
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2885

REFERENCES

[1] R. K. Ahuja, T. L. Maganti, and J. B. Orlin, Network Flows:Theory,
Algorithms and Applications. Englewood Cliffs, NJ: Prentice-Hall,
1993.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[3] S.-Y. Li, R.W.Yeung, and N. Cai, “Linear network coding,” IEEE Trans.
Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[4] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[5] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, and L. Tolhuizen,
“Polynomial time algorithms for multicast network code construction,”
IEEE Trans. Inf. Theory, submitted for publication.

[6] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “Toward
a random operation of networks,” IEEE Trans. Inf. Theory, submitted
for publication.

[7] P. A. Chou, Y.Wu, and K. Jain, “Practical network coding,” in Proc. 41st
Allerton Conf. Communication, Control, and Computing, Monticello,
IL, Oct. 2003.

[8] M. Médard, M. Effros, T. Ho, and D. Karger, “On coding for nonmul-
ticast networks,” in Proc. 41st Allerton Conf. Communication, Control,
and Computing, Monticello, IL, Oct. 2003.

[9] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow,” IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2745–2759, Aug. 2005.

[10] T. Ho,M.Médard,M. Effros, and R. Koetter, “Network coding for corre-
lated sources,” in Proc. Conf. Information Sciences and Systems (CISS),
Princeton, NJ, Mar, 2004.

[11] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating dis-
tributed source coding from network coding,” in Proc. 42nd Allerton
Conf. Communication, Control, and Computing, Monticello, IL, Oct.
2004.

[12] B. Bollobas, Random Graphs. London/New York: Academic, 1985.
[13] M. Penrose, Random Geometric Graphs. Oxford, U.K.: Oxford Univ.

Press, 2003.
[14] G. Kramer and S. Savari, “On networks of two-way channels,” in Proc.

DIMACS Workshop on Algebraic Coding Theory and Information
Theory, Piscataway, NJ, Dec. 2003.

[15] D. R. Karger, “Random sampling in cut, flow and network design prob-
lems,” Math. of Oper. Res., vol. 24, no. 2, pp. 0383–0413, 1999.

[16] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[17] Y. Wu, P. A. Chou, and K. Jain, “A comparison of network coding and
tree packing,” in Proc. IEEE Int. Symp. Information Theory, Chicago,
IL, Jun./Jul. 2004, p. 143.

[18] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[19] C. Bettstetter, “On the minimum node degree and connectivity of a
wireless multihop network,” in Proc. MobiHoc, Lausanne, Switzerland,
2002, pp. 80–91.

[20] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing Steiner trees,”
in Proc. 14th Annu. ACM-SIAM Symp. Discrete Algorithms, Baltimore,
MD, 2003, pp. 266–274.

[21] R. Durrett, Probability: Theory and Examples, 2nd ed: Duxbury, 1995.

An Improvement to the Bit Stuffing Algorithm

Sharon Aviran, Paul H. Siegel, Fellow, IEEE, and
Jack Keil Wolf, Life Fellow, IEEE

Abstract—The bit stuffing algorithm is a technique for coding con-
strained sequences by the insertion of bits into an arbitrary data sequence.
This approach was previously introduced and applied to (d; k) constrained
codes. Results show that the maximum average rate of the bit stuffing
code achieves capacity when k = d + 1 or k = 1, while it is suboptimal
for all other (d; k) pairs. Furthermore, this technique was generalized to
produce codes with an average rate that achieves capacity for all (d; k)
pairs. However, this extension results in a more complicated scheme.
This correspondence proposes a modification to the bit stuffing algorithm
that maintains its simplicity. We show analytically that the proposed
algorithm achieves improved average rates over bit stuffing for most (d; k)
constraints. We further determine all constraints for which this scheme
produces codes with an average rate equal to the Shannon capacity.

Index Terms—Bit-stuffing encoder, (d; k)-constrained systems, Shan-
non capacity.

I. INTRODUCTION

A binary sequence satisfies a run-length-limited (RLL) (d; k) con-
straint if any run of consecutive zeros is of length at most k and any two
successive ones are separated by a run of consecutive zeros of length at
least d. Such sequences are called (d; k)-sequences and are commonly
used in magnetic and optical recording [1], [2]. The (d; k) constraint is
used in order to solve two problems that arise when performing peak
detection: dminimizes intersymbol interference and k assists in timing
recovery. Relevant (d; k) pairs range over all integers d, k, such that
0 � d < k � 1.
One can use a labeled directed graph to generate all possible

(d; k)-sequences by reading off the labels along paths in the graph.
This graph is referred to as a (d; k) constraint graph. A graph that
produces these sequences for k < 1 is shown in Fig. 1.
LetNd;k(n) be the number of distinct (d; k)-sequences of length n.

