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Coding for the Optical Channel:
The Ghost-Pulse Constraint
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Abstract—We consider a number of constrained coding tech-
niques that can be used to mitigate a nonlinear effect in the optical
fiber channel that causes the formation of spurious pulses, called
“ghost pulses.” Specifically, if 1 2 is a sequence of bits
sent across an optical channel, such that = = = 1
for some (not necessarily all distinct) but + = 0,
then the ghost-pulse effect causes + to change to 1, thereby
creating an error. Such errors do not occur if the sequence of bits
satisfies the following constraint: for all integers such that

= = = 1, we have + = 1. We call this the binary
ghost-pulse (BGP) constraint. We will show, however, that the BGP
constraint has zero capacity, implying that sequences satisfying
this constraint cannot carry much information. Consequently, we
consider a more sophisticated coding scheme, which uses ternary
sequences satisfying a certain ternary ghost-pulse (TGP) con-
straint. We further relax these constraints by ignoring interactions
between symbols that are more than a certain distance apart in
the transmitted sequence. Analysis of the resulting BGP( ) and
TGP( ) constraints shows that these have nonzero capacities, and
furthermore, the TGP( )-constrained codes can achieve rates that
are significantly higher than those for the corresponding BGP( )
codes. We also discuss the design of encoders and decoders for
coding into the BGP, BGP( ), and TGP( ) constraints.

Index Terms—Binary ghost-pulse (BGP) constraint, capacity of
constrained systems, constrained encoding and decoding, optical
communication, ternary ghost-pulse (TGP) constraint.

I. INTRODUCTION

H IGH data-rate optical-fiber communication presents
several interesting challenges to a coding theorist. The

diverse impairments peculiar to the optical channel neces-
sitate the development of new coding schemes, capable of
mitigating the effects of these impairments. One such impair-
ment is the nonlinear effect known as intrachannel four-wave
mixing (FWM)—see [10], [21], [24] and references therein.
FWM results in strong intersymbol interference between the
symbols in a bitstream transmitted across the optical fiber.
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Fig. 1. Model of ghost-pulse formation due to the interaction of three pulses.

It is widely accepted [20], [21], [27] that at bit rates of 40
Gb/s and beyond, FWM will play a major role in limiting the
information-carrying capacity and the propagation distance of
a dispersion-managed optical communication system. In this
paper, we consider a number of constrained coding techniques
motivated by the intrachannel FWM effect.

A. Background on Ghost-Pulse Formation

In a typical optical fiber communication scenario, a train of
light pulses, corresponding to a sequence of bits, is sent across
an optical fiber. Each bit in the sequence is allocated a time slot
of duration , and a binary one or zero is marked by the pres-
ence or absence of a pulse in that time slot. The effect of in-
trachannel FWM is to transfer energy from triples of pulses in
“ ”-slots into certain “ ”-slots, thereby creating spurious pulses
known as ghost pulses. It has been observed that the interaction
of pulses in the th, th, and th time slots pumps energy into
the th time slot. If this slot did not originally contain
a pulse—that is, if the th bit was a zero in the orig-
inal -bit sequence—then this transfer of energy creates a ghost
pulse in this time slot. This could cause the original zero to be
read as a one (see Fig. 1). Since the overall energy is conserved,
some of the pulses in the th, th, and th time slots lose en-
ergy, resulting in a lowering of their amplitude (intensity). On
the other hand, if the th slot already contained a pulse,
then there is an exchange of energy between the pulses in the

th, th, th, and th slots, leading to amplitude fluc-
tuations. An analytic explanation of these phenomena can be
derived using the nonlinear Schrödinger equation that describes
pulse propagation in optical fibers—see [1], [2], [27].

There are, in general, multiple triples that result in
the same integer . Thus, it is possible to have several
pulse triples generating a ghost pulse at the same time slot.
Of course, in reality, the number of pulse triples involved in
ghost-pulse formation at a certain time slot is quite small. This
is because, as one would expect from physical considerations,
the interaction between pulses that are sufficiently far apart in
the transmitted pulse train is weak. Indeed, for typical optical
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transmission parameters, pulses that are more than 10 to 12 time
slots apart do not contribute significantly to the formation of
ghost pulses [3], [20]. In any case, when multiple pulse triples
generate a ghost pulse at the same zero time slot, the resulting
ghost pulse is the superposition of the ghost pulses formed by
each of the pulse triples. The superposition of multiple ghost
pulses may result in a stronger ghost pulse, or sometimes (due
to destructive interference) in a weaker ghost pulse.

As shown in [4], [20], the phases of the original pulses play a
vital role in determining which pulses lose energy and which
gain energy in the course of the energy transfer induced by
FWM. The phase of a ghost pulse created by a given pulse
triple depends on the phases of all the pulses in the triple. Thus,
in the case of a superposition of multiple triples, the relation-
ship of the phase of the resulting ghost pulse to that of all the
pulses involved in its creation can be quite complex. Indeed,
even the amplitude of a ghost pulse depends on the phases of
the pulse triples involved in its creation, since superposition of
ghost pulses with opposing phases at the same time slot will ac-
tually suppress ghost-pulse formation.

Physically, a ghost pulse is just another pulse of light. Thus, it
is possible that ghost-pulse formation may propagate: the inter-
action of a ghost pulse with actual pulses or other ghost pulses
may lead to the creation of even more ghost pulses.

Finally, it should be noted that FWM is primarily a problem
with long-haul and ultra long-haul optical communication
systems, operating at 40 Gb/s. This is so because the amplitude
of ghost pulses grows linearly with propagation distance.
A long-haul system consists of many periods of alternating
spans of conventional and dispersion-compensating fiber. This
causes quasi-periodic broadening and compression of the in-
formation-bearing pulses. For typical transmission parameters,
ghost pulse amplitude reaches significant proportions over
several periods of the dispersion map that is typically 50–100
km long. The simulations reported in the literature [20], [24],
[27] were carried out over links of length 500 to 5000 km.

