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Abstract— Certain magnetic recording applications
call for a large number of sequences whose differences do
not include certain disallowed patterns. We show that
the number of such sequences increases exponentially
with their length and that the exponent, or capacity, is
the logarithm of the joint spectral radius of an appro-
priately defined set of matrices. We derive new algo-
rithms for determining the joint spectral radius of sets
of nonnegative matrices and combine them with exist-
ing algorithms to determine the capacity of several sets
of disallowed differences that arise in practice.

I. Introduction

The error probability of many magnetic-recording
systems may be characterized in terms of the differ-
ences between the sequences that may be recorded [1],
[2], [3]. In fact, the bit-error-rate is often dominated by
a small set of potential difference patterns. Recently,
binary codes have been proposed which exploit this fact
[4], [5], [6], [7], [8]. The codes are designed to avoid the
most problematic difference patterns by constraining
the set of allowed recorded sequences and have been
shown to improve system performance.

In this paper we study the largest number of se-
quences whose differences exclude a given set of dis-
allowed patterns. We show that the number of such se-
quences increases exponentially with their length and
that the exponent, or capacity, is the logarithm of the
joint spectral radius of an appropriately defined set of
matrices. We derive new algorithms for determining
the joint spectral radius of sets of non-negative ma-
trices and combine them with existing algorithms to
determine the capacity of several sets of disallowed dif-
ferences that arise in practice.

The paper is organized as follows. In the next sec-
tion we summarize known results showing that the er-
ror probability is determined by the differences between
recorded sequences. In Section III we formally describe
the resulting combinatorial problem and the notation
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Fig. 1. Communications channel model

used. Section IV derives the connection to the joint
spectral radius. In Section V we describe some known
algorithms for determining the spectral radius, and de-
rive some new ones. Finally, in Section VI, we list the
capacities of some simple sets of disallowed patterns.
Due to space limitations, many proofs are omitted. De-
tails, however, may be found in [9].

II. Motivation

Consider the binary communications channel in Fig-
ure 1 where a binary sequence a = (. . . , a0, a1, a2, . . . )
passes through a linear channel with impulse response
h(t) and n(t) is additive white Gaussian noise. The
received signal is given by

r(t) =
∑
k

akh(t− kT ) + n(t),

where T is the bit-period. The receiving filter w(t)
is chosen such that the signal at the input to the
Viterbi detector in the absence of noise approximates
Xa, where X is the Toeplitz matrix corresponding to
a finite target response. The Viterbi algorithm is then
used to obtain the sequence Xâ closest in Euclidean
distance to the sequence received at the input to the
Viterbi detector.

At high signal-to-noise ratios, the probability of a bit
error for this estimate is well approximated by

Pr(bit error) ≈
∑

a−â∈D
w(a− â)Q

(
1
2
deff (a− â)2

)
e.g. [10], where w(a − â) = Pr(a, â)

∑
|ai − âi| is a

weighting factor, Q(·) is the error function,

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2dt,



deff (a − â) denotes the effective distance[10] between
the sequences Xa,Xâ, and D is a set of dominant dif-
ference patterns, i.e. those patterns with small effec-
tive distance. At high signal-to-noise ratios, the perfor-
mance of the sequence estimator is largely determined
by a small set of such difference patterns.

The fact that a small set of difference patterns dom-
inate the system performance has motivated the con-
struction of codes designed to avoid the occurrence of
the low-distance difference patterns [4]. The subse-
quent increase in the minimum effective distance is,
however, offset by rate-loss of the codes. This led to
the following question, which we address in this paper:
what is the bound on the rate of a code which avoids
a specified set of difference patterns?

III. Notation and definitions

The difference between two n-bit sequences u =
(u1, . . . , un) and v = (v1, . . . , vn) is the sequence
u − v

def= (u1 − v1, . . . , un − vn) ∈ {−1, 0, 1}n where
subtraction is over the reals.

Given a set D ⊆ {−1, 0, 1}∗ of disallowed difference
patterns and a sequence length n, we are interested in
the largest number of n-bit sequences whose differences
do not include any element of D. We are primarily in-
terested in finite difference sets. Without loss of gener-
ality we therefore assume from here on that all patterns
in D have the same length m.