The Shannon capacity of a (d; k) constraint is defined as

C(d; k) = lim
n!1

log2Nd;k(n)

n
:

The capacity can be computed by applying amore general result derived
by Shannon [3]. It was shown (see, e.g., [1]) thatC(d; k) = log2 �d;k ,
where �d;k is the largest real eigenvalue of the adjacency matrix of the
constraint graph. Therefore, �d;k is the largest real root of the charac-
teristic polynomial of the matrix Pd;k(z), which takes the form

Pd;k(z) =
zk+1 �

k�d

j=0
zj ; k is finite

zd+1 � zd � 1; k =1.

It was further shown that for all values of d and k the capacity exists
and that �d;k 2 (1; 2) for all (d; k) pairs such that (d; k) 6= (0;1).

Manuscript received February 4, 2002; revised November 22, 2004. This
work was supported in part by the National Science Foundation under Grant
CCR-0219582, part of the Information Technology Research Program, and
in part by the Center for Magnetic Recording Research at the Univevrsity of
California, San Diego. The material in this correspondence was presented in
part at the IEEE International Symposium on Information Theory, Chicago, IL,
June/July 2004.

The authors are with the Department of Electrical and Computer Engineering
and the Center for Magnetic Recording Research, University of California, San
Diego, La Jolla, CA 92093USA (e-mail: saviran@ucsd.edu; psiegel@ucsd.edu;
jwolf@ucsd.edu).

Communicated by K. A. S. Abdel-Ghaffar, Associate Editor for Coding
Theory.

Digital Object Identifier 10.1109/TIT.2005.851764

0018-9448/$20.00 © 2005 IEEE

2886 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

Fig. 1. Constraint graph for the (d; k) constraint with d > 0 and k finite.

The idea of constrained coding by insertion of extra bits into an un-
coded data stream was introduced by Lee [4]. Bender and Wolf [5]
proposed a modification to Lee’s algorithm which is intended for en-
coding (d; k) sequences. Their technique is known as the bit stuffing
algorithm. The bit stuffing algorithm first converts the input sequence
into a sequence having different statistical properties. It then inserts
additional bits in a manner that guarantees that the resulting sequences
satisfy the (d; k) constraint. Both operations are invertible so that the
input sequence can be reproduced.

Bit stuffing has been used in various applications, such as in the X.25
protocol, where it has been used to ensure that the bit pattern of the
frame delimiter flag will not appear in the data sequence [6]. The em-
phasis here is on finding the most efficient bit stuffing algorithm in
terms of the asymptotical rate that can be achieved.

Let us define an optimal algorithm as an invertible mapping from
unconstrained binary data to the constraint having the maximum av-
erage information rate. It is well known that this maximum rate equals
the capacity of the constraint. Bender and Wolf [5] showed that the bit
stuffing algorithm is optimal for all (d; d + 1) and (d;1) constraints
and is suboptimal for all other cases. This leaves room for improvement
whenever d + 2 � k < 1.

In this correspondence, we modify the bit stuffing algorithm by flip-
ping certain bits from the converted input sequence while the logic of
insertion of extra bits remains unchanged. We name the proposed mod-
ification the bit flipping algorithm.We analyze the performance of both
algorithms to obtain the following main results of this correspondence
(see Section II-D for the precise statement of Theorem 6).

Theorem 6 : Let d � 1 and d+ 2 � k <1. Then the bit flipping
algorithm achieves a greater maximum average rate than the bit stuffing
algorithm.

Theorem 7 : Let d � 0 and d+ 2 � k <1. Then the bit flipping
algorithm is optimal if and only if d = 2 and k = 4.

As will be discussed in Section II-B, there is another modification
of the bit stuffing technique [6] that is optimal for all values of d and
k. It is therefore superior in performance to the bit flipping algorithm.
Nevertheless, our proposed algorithm maintains the simplicity of the
bit stuffing algorithm while the mentioned scheme is more complex.

In Section II, we give an example that motivated the idea of flipping.
In this section, we study in detail both the bit stuffing and the bit flipping
algorithms. We devote the rest of Section II to establishing a sequence
of lemmas needed to prove the performance improvement (Theorem 6).
In Section III, we characterize all (d; k) constraints for which the bit
flipping algorithm is optimal (Theorem 7).

II. IMPROVING THE PERFORMANCE OF BIT STUFFING BY BIT FLIPPING

In this section, we introduce the bit stuffing algorithm and propose a
modification to it—the bit flipping algorithm.Wederive explicit expres-
sions for the asymptotic average rates of both algorithms. We use these
expressions to show that the proposed algorithm yields a higher average
rate than the bit stuffing algorithm for all d � 1 and d+ 2 � k <1.

A. The Bit Stuffing Algorithm

Webegin by describing the bit stuffing encoder, which encodes an ar-
bitrary data sequence into a (d; k)-constrained sequence. The encoder
consists of the following two components:

Fig. 2. Graph description of a bit stuffing encoder for the (d; k) constraint
with d > 0 and k finite.