B. Related Modulation Techniques

The optics literature has seen the emergence of several simple
modulation schemes [4], [8], [17], [20] aimed at reducing the
impact of FWM. Most of these schemes are based on the fact
that FWM is a phase-sensitive effect and, therefore, can be con-
trolled by modulating the phase of the pulses being transmitted.
The one exception is the modulation scheme of [17], which pro-
poses to use unequally spaced pulses at the expense of sacri-
ficing spectral efficiency.

Coding—that is, introduction of redundancy in the trans-
mitted bits as a means of controlling errors—has not been
given much consideration as an approach to mitigating the
FWM effect. To the best of our knowledge, the only previous
work in this area has been reported by Vasic, Rao, Djordjevic,
Kostuk, and Gabitov in [25]. In that paper, the authors use
sequences satisfying a certain maximum-transition run (MTR)
constraint to counter the impact of FWM. In the language
of constrained coding, a binary sequence is said to satisfy
an MTR constraint if every run of ones in has length at
most (cf. [23]). In the modulation scheme of [25], a block
code of rate , consisting of 256 binary codewords of length

satisfying the MTR constraint, is used for transmission.
Simulation results show significant ghost-pulse reduction due
to the use of this coding scheme. The authors of [25] conclude
that “it is possible to successfully tackle the detrimental effects
of FWM in 40-Gb/s systems using simple coding techniques.”
In this paper, we undertake a systematic study of a number of
coding schemes that combine constrained coding and phase
modulation. Our study focuses purely on the coding-theoretic
aspects (e.g., rate, encoding/decoding) of these schemes—we
make no claims regarding their effectiveness in suppressing
ghost pulses. In particular, we do not address the question of
how well constrained coding schemes are suited to tackle the
problem of eliminating ghost pulses in real-world optical sys-
tems. Such questions can only be answered via experimentation
and/or extensive simulations of the fiber-optic channel, which
is beyond the scope of this work.

C. Binary Ghost-Pulse Constraint

To formulate a well-defined coding problem, we model the
formation of (primary) ghost pulses as follows. Let ,
with , be the binary sequence corresponding to the
train of pulses sent across the fiber-optic medium. If for some
integers and (not necessarily all distinct), we have

while (1)

then the formation of a primary ghost pulse converts the zero
in time slot to a one. Note that if we can encode the
transmitted binary sequence in such a way that (1) never oc-
curs, we will eliminate all (higher order) ghost pulses caused by
ghost-pulse propagation (discussed in Section I-A) as well. For
example, a sequence containing at most one , or the all-ones
sequence, or a sequence of alternating zeros and ones all sat-
isfy this condition. In general, we say that a binary sequence

satisfies the binary ghost-pulse (BGP) constraint if
for all integers such that and

, we also have . It is clear
that transmitting a sequence that satisfies the BGP constraint
will not allow ghost pulses to be created.

Let be the number of binary sequences of length
that satisfy the BGP constraint. Then, the asymptotic informa-
tion rate (or the capacity, or the entropy) of the BGP constraint
is defined (cf. [19], [22]) as follows:

(2)

Of course, we would like to be as close to as possible,
so that coding into the BGP constraint adds little redundancy
to the information being encoded. However, as we will show
in Section III, a finite-length binary sequence satisfies the BGP
constraint if and only if the ones in the sequence are uniformly
spaced—that is, the positions of the ones form an arithmetic
progression. It follows that there are binary sequences
of length that satisfy the BGP constraint, and .
Hence, we need to investigate alternative approaches to dealing
with the ghost-pulse problem.
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One approach that we consider is based on the intuition that
the interaction between pulses that are sufficiently far apart in
the transmitted pulse train is weak. As noted in Section I-A, in
a typical optical communication scenario, pulses that are more
than 10–12 time slots apart do not contribute significantly to the
formation of ghost pulses (cf. [3], [20]).

Disregarding the interaction between ones that are separated
by more than some fixed distance , we say that a binary se-
quence satisfies the BGP constraint if for all inte-
gers (not necessarily distinct) such that

(3)

(4)

and

(5)

we also have . The capacity of the BGP
constraint can be defined as in (2). (We will provide formal def-
initions for the capacities of all such constraints in the next sec-
tion.) In Section III, we will show that is positive for all .
However, we also show in Section III that lies in the range

– , when . This makes the BGP con-
straint somewhat unattractive as the basis for a coding scheme.
Nevertheless, we briefly discuss in Section III the design of fi-
nite-state encoders that take an unconstrained binary sequence
as input and produce a BGP -constrained sequence as output.

D. Ternary Ghost-Pulse Constraint

Another approach that has been suggested [4], [8], [20]
to mitigate the formation of ghost pulses is to apply, at the
transmitter end, a phase shift of to some of the pulses. We
can effectively think of this phase-modulation technique as
converting a binary sequence , with , into
a ternary sequence , where , such that

for all . One reason behind this phase-modulation
approach is that, as explained in Section I-A, superposition
of the contributions due to multiple pulse triples will result in
suppression of ghost-pulse formation if their interference is
destructive. Thus, knowledge of the relationship between the
phase of a ghost pulse and the phases of the pulses involved
in its creation makes it possible to manipulate the phase of
the transmitted pulses in a way that encourages destructive
interference. Such phase modulation schemes are very effective
at eliminating some of the stronger ghost pulses (cf. [4], [20]).
However, as observed in [4], it is impossible to achieve destruc-
tive interference in several consecutive zero slots. Moreover,
these schemes do not mitigate the “side ghosts” that arise due
to energy leakage from the one-slots into adjacent zero-slots.
Therefore, another approach is to modulate the phase of the
transmitted pulses with the aim of achieving energy redistribu-
tion among the one-slots, thereby preventing energy leakage
into adjacent zero-slots. Overall, building upon the work of
[4], it appears reasonable to try preventing situations in which
pulses in time slots and all have the same phase, while
the slot at time is empty (zero).

Thus, we say that a ternary sequence satisfies the
ternary ghost-pulse (TGP) constraint if for all integers
(not necessarily distinct) such that , and

or (6)

we also have . Let be the set of all finite-length
ternary sequences that satisfy the TGP constraint. To transmit a
finite-length binary data sequence, we encode it as a sequence
from . Based on the preceding discussion, we shall assume, as
a first-order approximation, that sequences in are effective in
mitigating ghost-pulse formation, so the transmitted sequence
can be recovered without error at the receiver end.

