

+=(+-)0+-(+-)00/6
+-(+-)0+-+(-+)00/6
+=+(-+)0-+(-+)00/6
+=+(=+)0-+=-(+-)00/6

+=(+=)0+00/8
+0-+(~+)00/8
+-+(~+)0-00/8

+=(+-) 04—+ (~+) 0-+ (-+)00/8
+-+(=+)0-+(-+)0-+(-+)00/8
+=+(=+) 0—+-(+-) 0+ (+-)00/8
#=(+-) 04—+ (~+) 0+ (+-)00/8
+=+(=+) 0—+(~+)0—+-(+-)00/8
+-+(-+) 0-+-(+-)0+-+(-+)00/8

+0(+0)0/2

+(0+)+(+)0(+0)0/4
+(0+)-(+-)0(-0)0/4
+(0+)-+(-+)0(+0)0/4

+0(+0)-0(-0)0/6
+(0+)+(+)0+(0+)+(+)0(+0)0/6
+(0+)+(+) 0+ (0+) - (+-)0(-0)0/6

+(0+)-(+-)0-(0-)-(-)0(-0)0/86
+(0+) =+ (=+)0+(0+) +(+)0(+0)0/6
+(0+)+(+)0+(0+) ~+(-+)0(+0)0/6
+(0+) - (+-)0-(0-)+(-+)0(+0)0/6
+(0+) ~+(~+) 0+ (0+) - (+-)0(-0)0/6
+(0+)=(+-)0-(0-)+-(+-)0(-0)0/6
+(0+) =+ (-+) 0+ (0+) —+(-+)0(+0)0/6

+0(+0)00/4
+-+(-+)000/4
+-+-(+-)000/4

+-000/6
+0(+0)0+0(+0)00/6
+—+(=4+)0+0(+0)00/6
+0+(0+) -+ (-+)000/6
+-+(~-+)00+0(+0)00/6
+0(+0) 0+-+(-+)000/6

+0+(0+)+0+0(+0)00/6
+0+(0+) -+-(+-000/6
+=+-(+-)0-0(-0)00/6
+0(+0) 0+-+-(+-)000/6
+-+-(+-)00-0(-0)00/6
+-+(~+)00+-+(-+)000/6
+-+(-+)00+-+-(+-)000/6
+=+-(+-)00-+-(+-)000/6
+=+=(+-) 00-+-+(-+)000/6

+-+0000/6

+-+00+-+0000/8
+-+-(+-)0000/8
+~+=-+(-+)0000/8

+0000/10
+=-+00+0000/10
+00+-+0000/10
+-+0-+-0000/10

+-+000+-+0000/10
+=+00+00+-+0000/10
+-+00+-+00+-+0000/10
+-+00+~+-(+-~)0000/10
+=+=(+-)00-+-0000/10
+-+00+-+-+(-+)0000/10
+=+=+(-+)00+-+0000/10

error events at distances less than or equal to the maximum distacae be used to develop coding techniques to improve noise immunity
listed for each channel. All error events have a corresponding these channels [3], [11], [10], [8], [4], [7]. The lists can also be

symmetrical even]:(D)e, (D)||* = ||h(D)(—c.(D))||>. Only one used to obtain the first few terms of the generating function for these
representative of the s¢tt=, (D)} is listed in the tables. channels [13].
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i=1

Let o be a primitive element id". For everyG(xz) € G, ande € F,
we define a vector inF';

(G, e) =(Tr(G(0))+ e, Tr(G(1)) + e,
On the Distance Distribution of Duals of BCH Codes Tr(G(a) +e -+, Tr(G(a?™?)) +e).

lia Krasikov and Simon LitsynMember, IEEE When G(z) runs overG;, the set of vectorg(G, <) constitute the
code dual to the extended BCH codes of lengmd with minimum
distance2t + 2, see, e.g., [1], [10], and [15]. Let(¢(G, €)) stand
Abstract—We derive upper bounds on the components of the distance for the number of nonzero coordinatesd{G, ¢). Fori € [0, q]
distribution of duals of BCH codes.
Index Terms—BCH codes, distance distribution. Bi =[{G(x) € Gi. € € Far w(e(G. €) = i}|.

It is easy to check thaBy = 1 and>.7_ B; = 2|G/| = 2¢'. By

|. INTRODUCTION the MacWilliams identity
Let C' be the code dual to the extendeerror correcting Bose- a %', i=0
Chaudhuri-Hocquenghem (BCH) code of length= 2™, and let ZBjPi(j) = {0 ’ 1 i<t (1)
B = (B, ---, B,) stand for the distance distribution 6f. Our aim j=0 ’ = .

is to deriveupper boundsn B;'s. The following theorems summarize
our present knowledge.

The first one shows that outside a certain interigals vanish.
This is a refinement of the celebrated result by Weil [18] an

Here P;(j) are Krawtchouk polynomials (orthogonal on the interval
[0, ¢] with weight (3)) defined by the following recurrence (for their
aroperties see, e.g., [5], and [8]-[10]):
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