• a distribution transformer,
• a constrained encoder.
Assume that the input is a sequence of independent and identically

distributed (i.i.d.) unbiased (i.e., Bernoulli with probability 1

2
) random

bits. The distribution transformer converts the unbiased sequence into
a sequence of independent bits, whose probability of a 0 is some p 2
[0; 1] (i.e., Bernoulli with probability p). We say that the output se-
quence is p-biased and refer to it as the biased sequence. This conver-
sion can be implemented in a one-to-one manner. Hence, we can apply
the reverse transformation to recover the unbiased data. The asymptotic
expected rate of such a scheme is h(p), where h(p) = �p log

2
(p)�

(1� p) log
2
(1� p) is the binary entropy function. A possible method

of conversion would be to use the Elias code [7, pp. 61–62]. However,
this approach was designed for infinite input sequences. One modifica-
tion to this idea that applies to finite sequences and can be implemented
using a finite precision arithmetic appears in [8].
The constrained encoder inserts extra bits into the biased sequence

in order to avoid possible violations of the (d; k) constraint. It writes
the biased sequence while keeping track of the number of consecutive
zeros in the sequence, called the run length. Once the run length equals
k, the encoder inserts a 1 followed by d 0’s. This guarantees that both
the d and k restrictions are satisfied.Whenever encountering a biased 1,
the encoder inserts d 0’s so as to satisfy the d limitation. The inserted
bits are also called stuffed bits. The graph in Fig. 2(a) describes the
encoder, where the edge labels are the output symbols. The stuffed bits
are highlighted. Note that for d > 0 and finite k the constrained encoder
is in fact a realization of the graph in Fig. 2(b), which is similar to the
constraint graph in Fig. 1 except for the edge labels. Here the edge
labels represent the probabilities that the next bit will assume the value
0 or 1. If the bit assumes a value of 0, then we move to the next state to
the right. If it is a 1, then we return to state 0. We will find this graph
representation of the encoder useful in Sections II-B and -C.
The decoder is comprised of the corresponding two components,

arranged in a reverse order. The constrained decoder reads the encoded
constrained sequence and keeps track of the run length. Whenever
reaching a run length of k, it deletes the d+1 stuffed bits that follow it.
If it encounters a 1, then it removes the next d stuffed 0’s. This results
in the encoded p-biased sequence, which is then fed into the inverse
distribution transformer, so as to obtain the original unbiased data.
The proposed scheme produces a variable-rate code. Its expected rate

is the product of the expected rates of the two components, the first
being h(p) when the code length goes to infinity. Note that we could
directly apply just the constrained encoder component to the unbiased
input data to obtain a (d; k)-constrained sequence. However, adding
the distribution transformer in fact results in an improved overall av-
erage rate. This sheds some light on the role of the transformer, namely,
to better fit the data to the constraint. To further explain, observe that
each 1 in the biased sequence results in d stuffed 0’s. On the other
hand, k�d consecutive biased 0’s will result in the stuffing of a single

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2887

Fig. 3. Graph description of a (d; k) constraint where the edge labels are the
allowable runs.

1 followed by d 0’s. Thus, as k � d increases we would expect that
fewer 1’s in the input sequence will result in fewer stuffed bits. Such
sequences will yield a higher rate in the bit stuffing encoding process.
The distribution transformed sequences have this desired property on
average. On the other hand, as we increase the probability of a 0, the
rate of the first component h(p) decreases. Thus, we need to optimize p
in order to maximize the average overall rate. Optimization is done nu-
merically due to the complexity of the rate expression.We shall show in
Section II-D that, as expected, having more 0’s than 1’s indeed yields
a better overall rate for most cases where d > 0, though this is not al-
ways true.

Bender andWolf [5], [9] analyzed the performance of the bit stuffing
algorithm by deriving an expression for its average asymptotic rate. We
limit our discussion to a finite k and follow the methods of their deriva-
tion. We will later show that an infinite k is not of interest to our work
due to the optimality of bit stuffing for this case. We start by modeling
the constrained (d; k) sequences by a one-state constraint graph, de-
picted in Fig. 3(a). The edges in our graph represent the allowable runs
of consecutive 0’s followed by a 1. In order to get a description of the
corresponding biased input data sequences we remove the stuffed 0’s
and 1’s and obtain the graph in Fig. 3(b).

We can now calculate the average rate of the constrained encoder
component. Having assumed that the biased sequence is i.i.d. Ber(p),
the average input length is

Lin =

k�d�1

j=0

(j + 1)pj(1� p) + (k � d)pk�d =
1� pk�d

1� p

for all p such that 0 � p < 1, and the average output length is

Lout = Lin + d+ p
k�d

:

Therefore, the asymptotic average information rate of the algorithm is

I(p; d; k) =
Lin

Lout
� h(p) =

(1� pk�d)h(p)

1� pk�d+1 + d(1� p)

for all p such that 0 � p < 1 and I(p; d; k) = 0 for p = 1.
Bender and Wolf [5], [9] used this expression to obtain a charac-

terization of all cases where the bit stuffing algorithm is optimal, i.e.,
its maximum average rate equals the capacity of the (d; k) constraint.
Their results are summarized in the following proposition.