However, there is a catch. Most long-haul optical communi-
cation systems use direct-detection optical receivers, which can
only detect the intensity (amplitude) of the optical signal at the
channel output, not its phase. Thus, if the transmitted ternary
sequence were , then the receiver only would see the
sequence . In other words, the receiver cannot
distinguish a from a . As a result, we cannot use two
sequences in that differ only in phase (sign) to encode two
different binary data sequences.

We thus have a rather unusual coding problem: even though
the sequence being transmitted is ternary, the alphabet used for
encoding information is effectively binary. In general, discrete
channels for which the output alphabet is smaller than the input
alphabet are rarely encountered in information theory. In fact,
to the best of our knowledge, a situation where the alphabet
over which the constraint is defined is different from the infor-
mation-bearing alphabet has not been previously studied in the
constrained coding literature.

In order to describe the procedure for encoding a binary data
sequence using TGP-constrained sequences, we define the set

(7)

This is the set of all finite-length binary sequences that can be
converted to a sequence in by changing certain ’s to ’s.
To transmit a binary data sequence , we first encode
it as a sequence , which is then converted to a
corresponding sequence at the input to an op-
tical channel. At the channel output, the receiver detects the se-
quence , which can be uniquely decoded to recover
the original binary sequence .

The capacity of the TGP constraint can be now defined
in a manner analogous to (2). Let denote the number
of sequences of length in the set . Then

(8)

The analysis of the TGP constraint appears to be a much more
difficult problem than analysis of the BGP constraint. However,
we conjecture that . Strong evidence in
support of this conjecture is given in [16] (see Section IV-A).

Consequently, we consider the weaker TGP constraint ob-
tained, similarly to the BGP constraint, by ignoring interac-
tions between nonzero symbols that are more than distance
apart. Define the set by adjoining the extra condition (5)
to (6). The capacity of the TGP constraint can be then
defined as in (8), but with respect to the set rather than .
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One can reasonably expect that as increases, decreases,
converging upon in the limit as . Indeed, we will
prove in the next section that

(9)

This provides a means of computing increasingly tight upper
bounds on the capacity which, as we mentioned earlier,
is not easy to compute directly. Furthermore, we will show in
Section IV that

and (10)

These values are significantly larger than the corresponding
values for the BGP constraint, namely

and (11)

Moreover, it appears from (10) and (11) that decreases
much slower with than , since
while . Assuming that this trend con-
tinues for larger values of , coding schemes based on TGP -
constrained sequences can be a reasonably efficient means of
mitigating the ghost-pulse effect in optical communications.

Unfortunately, the techniques we use in Section IV to deter-
mine and do not easily generalize to the com-
putation of for arbitrary . Thus, we have been unable
to verify whether the aforementioned trend continues for larger
values of . In Section IV-D, we describe a general method for
computing ; however, this method is too computationally
intensive to be implemented in practice. Nevertheless, we do
discuss (also in Section IV) the design of finite-state encoders
for coding schemes involving TGP -constrained sequences.

Remark: Before concluding this introductory section, we
note that it is possible to design other coding schemes that
combine constrained coding with phase modulation in order to
achieve ghost-pulse suppression. For example, we can conceiv-
ably add phase modulation to the constrained coding scheme
of [25], thereby gaining some improvement in performance.
In this paper, however, we have chosen to focus solely on
the BGP and TGP constraints. The unusual nature of these
constraints requires the development of nonstandard tools for
their analysis, which may be of independent interest to coding
theorists.

II. DEFINITIONS AND PRELIMINARY RESULTS

In this section, we formally define the various types of ghost-
pulse constraints that we shall be interested in. We also give pre-
cise definitions for the corresponding capacities, and establish
several useful relationships between them.

Let and denote the set of integers and the set of positive
integers, respectively. Given , we write

Note that both and could be empty. Let
and let . These are the relevant alphabets for
the binary and the ternary ghost-pulse constraints, respectively.
However, rather than giving definitions for the binary case and
the ternary case separately, we find it more convenient to define
the ghost-pulse constraints over a generic -ary alphabet. Thus,
given an integer , let denote a fixed set of letters,
one of which is a distinguished letter . Although this is not
required in what follows, a good way to think of is as the
set of distinct th roots of unity, augmented by zero. For

, let denote the set of sequences of length over .
Given , the support of is defined as

.

Definition 1: A sequence satisfies the -ary ghost-
pulse ( -GP) constraint if for all such that

either or . Note that the
integers above are not necessarily distinct.

For , let be the set of sequences of length
over that satisfy the -GP constraint. Further define

(12)

This is the set of all finite-length sequences satisfying the -GP
constraint. Let be the “absolute value” function,
defined by

(13)

For all , we extend this “absolute value” function com-
ponentwise to a function via

(14)

Given such a function, we further define for all the sets
as follows:

(15)

Finally, we set . Thus, if is
indeed a set of complex roots of unity, then , respectively

, consists of those binary sequences that can be transformed
into a sequence in , respectively , by means of appro-
priate phase shifts. In particular, our definition of based upon
(15) coincides with the earlier definition in (7).

Definition 2: For all integers , the capacity of the -ary
ghost-pulse constraint is defined by

(16)

It should be immediately clear from the preceding discussion
that and , as defined in (2) and (8),



68 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006

respectively. The following proposition shows that all these ca-
pacities are, indeed, well-defined.

Proposition 1: The limit below exists for all , and
moreover

(17)

Proof: This follows from the standard argument for shift
spaces (see, e.g., [19, pp. 103–104]), which we briefly reproduce
here for completeness. Use the following test for convergence
from elementary calculus: if is a sequence of non-
negative numbers such that for all ,
then exists and equals . Apply this
test to the sequence defined by . We need to
show that or, equivalently, that

(18)

But this easily follows from the observation that if a sequence
satisfies the -GP constraint, then every contiguous

subsequence of also satisfies the -GP constraint. Hence, if
, then and

, which implies (18).