An n-bit code C is a collection of n-bit sequences, or
codewords, thought of as potential recorded sequences.
C avoids D if for all u, v ∈ C and all i ∈ [1, n′],

u[i,i′] − v[i,i′] /∈ D (1)

where, for all i ≤ j, we use the notation

[i, j] def= {i, . . . , j}

and
u[i,j]

def= ui, . . . , uj,

and, for i and n only, we let i′ def= i+m− 1 and n′
def=

n−m+ 1.
The largest number of sequences whose differences

do not include any pattern in D is therefore

δn(D) def= max{|C| : C avoids D}.

We define the capacity of D as the limit

cap(D) def= log
[

lim
n→∞

(δn(D))1/n
]
. (2)

We would like to determine the capacities of various
difference sets D and find codes that achieve them.

IV. From disallowed differences to joint

spectral radius

A. Disallowed joint patterns

Represent an n-bit code C as an |C| by n array and
for i ∈ [1, n′] let

Mi
def= {0, 1}m − {u[i,i′] : u ∈ C} (3)

be the set ofm-bit patterns missing from columns [i, i′].
A joint pattern is a set of two m-bit patterns. A joint

pattern {p, p′} is disallowed for a difference set D if

p− p′ ∈ D or p′ − p ∈ D.

Let J (D) denote the collection of all disallowed joint
patterns.

B. Disallowed sets

A set M ⊆ {0, 1}m is a representing set for J (D) if
it intersects every set in J (D) and no subset intersects
every set in J (D). Let M(D) be the collection of all
representing sets for J (D).

Let M1, . . . ,Mn′ ⊆ {0, 1}m be sets of m-bit pat-
terns. An n-bit sequence s1, . . . , sn avoids the set se-
quence M1, . . . ,Mn′ if s[i,i′] /∈Mi for all i ∈ [1, n′]. Let
µ(M1, . . . ,Mn′) be the number of n-bit sequences that
avoid M1, . . . ,Mn′ .

If M is a collection of sets in {0, 1}m, we let

µn(M) def= max{µ(M1, . . . ,Mn′) : Mi ∈ M ∀i}

be the largest number of n-bit sequences all avoiding
a single sequence of sets in M. The following Lemma
converts the problem of finding δn(D) from a constraint
on pairs of sequences to a constraint on individual se-
quences.

Lemma 1: For every n,

δn(D) = µn(M(D)). �

C. Bipartite and cascade graphs

In the previous subsection we reduced the difference
constraint on pairs of sequences to a constraint on in-
dividual sequences. We now convert this problem to
that of counting paths in graphs.

A bipartite graph (L,R,E) consists of a set L of left
vertices, a set R of right vertices, and a set E of edges.
Each edge (l, r) ∈ E connects a left vertex l ∈ L to a
right vertex r ∈ R.

For m ≥ 2 let Gm be the bipartite graph where
L = R = {0, 1}m−1 and (l1, . . . , lm−1) ∈ L is con-
nected to (r1, . . . , rm−1) ∈ R if li = ri−1 for all
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Fig. 2. G2 and G{10}
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i = 2, . . . ,m− 1. We identify this edge with the m-bit
sequence l1, l2, . . . , lm−1, rm−1 = l1, r1, . . . , rm−1.

For M ⊆ {0, 1}m, define GM to be the bipartite
graph obtained from Gm by removing the edges cor-
responding to elements of M . Figure 2 illustrates G2

and G{10}.
If G1, . . . , Gn′ are bipartite graphs with left vertex

sets L1, . . . , Ln′ and right vertex sets R1, . . . , Rn′ , re-
spectively, such that Ri = Li+1 for all i ∈ [1, n′ − 1],
we let

Vi
def=

 {1} × L1 if i = 1,
{i} ×Ri−1 = {i} × Li if 2 ≤ i ≤ n′,
{n′ + 1} ×Rn′ if i = n′ + 1,

and define the cascade [G1, . . . , Gn′ ] to be the graph
whose vertex set is V1 ∪ . . . ∪ Vn′+1 and where for i ∈
[1, n′], the edges between Vi and Vi+1 are the edges of
Gi, and there are no other edges. Figure 3 illustrates
the cascade [G{10}, G{01}, G{10}].