Proposition 1: The bit stuffing algorithm for (d; k) constraints is
optimal for the following cases:

• k = d + 1 for all d � 0,
• k = 1 for all d � 0.

It is not optimal for all other values of d and k.

For the remaining suboptimal cases, numerical optimization of the
average rate shows that bit stuffing codes achieve rates that are very
close to capacity. Thus, the algorithm is said to be nearly optimal for
these cases. For detailed results see [9].

Fig. 4. Edge probabilities for maxentropic (d; k) sequences.

Fig. 5. Edge probabilities for the (2; 4) maxentropic measure.

B. Motivating Example—Maxentropic Measure for the (2; 4) Case

In this subsection we demonstrate an example that triggered the de-
velopment of the bit flipping algorithm. Before we go through the ex-
ample we need to introduce the notion of the maxentropic measure.
Consider a constraint graph where we assign nonzero probabilities

to the labeled edges leaving each state, thus producing an informa-
tion source. A result by Shannon [3] states that for any such graph
one can always assign certain probabilities to the edges at each state,
such that the resulting information source has maximum entropy. This
set of probabilities can be computed by formulas that Shannon pre-
scribed and is called themaxentropic measure. Shannon further showed
that this maximum entropy is equal to the capacity of the constrained
system. Applying Shannon’s result to (d; k) constraints (see [1] for a
complete derivation) yields the probabilities shown in Fig. 4, where
�d;k = 2C(d;k).
Recently, Wolf [6] proposed a modification to bit stuffing based

on Shannon’s result. He showed that the modified scheme achieves
rates that are equal to capacity for all values of d and k. The idea is
to let the constrained encoder realize the maxentropic measure by
feeding it with several distinct biased streams. For example, when k

is finite we have states d; d + 1; . . . ; k � 1 with two edges exiting
from each state, while the other states have only one exiting edge.
Each pair of emanating edges corresponds to a random bit with a
certain bias. The single edges correspond to stuffed bits. Denote the
maxentropic probability when moving from state i to state i + 1 by
pi, then pi = 1 for i = 0; 1; . . . ; d � 1; k. We first “break” the unbi-
ased data into k � d distinct streams, denoted Sd; Sd+1; . . . ; Sk�1,
and input the streams into k � d different distribution transformers
with biases pd; pd+1; . . . ; pk�1. Note that each stream is fed into
exactly one of the transformers. This results in k � d biased streams,
S�d ; S

�

d+1; . . . ; S
�

k�1, with biases pd; pd+1; . . . ; pk�1, respectively.
Having multiple biased streams, the constrained encoder takes a bit
from stream S�i when in state i. Clearly, the encoded sequences have
maximum entropy.
Let us look at the maxentropic measure for the (2; 4) case, shown in

Fig. 5. Denote the probability of moving from state 2 to state 3 by p�.
It turns out (as will be confirmed in Section III) that the probability of
moving from state 3 to state 4 equals 1�p�, where p� � 0:5699. This
special property suggests that in this case we do not need two distri-
bution transformers in order to achieve capacity. We can use a single
transformer with (0) = p� and modify the bit stuffing algorithm to
obey the following rule.

• If the current run length equals 2 then write the next biased bit.

2888 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

Fig. 6. Graph description of a possible bit flipping encoder for the (d; k)
constraint.

• If the current run length equals 3 then write the complement of
the next biased bit, i.e., flip the next biased bit.

In other words, flip the biased bit only when in state 3.
Recall that bit stuffing is not optimal in the (2; 4) case. Yet, the addi-

tion of bit flipping resulted in an optimal algorithm in this case. Thus, at
least in this case, a conditional bit flipping improves the performance of
bit stuffing with only a single transformer. This observation motivated
us to examine whether we could do better by flipping in the general
case. We generalize the flipping idea and analyze the resulting algo-
rithm in the subsection to follow.

C. The Bit Flipping Algorithm

Consider the case where k is finite and k � d + 2 and let l be an
integer such that d + 1 � l � k � 1. Suppose we run the bit stuffing
algorithm using a single distribution transformer. We modify the logic
of the constrained encoder in the following manner.

• If the current run length is smaller than l then write the next
biased bit

• If the current run length is greater than or equal to l then flip the
next biased bit before writing.

In other words, flip the biased bit starting from state l.The bit flipping
algorithm is illustrated by the constraint graph in Fig. 6.

Four interrelated questions arise. What is the optimal flipping posi-
tion? For which constraints can we improve bit stuffing rate by flip-
ping? Can we achieve capacity for more constraints using flipping? If
not, how far from capacity are we? In the rest of this correspondence
we settle these four questions. This subsection and Section II-D deal
with the first two questions. Section III addresses the latter two.