We will show in Section III-A that , and our analysis
in Section IV-A will lead us to conjecture that as well.
In fact, we believe that for all . This is so because the
-GP constraint has unbounded memory. For large , the value

of a sequence at a given position depends
on the values of at (essentially) all other positions. To obtain
nonzero capacities, we relax the -GP constraint by bounding
its effective memory, as made precise in the next definition. As
explained in Section I, it makes physical sense to do so.

Definition 3: Let be fixed. A sequence satis-
fies the -GP constraint if for all such that

and

either or . As before, the
integers above need not be all distinct.

For , we let denote the set of sequences of
length over satisfying the -GP constraint, and define

as in (12). With the help of the function
given by (13) and (14), we define

(19)

and write . We can now define
the capacity of the -GP constraint as follows.

Definition 4: For all integers and , the capacity
of the -GP constraint is defined by

(20)

Exactly the same argument that we used in the proof of Propo-
sition 1 can be now used to show that the limit in (20) exists, and
in fact

(21)

Observe that, for all fixed , the sequence is
a nonincreasing sequence of nonnegative numbers. This is so
because for all and all , as
is evident from Definition 3. Therefore, exists,
and equals . The following proposition shows that
this limit is also equal to , as defined in (16).

Proposition 2: For all integers

(22)

Proof: Let us define . We have already
shown that , so it remains to prove that

. It follows immediately from Definitions 1 and 3 that
for all . Hence,

and for all . Letting , we conclude
that . For the reverse inequality, first fix an
and observe that . Therefore,

Note that the right-hand side above is precisely in view
of (21), and by the definition of . If follows that

for all , and therefore .
This completes the proof of the proposition.

Observe that our claim in (9) follows as a special case (for
) from Proposition 2. Thus, as discussed in Section I-D,

Proposition 2 provides a means of computing increasingly tight
upper bounds on . In particular, this proposition implies that

can be determined by studying the asymptotics of
the sequence . In Section IV-D, we show that
there is indeed an algorithm that can be used to compute
for any given . Unfortunately, this algorithm is too computa-
tionally intensive to be useful in practice.

III. THE BGP CONSTRAINTS

Following the terminology of Section I, we shall refer to the
-GP constraints with as the BGP constraints. Such con-

straints can be completely analyzed, and the purpose of this sec-
tion is to present this analysis.

A. The BGP Constraint With Unbounded Memory

Note that Definitions 1 and 3 become somewhat redundant in
the binary case. For a binary sequence , any

satisfy . Thus, the BGP con-
straint is simply the requirement that for all ,
either or . The following
theorem makes use of this observation to show that sequences
that satisfy the BGP constraint are precisely those whose sup-
port set forms an arithmetic progression.

Theorem 3: For all , a sequence
in satisfies the BGP constraint iff there exist
such that

(23)
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Fig. 2. Various possibilities for the choice of k 2 supp(xxx) with k 62(a+d ).

Proof: Suppose that satisfies (23), and consider any
. Then for some . Set

. Then . Thus,
either or .

Suppose that satisfies the BGP con-
straint. If , then we can take in (23).
If , then we can take to be the unique integer in

and set . Hence, it remains to consider the case
where . For this case, set

(24)

and then take to be any integer with . To
prove that satisfies (23) with this choice of and , we will
first show that , and then prove that
every element of must also be in .

Claim 1: . In order to establish this
claim, suppose that

(25)

for some and . By our choice of and , we know
that (25) certainly holds for and . Observe that

and

Hence, if satisfies the BGP constraint, then and
belong to , provided only that these po-

sitions are in . In other words, we can grow the arithmetic
progression on the left-hand side of (25) in both directions, as
long as it fits inside , and the claim follows.

Claim 2: . Assume to the contrary that
there is a with . Then we must have

(26)

for some integer such that at least one of and
lies in (cf. Fig. 2). Without loss of generality (w.l.o.g.),

suppose that . Then in view
of Claim 1. But the difference between and is strictly
less than by (26), which contradicts the definition of in (24).

By Claim 1 and Claim 2, we have ,
which completes the proof of the theorem.

Corollary 4: There are at most sequences in that
satisfy the BGP constraint, and therefore,

Proof: There are different ways of selecting the
integers and from . By Theorem 3, every sequence in

is uniquely determined by one such choice.

In fact, using Theorem 3 as a starting point, a more careful
analysis of the possible choices for and shows that

even

odd.
(27)

We leave the proof of this expression as a straightforward, but
tedious, combinatorial exercise for the reader.

B. The BGP Constraints

We next take on the analysis of the BGP constraint, for
arbitrary . We will show that the BGP constraint is
closely related to the well-known constraint. A binary
sequence is said to satisfy the constraint if there are
at least zeros between any two ones in . We use
to denote the set of all -constrained binary sequences of
length . Such sequences have been extensively studied in the
constrained coding literature [13]–[15], [19], [22]. The next the-
orem shows that the set of all sequences in that sat-
isfy the BGP constraint is not much larger than .

Theorem 5: Let denote the set of all sequences
such that for some and

in . Then for all , we have

(28)

Proof: It is easy to see from (the proof of) Theorem 3 that
. Note that if , then (5) cannot be

satisfied by any . Hence, by Definition 3, all
also belong to . It follows that

(29)

To establish the inclusion in the other direction, it would suffice
to show that

(30)

Thus, consider an . Since ,
there exist distinct with . Define

(31)

as in (24), and note that . As in Theorem 3, let be
any integer with . Then exactly the same
argument we used in the proof of Theorem 3 shows that

(32)

Finally, set . Since in (31), we obviously
have . But , so (32) implies that

. Thus , as desired.

Let denote the capacity of the constraint, gi-
ven by . It is well known
(see, e.g., [13, p. 88]) that , where is the
largest magnitude root of the polynomial . It is also
known that this root is always real, irrational [5], [6], and lies in
the open interval . Thus .
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Corollary 6: Let denote the largest magnitude root of the
polynomial . Then for all , the capacity of
the BGP constraint is given by

(33)

Proof: This follows directly from Theorem 5. By (28),
we have . Note
that , as there are different ways of
choosing . The corollary now follows from (20).