A path in a cascade [G1, . . . , Gn′ ] is a sequence
v1, . . . , vn′+1 of vertices where each vi ∈ Vi, and
vi is connected to vi+1 for all i ∈ [1, n′]. We let
ψ([G1, . . . , Gn′ ]) be the total number of paths in the
cascade.

For n ≥ m, there is a bijection between n-bit se-
quences that avoid M1, . . . ,Mn′ and paths in the cas-
cade [GM1 , . . . , GMn′ ], hence, letting

ψn(M) def= max{ψ([GM1 , . . . , GMn′ ]) : Mi ∈M ∀i}

we obtain

Lemma 2:

µn(M(D)) = ψn(M(D)). �

D. Adjacency matrices

Let the adjacency matrix AG of G = (L,R,E) be the
|L|×|R| matrix whose (l, r)th element is 1 if (l, r) ∈ E,
and 0 otherwise. The number of left-to-right paths
from leftmost vertex l to rightmost vertex r in the cas-
cade [G1, . . . , Gn′ ] is the (l, r)-th element of the prod-
uct AG1AG2 · . . . ·AGn′ .

Letting

‖A‖1 =
∑
l,r

|Al,r| (4)

denote the L1 norm of the matrix A, it follows that for
every M1, . . . ,Mn′ ⊆ {0, 1}m

ψ([GM1 , . . . , GMn′ ]) = ‖AGM1
· . . . · AGM

n′
‖1.

Putting

Σ(D) def= {AGM : M ∈M(D)}

and

ρ̂n(Σ, ‖ · ‖1) def= max

{∥∥∥∥∥
n∏
i=1

Ai

∥∥∥∥∥
1

: Ai ∈ Σ ∀i
}
. (5)

we get
Lemma 3:

ψn(M(D)) = ρ̂n′(Σ(D), ‖ · ‖1). �
This suggests looking for algebraic methods to deter-
mine the capacity.

E. Joint spectral radius

The spectral radius of a matrix A ∈ Cm×m is the
nonnegative real number

ρ̂(A) def= lim
n→∞

‖An‖1/n,

The quantity ρ̂ can be generalized to sets of matrices.
Letting

ρ̂n(Σ, ‖ · ‖) def= sup

{∥∥∥∥∥
n∏
i=1

Ai

∥∥∥∥∥ : Ai ∈ Σ ∀i
}

for an arbitrary matrix norm ‖·‖, Rota and Strang [11]
defined the joint spectral radius of Σ ⊆ Cm×m to be

ρ̂(Σ) def= lim
n→∞

ρ̂n(Σ, ‖ · ‖)1/n

Combining Definition (2) and Lemmas 1 to 3, we obtain
our main result:



Theorem 1: For every finite D,

cap(D) = log(ρ̂(Σ(D))).

�.
This equality generalizes known results on constrained
systems where, instead of differences, certain patterns
are disallowed, and it is well known, e.g., [12, Theorem
4.4.4], that the growth rate of the number of sequences,
or Shannon capacity of the constraint, is log(ρ̂(A)), the
logarithm of the spectral radius of a corresponding ad-
jacency matrix A.

V. Computing the joint spectral radius

A. Existing algorithms

Daubechies and Lagarias [13] defined the generalized
spectral radius of Σ to be

ρ̌(Σ) def= lim sup
n→∞

{ρ̌n(Σ)1/n}

where

ρ̌n(Σ) def= max

{
ρ̂

(
n∏
i=1

Ai

)
: Ai ∈ Σ ∀i

}
.