We first derive an expression for the average rate. When flipping a
bit starting from state l, the average biased input length is

Lin =

l�d�1

j=0

(j + 1)pj(1� p)

+

k�l�1

j=0

(l� d+ j + 1)pl�d(1� p)jp

+ (k � d)pl�d(1� p)k�l

=
1� pl�d

1� p
+ p

l�d�1(1� (1� p)k�l)

and the average output length is

Lout = Lin + d+ p
l�d(1� p)k�l:

The asymptotic overall average rate R(p; l; d; k) is given by

R(p; l; d; k) =
Lin

Lout
� h(p)

=
h(p)

1 + d+p (1�p)
L

=
pl�d�1(1� 2p� (1� p)k�l+1) + 1 h(p)

pl�d�1 (1� 2p� (1� p)k�l+2) + 1 + d(1� p)

for all p such that 0 � p < 1 and for all l such that d + 1 � l � k,
and byR(p; l; d; k) = 0 for p = 1. Note that the rate of the bit stuffing
algorithm, where no flipping occurs, is a special case of this expression
with l = k, i.e., R(p; k; d; k) = I(p; d; k).
Our main goal is to show that under certain conditions the proposed

algorithm can achieve a better average rate than bit stuffing. However,
the next lemma suggests a more extensive result. It states that when
using a transformer with a bias greater than 0:5, state k � 1, i.e., one
state before the last, is always the optimal state for flipping. A spe-
cial case of this result is that R(p; k; d; k) < R(p; k � 1; d; k) when
0:5 < p < 1. In other words, when l is set to k � 1, the bit flipping
algorithm performs better than bit stuffing for the constraints given in
Lemma 2. As one can observe in the proof, it is actually straightforward
to prove this special case. Nonetheless, we are looking for the best pos-
sible performance. Moreover, finding that the optimal flipping position
is always k� 1 provides a simple and general formulation of the algo-
rithm, which is independent of d and k for the considered cases.

Lemma 2: Let d � 1, d+ 2 � k <1, and 0:5 < p < 1. Then

R(p; l; d; k) < R(p; k � 1; d; k)

for all l such that d + 1 � l � k � 2 or l = k.
Proof: Define

Al =
d+ pl�d(1� p)k�l

Lin

=
d+ pl�d(1� p)k�l

1� pl�d + (1� p)pl�d�1(1� (1� p)k�l)
(1� p):

Then we can write

R(p; l; d; k) =
h(p)

1 + Al

:

Clearly, Al � 0 for all d + 1 � l � k. Therefore, Ai > Aj if
and only if R(p; i; d; k) < R(p; j; d; k). We now show that Ak�1 is
strictly smaller than any other Al. First observe that Ak�1 < Ak for
any 0:5 < p < 1, as can be seen directly from the simplified forms

Ak =
d+ pk�d

1� pk�d
(1� p)

and

Ak�1 =
d+ pk�d�1(1� p)

1� pk�d
(1� p):

In order to prove thatAk�1 < Al for any d+1 � l < k�1 and 0:5 <
p < 1 it suffices to show that Al < Al�1 for any d+ 2 � l � k � 1.
It is easy to verify that the denominators of

Al =
[d+ pl�d(1� p)k�l](1� p)

1� pl�d + (1� p)pl�d�1(1� (1� p)k�l)

and

Al�1 =
[d+ pl�d�1(1� p)k�l+1](1� p)

1� pl�d�1 + (1� p)pl�d�2(1� (1� p)k�l+1)

are both positive for any 0 � p < 1 and any d+1 � l � k. Therefore,
multiplying the inequality Al < Al�1 by the product of the two de-
nominators and dividing by (1�p)we obtain the following equivalent
inequality:

(d+ p
l�d(1� p)k�l)

� (1� p
l�d�1 + (1� p)pl�d�2(1� (1� p)k�l+1))

< (d+ p
l�d�1(1� p)k�l+1)

� (1� p
l�d + (1� p)pl�d�1(1� (1� p)k�l)): (1)

For any 0:5 < p < 1, inequality (1) reduces to

(1� p)k�l�1[(1� p)d+ p(1� p
l�d)] < d: (2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2889

Fig. 7. Graph description of an optimal bit flipping encoder for the (d; k)
constraint.

Now, observe that for any 0:5 < p < 1 the expression in the square
brackets is a convex combination of d and 1 � pl�d. Also, note that
1 � pl�d < 1 � d. Hence,

(1� p)d+ p(1� p
l�d) < d:

Since l � k � 1 and 0:5 < p < 1, we have

0 � (1� p)k�l�1 � 1

implying that inequality (2) holds for any d � 1, l � k � 1, and
0:5 < p < 1, as desired.

Looking at the graph in Fig. 7, we can interpret this result as follows.
At each of the states d; d+1; . . . ; k� 2, we would rather have a 0 and
move to the right than have a 1 and move back to state 0, where we
would have to stuff d > 0 bits. However, this is no longer the case
when at state k � 1. Having a 0 will result in d + 1 stuffed bits as
opposed to d stuffed bits due to a 1. In this case, we prefer to go back
to state 0 rather than move to the right, a preference reflected in the bit
flipping.