It is well known [13, p. 89] (and obvious) that decreases as
increases. Moreover , which by Lemma 2

provides an independent confirmation of Corollary 4.
For reference, we list in Table I the value of ,

rounded to four decimal places, for all . As
can be seen from this table, is less than for all

. This means that codes consisting of sequences that
satisfy the BGP or the BGP constraints are not particularly
efficient means of mitigating the ghost-pulse problem.

C. Coding Into the BGP Constraints

Nevertheless, it may still be of interest to suggest methods for
encoding an arbitrary binary sequence into a sequence satisfying
the BGP or the BGP constraints.

For the BGP constraint, Theorem 3 and (27) give a precise
enumeration of all the sequences in . Thus, unconstrained
binary data can be mapped into BGP-constrained sequences
using an enumerative coding technique [9].

In principle, enumerative coding can be also used to code into
the BGP constraints. However, this requires precise enumer-
ation of the sequences in for each . Unfortu-
nately, Theorem 5 does not yield a simple formula for com-
puting as a function of and . Thus, enumerative
coding would be unnecessarily complex in this case.

We can code into the BGP constraint with significantly
lower complexity if we are willing to suffer a marginal loss in
coding rate. When is sufficiently large, we can ignore the con-
tribution of to for all practical purposes. Observe
that when is fixed, is bounded by the constant
while grows exponentially with .

Coding into the constraint is a very well-studied sub-
ject [14], [15], [19, Ch. 5], [22]. For all positive integers and
with , there is a rate finite-state encoder for
the constraint, meaning a finite-state machine that gener-
ates an output block of bits for every input block of bits, and
converts unconstrained binary sequences into sequences that
satisfy the constraint. For example, the graph in Fig. 3 is
a rate two-state encoder for the constraint. Such rate

encoders can, in fact, be designed so that the constrained se-
quences they generate are amenable to decoding with a sliding-
block decoder [22, Theorem 3.35]. For example, the encoder in
Fig. 3 is indeed sliding-block decodable: a description of the
corresponding sliding-block decoder can be derived from [19,
Example 5.5.5].

It is well known [5], [6] that the capacity is irra-
tional for all . Thus, the design and the implementation
of rate encoders necessarily becomes more cumbersome as

TABLE I
CAPACITY OF THE BGP(t) CONSTRAINT FOR t = 1; 2; . . . ; 20

Fig. 3. A rate 2:3 sliding-block decodable encoder for the (1;1) constraint.

the rate approaches capacity. Consequently, in situations
where variable-rate encoding and state-dependent decoding are
acceptable, the constrained coding technique of [7], [18], known
as “bit-stuffing,” is an attractive alternative. The bit-stuffing en-
coder comprises two components. The first is an invertible dis-
tribution transformer that converts a sequence of independent
and identically distributed (i.i.d.) equiprobable information bits
into a sequence of i.i.d. biased bits, with the probability of a
zero given by a prescribed value . The second component in-
serts (stuffs) a string of consecutive zeros following every one
in this biased sequence. The decoder simply discards the string
of zeros that follows each one, and then applies the inverse
of the distribution transformer. It can be shown [7] that, if the
parameter is optimized, the average rate of the bit-stuffing en-
coder equals the capacity .

IV. THE TGP CONSTRAINTS

It happens to be much harder to analyze the TGP and TGP
constraints than their binary counterparts BGP and BGP .
Nevertheless, we will attempt to do so in this section.

A. The TGP Constraint With Unbounded Memory

In order to gain some understanding of the structure of fi-
nite-length TGP-constrained binary sequences, we extend the
definition of the TGP constraint in a natural way to bi-infinite
sequences—that is, sequences indexed by the set of integers .

Definition 5: A bi-infinite sequence over the
ternary alphabet is said to satisfy the TGP
constraint if for all such that and are
equal and nonzero, we also have .

Let denote the set of all bi-infinite ternary sequences sat-
isfying the TGP constraint, and let denote the set
of all binary bi-infinite sequences that can be converted to a se-
quence in by changing some of their ’s to ’s. Using re-
sults from a branch of mathematics known as Ramsey theory
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TABLE II
VALUES OF B (n) FOR n = 1; 2; . . . ; 32

Fig. 4. Plot of log jB (n)j=n as a function of n, for n = 1; 2; . . . ; 32.

[11], we have shown in [16] that any is almost peri-
odic: it differs from a periodic sequence in at most two posi-
tions.Based on this and other results, we conjecture that the ca-
pacity of the TGP constraint is zero.

In Table II, we list the number of sequences in for all
. All the values in Table II have been found by

exhaustive computer search. We then used these values to plot
as a function of in Fig. 4. As can be seen from

this plot, the value of decreases steadily as
increases, lending some further credence to our conjecture that

.

B. The TGP Constraint

For the degenerate case , things remain simple. It is
easy to show that the set of all the binary sequences
that satisfy the TGP constraint is, in fact, the entire space .
This is based upon the following simple observation. A ternary
sequence is in if and only if the following
holds: for all such that

or (34)

we have if and if .
On the other hand, it is easy to allocate signs to any binary se-
quence in such a way that (34) never holds. In what follows, we
will often use and to denote and , respectively.

Theorem 7: For all , we have and there-
fore the capacity of the TGP constraint is .

Fig. 5. Simple rate 1:1 two-state encoder for the TGP(1) constraint.

Proof: Given any sequence , the following en-
coding rule converts to a ternary sequence satisfying the
TGP constraint: label the ones in with alternating signs.
More precisely, if we think of as the input to the rate
encoder in Fig. 5, then is the output of the encoder. To see
that indeed satisfies the TGP constraint, note that the
alternating signs rule guarantees that (34) never occurs.

Observe that, in addition to its use in the proof of Theorem 7,
the encoder of Fig. 5 gives a practical method by which an ar-
bitrary finite-length binary sequence can be transformed into
a ternary sequence satisfying the TGP constraint.

C. The TGP Constraint

For , things become much more interesting. Our main re-
sult for this case is the characterization of the set
of all finite-length binary sequences that satisfy the TGP con-
straint in terms of a small number of forbidden blocks.

To make this precise, let us first clarify our use of the term
sub-block. We say that a sequence is a sub-block
of the sequence if there exists an
such that . Now, let

(35)

and let be the set of all binary sequences of length
that do not contain any element of as a sub-block. Our
main result in this subsection is the following theorem.