They showed that for every Σ,

sup
n≥1

ρ̌n(Σ)1/n ≤ ρ̌(Σ) ≤ ρ̂(Σ) ≤ inf
n≥1

ρ̂n(Σ, ‖ · ‖)1/n

and conjectured that all inequalities hold with equal-
ity, which was proven by Berger and Wang [14]
for all finite Σ. This suggests approximat-
ing the joint spectral radius by computing the
lower bounds max 1≤k≤nρ̌k(Σ)1/k and upper bounds
min1≤k≤nρ̂k(Σ, ‖ · ‖)1/k for n = 1, 2, . . . . However, the
number of matrix operations increases as |Σ|n.

Several steps have been taken to reduce the growth
rate of the number of computations required to approx-
imate ρ̂(Σ). Daubechies and Lagarias [13] proposed a
recursive algorithm to upper bound ρ̂(Σ), examples of
which may be found in [15], [16], [17].

The remainder of this section describes an algorithm
which empirical results show has a computation time
competitive with the algorithm in [17].

B. The pruning algorithm

The pruning algorithm may be used to bound ρ̂(Σ)
when all the matrices in Σ are non-negative. The
method replaces the search for the largest norm among
all (exponentially many) products of n matrices with a
search over a smaller set with the same largest norm.

We write A ≥ 0 if every element of A is nonnegative
and A ≥ B if every element of A is at least as large as
the corresponding element of B.

A matrix A dominates matrix B with respect to the
norm ‖ · ‖ if

‖AM‖ ≥ ‖BM‖
for all M ≥ 0. Let

Σn def=

{
n∏
i=1

: Ai ∈ Σ

}

denote the set of products of n matrices in Σ. A subset
S of Σn is dominating if every matrix in Σn is domi-
nated by some matrix in S. Let Ψn be any dominating
subset of Σn. By definition,

ρ̂n(Σ, ‖ · ‖) = max {‖A‖ : A ∈ Ψn} . (6)

Furthermore, it is easy to verify that if all matrices in
Σ are non-negative then ΨnΣ is a dominating subset
of Σn+1.

Given a matrix norm one can construct a recursive
algorithm which computes a dominant set Ψn from
Ψn−1 by ‘pruning’ those products in Ψn−1Σ which
are dominanted by another product. The subsequent
growth rate of |Ψn| will depend on the condition for
domination. For example, the following Lemma pro-
vides a sufficient condition for domination with respect
to the spectral norm ‖ · ‖s.

Lemma 4: If A∗A ≥ B∗B, then A dominates B with
respect to ‖ · ‖s. �

An analogous algorithm may be used to construct a
sequence of convergent lower bounds on ρ̌(Σ).

VI. Capacities of certain difference sets

Table I summarizes known values or ranges of cap(D)
for all difference sets D consisting of a single pattern of
length ≤ 3 and some patterns of larger length. Since
the same number of sequences avoid a pattern p as its
negation −p, we assume that the first nonzero element
of p is +. Also, we do not list cap(D) if the (identical)
capacity of the string obtained by reversing the order
of p has already been addressed.

Next to the capacity, we list a constraint describing
a sequence of codes, {Cn}, such that each Cn is an n-bit
code which avoids D and

lim
n→∞

log |Cn|1/n

achieves the lower bound on the capacity, or cap(D)
when it is known. In a notation similar to that used to
describe shift spaces [12, Defn. 1.2.1], the constraint is



defined by a list of forbidden patterns O and the codes
Cn can be taken to be the largest n-bit codes satisfy-
ing the constraint. If no superscript is listed with a
pattern, the pattern is forbidden from appearing in all
columns of the code. If superscripts appear, then the
patterns are periodic and the period is one more than
the largest superscript. The superscript then repre-
sents the column indices (modulo the period) in which
the pattern is disallowed. For example, 101, 010 means
that these triples do not appear in any three consecu-
tive columns, and 10(0), 01(1) means that 10 does not
appear in columns [i, i+ 1] for even i and 01 does not
appear in columns [i, i+ 1] for odd i.

Several of these constraints have appeared in the
magnetic recording literature. O = {00(1), 11(1)}
is referred to as the biphase constraint [18], O =
{1010, 0101} as the MTR constraint [5], and O =
{1010(1), 0101(1)} as the TMTR constraint [6].
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