Also, note that this result holds only for p > 0:5 and in fact is not
true for p < 0:5. However, the former suffices for our purposes, as we
will show later that the optimal bias for bit stuffing is greater than 0:5
for all cases considered but one.

D. Performance Improvement

Recall that the bit stuffing algorithm achieves capacity for the (d;1)
and (d; d+1) constraints for any d and is suboptimal for all other cases.
Therefore, there is room for performance improvement for all (d; k)
constraints such that d + 2 � k < 1 and d � 0. In this subsection,
we prove that the bit flipping algorithm achieves a higher rate than bit
stuffing for the majority of these constraints.

As mentioned earlier, the result of Lemma 2 is limited to trans-
formers with a bias greater than 0:5. Since the optimal bias for bit
stuffing may be smaller than 0:5, Lemma 2 does not guarantee that flip-
ping at state k�1 is superior to bit stuffing. Because of the complexity
of the bit stuffing rate derivative, we cannot find an explicit form for the
optimal bias. Instead, in the next sequence of lemmas we examine the
rate derivative to show that the optimal bias for bit stuffing is indeed
greater than 0:5 for the following (d; k) pairs:

• d + 3 � k < 1 and d � 1,
• k = d + 2 and d � 2.

This result together with Lemma 2 guarantees performance improve-
ment in these cases.

Lemma 3: Let 0 < p � 0:5, d � 1, and d+ 3 � k <1, then

dI(p; d; k)

dp
> 0:

Proof: Consider the bit stuffing rate derivative

dI(p; d; k)

dp
=

d (1�p)h(p)

dp
f(p)�

d f(p)

dp
[(1� pk�d)h(p)]

(f(p))2

where f(p) = 1 � pk�d+1 + d(1 � p). We denote the derivative’s
numerator by I 0num(p) and shall show that I 0num(p) > 0 for all

0 < p � 0:5, d � 1, and k � d � 3. By rearranging terms we can
rewrite

I
0

num(p) =h(p) � �(k � d)pk�d�1[1� p
k�d+1 + d(1� p)]

+ [(k � d+ 1)pk�d + d](1� p
k�d)

+
dh(p)

dp
� 1� p

k�d+1 + d(1� p) (1� p
k�d):

DefiningA = 1�pk�d+1+d(1�p),B = (k�d+1)pk�d+d, and
C = 1� pk�d, we see that A;B;C > 0 for all 0 < p � 0:5, d � 1,
k � d � 3, and

I
0

num(p) = h(p) � (k � d)pk�d�1
A+BC +

dh(p)

dp
AC:

Now, dh(p)
dp

� 0; 8 0 < p � 0:5, implying that dh(p)
dp

AC � 0.
Hence, since h(p) > 0 we need only show that

[�(k � d)pk�d�1
A+BC] > 0 (3)

for the given values of p, k, and d. Writing the latter expression explic-
itly and rearranging terms yields

[�(k � d)pk�d�1
A+BC]

= p
k�d (k � d� 1)(d+ 1) + 2� p

k�d

+ d� p
k�d�1(k� d)(d+ 1)

> 0:

We distinguish between two cases: k � d � 4 and k � d = 3.
In the first case, we use the fact that

(k � d� 1)(d+ 1) + 2� p
k�d

� 3� 2 + 2�
1

16
> 0

hence,

p
k�d[(k� d� 1)(d+ 1) + 2� p

k�d] > 0;

8 0 < p � 0:5; d � 1; k � d � 4:

It follows that showing that d � pk�d�1(k � d)(d + 1) � 0 will
guarantee that inequality (3) holds. Define l = k� d; then, we want to
prove that lpl�1(d+ 1) � d or

lp
l�1

�
d

d+ 1
; 8 l � 4: (4)

We first consider the derivative of the left-hand side of inequality (4)

d(lpl�1)

dl
= p

l�1 + lp
l�1 ln(p) = p

l�1 1� l ln
1

p
:

For any 0 < p � 0:5 we have 0:693 � ln(2) � ln(1
p
) < 1, which

implies that l ln(1
p
) > 1 and d(lp)

dl
< 0. Consequently, for any

0 < p � 0:5 and any l � 4 we have

lp
l�1

� 4p3 � 4p3

p=

=
1

2
:

The right-hand side of inequality (4) is lower-bounded by 1
2
for all

d � 1, yielding

lp
l�1

�
1

2
�

d

d+ 1
; 8 d � 1; l � 4; 0 < p � 0:5:

In the second case, we assign k � d = 3 in the left-hand side of
inequality (3) and get

[�(k � d)pk�d�1
A+BC] = d[1 + 2p3 � 3p2] + 4p3 � p

6
� 3p2:

2890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

Since 1 + 2p3 � 3p2 is positive for all 0 < p � 0:5, then inequality
(3) holds if and only if 3p +p �4p

1+2p �3p
< d. Instead, we show that

3p2 + p
6 � 4p3 < 1 + 2p3 � 3p2 (5)

resulting in

3p2 + p6 � 4p3

1 + 2p3 � 3p2
< 1 � d:

Differentiating both sides of inequality (5) we observe that for 0<p�
0:5, the left-hand side is an increasing function of p and the right-hand
side is a decreasing function of p. Therefore,

3p2 + p
6 � 4p3 � [3p2 + p

6 � 4p3]
p=

=
17

64

<
1

2

= [1 + 2p3 � 3p2]
p=

� 1 + 2p3 � 3p2

confirming inequality (3).