Theorem 8: For all , we have

(36)

We split the proof of (36) into two lemmas: one shows that
, the other establishes .

One of the two directions is easy, as the next lemma shows.

Lemma 9: For all , we have

(37)

Proof: We need to show that none of the sequences in
contains any of the three sequences in as a sub-block.
Consider first the sequence . The three ones in

can be labeled in different ways by to produce
ternary sequences. However, noting that a ternary sequence
satisfies the TGP constraint if and only if so does the se-
quence , it is enough to consider the following four labelings
of :

(38)

It can be verified by direct inspection that none of the four se-
quences in (38) satisfies the TGP constraint. Hence, none
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can be a sub-block of a sequence in , which implies that
cannot be a sub-block of a sequence in . The other

two blocks in can be disposed of in the same way.

To establish inclusion in the opposite direction, we describe
an encoding rule that takes an arbitrary sequence
and assigns a labeling to the ones in in such a way that the
resulting ternary sequence satisfies the TGP constraint. More
precisely, we construct a function

(39)

such that for all in the domain of and, fur-
thermore, for all . This function

will be based upon the alternating signs idea of Theorem 7;
however, a much more careful analysis is now required.

The first step in the construction of consists of decom-
posing a binary sequence into its maximal runs. Henceforth,
we use and to denote the all-zero and the all-one sequences
of length , respectively. Any finite-length nonzero binary se-
quence can be written uniquely in its maximal-run form

(40)

for some , where and are
positive integers while . Each of the sub-blocks
of is called a maximal run of ones in .

The next step is to convert maximal runs into sequences over
the alphabet . Specifically, we define the function

as follows:

(41)

where the last expression above applies for all . Observe
that is a sequence of length , so that .
More importantly, satisfies the property described in the
following lemma.

Lemma 10: Let be a positive integer other than or , and
let . Then for all such that

and (42)

we have as well. Thus, and, more-
over, if is a sub-block of a TGP -constrained
ternary sequence of length , then this sub-block does not im-
pose constraints on any of the other positions in .

Proof: The fact that whenever (42) is satis-
fied follows by direct inspection from (41).

Now let be an arbitrary binary sequence of length .
If or , we simply set . Otherwise, we
decompose into its maximal runs as in (40), and set

(43)

where are defined by the following iterative pro-
cedure:

if and
otherwise

(44)

if the last symbol of is
if the last symbol of is

(45)

for all , but with two exceptions. If while
, we modify the expression for as follows:

if the last symbol of is
if the last symbol of is

(46)

Finally, if ends with (that is, if and ), then
we also modify the expression for as follows:

if the last symbol of is
if the last symbol of is

(47)

Observe that (44)–(47) iteratively determine in
such a way that the first symbol of is always opposite in
sign to the last symbol of , for all . This
is the appropriate generalization of the alternating signs rule of
Theorem 7 for the case of the TGP constraint.

Lemma 11: The function defined by (40)–(47) has the fol-
lowing properties.

For all , we have .

For all , we have .

Proof: Property means that converts a given bi-
nary sequence to a ternary sequence solely by assigning
labes to the ones in . This should be obvious from the fact that

and our construction of in (43)–(47).
To establish property , consider an arbitrary

and let denote its image under . We
need to show that satisfies the TGP(2) constraint. Clearly,
if , then trivially satisfies the constraint.
We therefore assume that , which implies that
is given by (43). Now, let and suppose that

and

We will further assume w.l.o.g. that . Clearly, either
and come from the same sub-block of in (43), or

they belong to distinct sub-blocks and . This leads to two
cases, which we consider next.

Case 1: belongs to while belongs to , with .
Since distinct sub-blocks in (43) are separated by at least one
zero, the only way that can be satisfied is if is
the last symbol of whereas is the first symbol of . But
then the alternating signs rule implemented in (44)–(47) guar-
antees that . We have thus arrived at a contradiction.
This implies that and (and, hence, also ) must belong
to the same sub-block of in (43).

Case 2: belong to the sub-block of length .
First suppose that . Then (44)–(47) guarantee that

or . For this case, Lemma 10 implies
that , and also lie within . This, in
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turn, guarantees that they are all nonzero, which is in agreement
with the TGP constraint. We are thus left to deal with the
situation where or . This is precisely where the
forbidden blocks in come into play.

Case 2.1: The sub-block is of length .
The key point is that the binary sequence

does not occur as a sub-block of .
Therefore never appears in the context

. Note that the only relevant con-
text for the TGP constraint consists of the
two symbols immediately before and the
two symbols immediately after . The fact that

does not occur in together with
the encoding rules in (41)–(47) guarantees that
appears as follows in all of its possible contexts:

(48)

where “ ” and “ ” signify the beginning and the
end of the entire sequence , respec-
tively. It is now easy to verify by direct inspection
that each of the 18 sequences in (48) satisfies the
TGP constraint.

Case 2.2: The sub-block is of length .
Similarly to the previous case, the fact that

and do not occur in to-
gether with the encoding rules in (41)–(47)
guarantees that appears as follows in all of its
possible contexts:

(49)

Again, it can be verified by direct inspection that
each of the sequences in (49) satisfies the
TGP constraint.

Since our analysis in Cases 1 and 2 is exhaustive, this establishes
property and completes the proof of the lemma.

Lemma 11 shows that every sequence can be
converted to a ternary sequence in by assigning la-
bels to the ones in . This implies that , by
the definition of in (19). Together with Lemma 9, this
completes the proof of Theorem 8. The next corollary uses this
result to determine the capacity of the TGP constraint.

Corollary 12: Let denote the largest magnitude root of the
polynomial . Then the
capacity of the TGP constraint is given by

(50)

Proof: We will use the results of Wilf [26] and of Guibas
and Odlyzko [12], which provide a much more efficient means
to compute the capacity of a constraint from its set of forbidden
blocks than the standard methods (briefly discussed at the end
of this subsection). Let , and for , define

Further, define the generating function .
Using Theorem 1 of [12], we find that is given by

It can be easily verified (using, say, MATLAB or MATHEMATICA)
that the largest magnitude pole of is the unique largest
magnitude root of its denominator polynomial. Moreover, this
root is real and simple. It follows from the theory of generating
functions due to Wilf [26, Ch. 5] that for
some constant . Consequently

Using the MATHEMATICA software package, we have found that
, and therefore, .