Lemma 4: Let 0 < p � 0:5, d � 2, and k � d = 2, then

dI(p; d; k)

dp
> 0:

Proof: We proceed along the lines of the preceding proof and
want to show that

[�(k � d)pk�d�1
A +BC] > 0

for the given values of p, k, and d. For k � d = 2 we need to show
that d(1 � p)2 + 3p2 � 2p � p4 > 0. Now, for 0 < p � 0:5 and
d � 2 we have the following inequalities: d(1 � p)2 � d

4
� 1

2
,

� 1
3
� 3p2 � 2p < 0, and � 1

16
� �p4 < 0. Combining the three

inequalities we conclude that

d(1� p)2 + 3p2 � 2p� p
4 �

1

2
�

1

3
�

1

16
> 0:

We are now ready to conclude that the optimal bit stuffing bias is
strictly greater than 0.5 for the above mentioned (d; k) pairs.

Lemma 5: Let (d; k) satisfy one of the following conditions:

1) d + 3 � k < 1 and d � 1,
2) k = d + 2 and d � 2.

Then

max
0�p�1

I(p; d; k) = I(p�; d; k)

for some p� 2 (0:5; 1).
Proof: It is easy to verify that the bit stuffing rate function

I(p; d; k) is continuous in p on the compact set [0; 1]. Thus, it attains
a maximum somewhere in that set. The maximum must be attained for
some p� 2 (0; 1) since I(p; d; k) = 0 for p 2 f0; 1g and is strictly
positive for any p 2 (0; 1). The rate derivative exists in the set (0; 1),
hence, a necessary condition for a maximum at p� 2 (0; 1) is that
dI(p;d;k)

dp
(p�) = 0. Lemmas 3 and 4 show that dI(p;d;k)

dp
> 0 for any

0 < p � 0:5, thus implying that the maximum is attained for some
p� > 0:5.

This result brings us back to our discussion in Section II-A. As said,
each 1 we encounter results in d stuffed 0’s, while only k � d consec-
utive 0’s result in d+1 stuffed bits, or d+1

k�d
stuffed bits per biased 0. It

seems that the asymmetry between d+1
k�d

and d determines the best bias.
We would expect that whenever d+1

k�d
< d then inputting fewer 1’s will

result in fewer stuffed bits and in a better overall rate. Indeed, d+1
k�d

� d

if and only if d > 0 and k � d > 1, with equality only when d = 1
and k � d = 2. For all other cases d+1

k�d
> d. Thus, a transformer that

biases the data toward more 0’s (p > 0:5) would perform better and
the optimum is achieved for p > 0:5. The case (1; 3) is not covered
by these arguments but can be analyzed explicitly. Also, note that the
optimal bit flipping bias may differ from the optimal bit stuffing bias.
Nonetheless, once bit flipping performs better than bit stuffing’s best
performance, then optimizing the bit flipping rate may even further im-
prove its performance.
We are finally in a position to state the main result of this section.

We show that for all d � 1 and d + 2 � k < 1, flipping the biased
bit at state k � 1 strictly improves upon bit stuffing.

Theorem 6: Let p�; p�� 2 [0; 1] be the optimal biases for the bit
stuffing and the bit flipping algorithms, respectively. Then for all d � 1
and d + 2 � k < 1 the following holds:

I(p�; d; k) < R(p��; k � 1; d; k):

Proof: Combining Lemmas 2 and 5 we obtain that

I(p�; d; k)=R(p�; k; d; k)<R(p�; k� 1; d; k)�R(p��; k� 1; d; k)

for all d+3 � k <1 and d � 1 and for k = d+2 and d � 2. It is left
to examine the case of the (1; 3) constraint. In this case, we numerically
optimize both algorithms’ rate functions and obtain the following op-
timal biases and optimal rates: p� = 0:4906 and I(p�; d; k) = 0:5456
versus p�� = 0:5557 and R(p��; k � 1; d; k) = 0:5501.

The result of Theorem 6 is reasonable since the asymmetry between
d+1
k�d

and d still dictates a biasing of the input data toward more 0’s.
However, the option of flipping allows for more flexibility when fitting
the data to the constraint. It enables us to change our preference at a
certain state. Indeed, when reaching a run length of k� 1 we can save
a single stuffed bit by having a 1 versus a 0. Consequently, this changes
our preferences in favor of 1’s at this state and the opportunity to do so
results in an improved rate.
We would like to point out that the case where d = 0 was not dealt

with in Theorem 6. In this case, it is easy to show that bit stuffing is
optimal for p� 2 (0; 0:5) and that there is no bias for which the bit
flipping algorithm can improve on the bit stuffing optimum. This obser-
vation agrees with the intuitive reasoning that was given for Lemma 5
and Theorem 6.