Observe that is much larger than for , as
can be seen by comparing Table I with Theorem 7 and Corol-
lary 12. Furthermore, the drop from to is signif-
icantly smaller than the drop from to . As men-
tioned in Section I-D; if this trend continues for larger values
of , we can have reasonably efficient codes that, under the sim-
plifying assumption of that section, mitigate the formation of
ghost pulses in a typical optical communication scenario.

To conclude our discussion of the TGP constraint, we
comment upon the design of encoders for converting arbitrary
binary sequences into TGP -constrained ternary sequences.
The function constructed in (41)–(47) provides an explicit
method of transforming sequences in into
sequences in . However, this function does not work for
arbitrary binary sequences: if , then is not
necessarily in . Thus, we still need to design an encoder
that converts an arbitrary (unconstrained) binary sequence to
a sequence in the constrained system

The theory of constrained coding provides a standard way to
design such encoders, which we briefly outline in what follows.
Let be a finite, labeled, directed graph. We say that is a
presentation of a constrained system if is the set of all se-
quences obtained by reading the labels of all finite paths in .
A presentation of is deterministic if at each vertex of ,
the outgoing edges are labeled distinctly. Given a deterministic
presentation of along with integers and such that is
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Fig. 6. A deterministic presentation of the constrained system S = B .

less than or equal to the capacity of , there is a systematic al-
gorithm [22, Sec. 4] for designing a rate finite-state encoder
for along with a corresponding decoder. Thus, to construct a
finite-state encoder for our constrained system , all
we need to do is provide a deterministic presentation for .
From this, the desired encoder can be generated via the algo-
rithm mentioned above.

It may be verified that the graph in Fig. 6 is a deterministic
presentation of . Hence, it can be used as the starting point
for the design of encoders that convert unconstrained binary se-
quences to sequences in (and then, via the function in
(41), (43)–(47), to sequences in ). In fact, the graph in Fig.
6 is the minimal deterministic presentation (also known as the
Shannon cover) of , in the sense that it has the least number
of vertices among all deterministic presentations of .

While on the subject of deterministic presentations, let us
state the following well-known fact [22, Theorem 3.12], which
will be needed in the next subsection. If is a deterministic
presentation of a given constrained system , then the capacity
of is , where is the largest eigenvalue of
the adjacency matrix of . Incidentally, this provides an alter-
native proof of Corollary 12, since the characteristic polyno-
mial of the adjacency matrix of the graph in Fig. 6 is precisely

.

D. The TGP Constraints for

It is clear that the painstaking analysis presented in the pre-
vious subsection cannot be easily extended to the TGP con-
straint for an arbitrary . Instead, we suggest an alterna-
tive, systematic approach to tackle the general case, which can,
in principle, be programmed into a computer.

The approach developed in this section has two main dis-
advantages. First, instead of computing we end up with
a slightly different quantity

(51)

where is the set of all binary sequences of length that
can be extended to a bi-infinite sequence without violating the
TGP constraint (precise definition to follow shortly). This
is not much of a problem, since for all and
there are good reasons to believe that for all
(see the remark below). The second problem is the computa-
tional complexity of the proposed approach. Unfortunately, this

complexity is doubly exponential in . In fact, in order to com-
pute , one needs to construct a graph with at least
vertices. Thus, the proposed approach is not practical even for

. Nevertheless, we believe that this approach has concep-
tual value, and sheds additional light on the underlying structure
of the TGP constraint.

The general idea behind our approach is to develop a proce-
dure that, given a , generates a deterministic presentation

of the constrained system

(52)

In developing our results, it would be much more convenient to
deal with bi-infinite sequences. This eliminates the “edge ef-
fects” present at the beginning and end of a finite sequence,
which could be quite bothersome (for example, much of the ef-
fort in describing the encoding rule of the previous subsec-
tion—see (44), (46), (47)—was devoted to such edge effects).

Recall that was defined in Section IV-A as the set of bi-in-
finite ternary sequences satisfying the TGP constraint. We ex-
tend this definition in the natural way to the TGP constraint.

Definition 6: A bi-infinite sequence over the
ternary alphabet is said to satisfy the TGP
constraint if for all such that

whenever are equal and nonzero, then is also
nonzero. We let denote the set of all bi-infinite ternary se-
quences satisfying the TGP constraint, and let
denote the set of all bi-infinite binary sequences that can be con-
verted to a sequence in by negating some of their ones.

We now construct a deterministic presentation for . Given
a , define a finite, labeled, directed graph , as follows.
The set of vertices of is the set of all

that satisfy the following condition: for all such
that are equal and nonzero, we also have .
Note that the position indices are restricted to the interval

in the above condition. This implies that has at least
vertices; for example, all the sequences of the form

are vertices of . In fact, the order (number of vertices) of
is probably closer to than to (however, when is

small, the vertices of can still be enumerated by exhaustive
computer search). The edges of are defined as follows. For
each pair of vertices

where and are not necessarily distinct, we draw a single
directed edge from to if and only if the last symbols of

are equal to the first symbols of , that is, if
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The label of this directed edge is the symbol . This completes
our construction of the graph .

Given a finite, labeled, directed graph , the sofic shift of
is the set of all bi-infinite sequences obtained by reading the
labels of bi-infinite paths in . One of our main results in this
subsection is the following theorem.

Theorem 13: Let denote the sofic shift of the graph .
Then, for all , we have

(53)

Proof: We first show that . Consider any el-
ement of . For all , let denote the
sub-block of . Since satisfies the
TGP constraint, it follows from our construction of that

is a vertex of for all . Moreover, since the last
symbols of are obviously equal to the first symbols of

, the graph has a unique edge from to , which is
labeled by . But then, the sequence of such edges
is a path in that generates . It follows that .

In order to establish the inclusion , consider any
element of and let denote the path
in that generates . We again let denote the sub-block

of . Then, it follows from our con-
struction of that for all , the vertex at which
terminates must be the sequence . Therefore, is a vertex
in for all . Now, suppose we have
such that and .
In order to prove that , we must show that .
Since are all within a distance of of each other, there
exists a such that . Observe that for any

, the integer lies in . But
now, since is a vertex of , it follows from our definition
of the vertex set of that . Thus, , which
shows that and completes the proof.

We now define as the set of all finite-length sequences
that are sub-blocks of some sequence in . Stated another
way, is a subset of the set defined in Section II, con-
sisting of all finite-length sequences that a) satisfy the TGP
constraint and b) can be extended to a bi-infinite sequence that
satisfies the TGP constraint. It is possible that some finite-
length sequences in cannot be extended in this way, in
which case is strictly smaller than .

Corollary 14: Let denote the constrained system of the
graph . Then, for all , we have

(54)

Moreover, the graph is a deterministic presentation of its
constrained system .

Proof: It should be obvious from our construction of
that outgoing edges at each vertex of are labeled distinctly.
Hence, is a deterministic presentation of its constrained
system. Furthermore, it is well known (and obvious) that (53)
implies (54). In the terminology of symbolic dynamics, the sets

and are precisely the languages of the sofic shifts

and . Since the shifts are equal (by Theorem 13), their lan-
guages must be also equal.

Corollary 14 implies that we can find the capacity of from
the largest eigenvalue of the adjacency matrix of . However,
we are not interested in , but rather in the set

(55)

Letting denote the number of sequences of length in
, we get the expression (51) for the capacity .

Remark: Here is a heuristic argument in support of our claim
that is likely to be equal to . The difference between

and stems from the difference between the sets
and . It is well known [14], [19], [22] that the capacity of a
language is equal to the entropy of the underlying shift. Thus,
instead of looking at , we might as well look at the under-
lying sofic shift . The TGP constraint defining

is a finite restriction of the TGP constraint defining .
Furthermore, the TGP constraint is local, in the sense that it
is defined through a finite window of length .

Now, it is generally observed in the literature [19] that if a
constrained system is obtained via a finite restriction of a local
constraint that defines a sofic shift , then the capacity of
equals the entropy of . Of course, this is clearly true when-
ever any finite sequence in can be extended to a bi-infinite
sequence in . However, “edge effects” sometimes make it im-
possible to extend certain sequences in without violating the
constraint. But, in the case of a local constraint, these edge ef-
fects are usually not strong enough to affect a significant propor-
tion of the sequences in , so that the capacity of is still equal
to the entropy of . This is not always true, but the exceptions
to this rule tend to be pathological.

It may be possible to prove rigorously that ,
but such a proof would have to deal in detail with the “edge
effects” and is likely to be too tedious to be worth the effort.

The remaining problem is to construct a deterministic pre-
sentation for the set in (52) and (55). Given the graph ,
constructing a presentation for is easy: simply apply
to all the labels in . Specifically, let denote the graph
obtained from by replacing the labels of all the edges with
their absolute values. Then it is obvious from (55) and Corol-
lary 14 that the graph is a presentation for .

Note, however, that although is a deterministic presen-
tation of , the graph is not necessarily a deterministic
presentation of . Indeed, there may be two edges emanating
from the same vertex in , one labeled with and the other
with , whose labels in would both be . Fortunately, there
is a well-known procedure that, given an arbitrary presentation
of a constrained system, constructs a deterministic presentation
for it. This procedure is called the subset construction method;
it is described in detail in [22, Sec. 2.2.1] and in [19, Theorem
3.3.2]. Applying the subset construction method to the graph

, we finally obtain a deterministic presentation for the
set . Given this presentation, we can compute the capacity

and construct encoders into , as described in the pre-
vious subsection.
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We can now summarize the entire procedure for computing
the capacity , as follows.

Construct the graphs and as described above, and
let be the constrained system presented by .

Apply the subset construction method to in order to
obtain a deterministic presentation for .

Construct the adjacency matrix of , and compute
its largest eigenvalue . Set .

Of course, in theory, can also be used to construct finite-
state encoders for converting unconstrained binary sequences to
sequences in , as explained in Section IV-C. In turn,
the graphs and provide a method for transforming
a binary sequence into a ternary sequence , with

, that satisfies the TGP constraint. For each given
, there is a path in whose label sequence is . We

may then take to be the sequence of labels along the same
path in . The practicality of this method depends on the
existence of a systematic procedure for finding a path in
that generates . Of course, it also depends on the order of the
graphs and .

We have already observed that the order of and is
exponential in . However, since we are interested primarily in
small values of , such exponential growth could still be toler-
ated. The main computational problem is with the subset con-
struction method at Step 2 above. The subset construction tech-
nique, when applied to a graph with vertices, produces a graph
with vertices. As a result, the graph constructed in
Step 2 has at least vertices. In fact, this is likely to be a vast
underestimate of the order of .

V. SUMMARY

We have defined and analyzed a number of “ghost-pulse”
constraints that can be used to design coding schemes which
mitigate the formation of ghost pulses in the optical fiber
channel. We show that coding schemes based upon sequences
that satisfy the binary ghost-pulse (BGP) constraint must
necessarily have poor rates, since the capacity of this constraint
is zero. Sequences satisfying a more relaxed constraint, which
we call the BGP constraint, are more suitable for use as
codes; however, the rate of such codes is still too low for
practical applications. A more promising approach is to use
the phase-modulation idea, which leads to ternary constraints.
Thus, we study the ternary ghost-pulse (TGP) and TGP
constraints. We leave the analysis of the TGP constraint with
unbounded memory as an open problem, conjecturing that it
has zero capacity. But we do provide a detailed analysis of
the TGP and TGP constraints. Our analysis suggests
that coding schemes using TGP -constrained sequences can
achieve much higher rates than those using BGP -constrained
sequences. We are therefore led to believe that TGP con-
straints yield reasonably efficient schemes for mitigating the
ghost-pulse problem. We also discuss the design of encoders
and decoders for coding schemes involving the BGP, the
BGP , and the TGP constraints. While the procedures
we suggest for coding into the BGP TGP and TGP

constraints can be implemented in practice, the corresponding
design procedure for the general TGP constraint with
is too computationally intensive to be implementable in its
present form.
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