III. OPTIMALITY OF THE BIT FLIPPING ALGORITHM

In this section, we characterize the constraints for which the bit flip-
ping algorithm is optimal. We shall prove that, as numerical evidence
suggests, bit flipping is optimal for the (2; 4) constraint. Moreover,
we shall find that this is the only optimal case. We conclude with per-
formance results for the (2; 4) case and for some selected suboptimal
constraints.
Recall that an algorithm is optimal if itsmaximumaverage rate equals

the capacity of the constraint. In this case, the resulting (d;k) sequences
havemaximumentropy thatequals thecapacityC(d;k), andare referred
to as maxentropic sequences. A well-known property of maxentropic
(d; k) sequences is that the probability of a run of i 0’s followed by a 1 is
equal to��(i+1)d;k . This property follows from results of Shannon [3] and
of Zehavi and Wolf [10]. We use it in the proof of the next theorem,
which outlines a complete characterization of optimal cases.

Theorem 7 : Let d � 0 and d+ 2 � k <1. Then the bit flipping
algorithm is optimal if and only if d = 2 and k = 4.

Proof: Let us parse the encoded (d; k) sequence into a concate-
nation of (possibly empty) runs of 0’s followed by a single 1. Let Xi

be a random variable denoting the length of the ith phrase in the parsed

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005 2891

TABLE I
SIMULATION RESULTS FOR OPTIMAL PERFORMANCE OF BIT STUFFING VERSUS BIT FLIPPING FOR SOME (d; k) CONSTRAINTS

sequence. As mentioned earlier, the bit flipping algorithm is optimal if
and only if it generates maxentropic (d; k) sequences. These sequences
must satisfy the following properties [1], [3], [10].

1) The Xi’s are i.i.d.
2) (X = i) = �

�i
d;k , where �d;k = 2C(d;k).

We start with the case where d + 2 < k < 1 and then proceed to
deal with k = d + 2.

We now use the bit flipping graph description in Fig. 7 for d+ 2 <

k <1 in order to translate these optimality properties to the following
set of k � d + 1 equations:

(X = i) = pi�d�1 � (1� p) = ��id;k

(X = k) = pk�d�1 � p = ��kd;k

(X = k + 1) = pk�d�1 � (1� p) = �
�(k+1)
d;k

where d+ 1 � i � k � 1. The first k � d� 1 equations yield
(X = i+ 1)

(X = i)
= p =

1

�d;k
; 8 d+ 1 � i � k � 2: (6)

Dividing the equation for i = k by the equation for i = k � 1 yields
(X = k)

(X = k � 1)
=

pk�d

pk�d�2(1� p)
=

p2

1� p
=

1

�d;k
: (7)

Combining (6) and (7) we have
p2

1� p
=

1

�d;k
= p

, p(2p� 1) = 0

, p = 0 or p =
1

2
:

Since p = 0 results in zero entropy and zero rate then we are left with
p = 1

2
. However, p = 1

2
implies �d;k = 2, which contradicts k being

finite. Consequently, the bit flipping algorithm is never optimal when
d + 2 < k < 1.

We now refer to the graph in Fig. 7 as it appears for the special case
of k = d + 2. An argument similar to that at the beginning of the
proof shows that the bit flipping algorithm is optimal if and only if the
following three equations hold:

(X = d+ 1) = 1� p = �
�(d+1)
d;k

(X = d+ 2) = p� p = �
�(d+2)
d;k

(X = d+ 3) = p� (1� p) = �
�(d+3)
d;k :

The first two equations reduce to

p = 1� �
�(d+1)
d;k

p = �
�

d;k

, 1� �
�(d+1)
d;k = �

�

d;k

, �
d+1
d;k � �d;k � 1 = 0:

We now plug the two expressions we have for p into the third equation
and get

�
�

d;k � �
�(d+1)
d;k = �

�(d+3)
d;k

, �
�(d+3)
d;k � [1� �

� +1

d;k] = 0

, �d;k = 0 or �
� +1

d;k = 1:

Since �d;k 2 (1; 2)we are left with �
� +1

d;k = 1, which requires� d

2
+

1 = 0 or d = 2. Consequently, the bit flipping algorithm produces an
optimal code if and only if d = 2, k = d+ 2 = 4, and �d;k is a root
of zd+1 � z � 1.
It remains to show that �d+1d;k � �d;k � 1 = 0 in the (2; 4) case, i.e.,

�32;4 � �2;4 � 1 = 0. Recall that �d;k is the largest real root of the
characteristic polynomial Pd;k(z), which for a finite k takes the form

Pd;k(z) = z
k+1

�

k�d

j=0

z
j
:

When d = 2 and k = 4 we can factor P2;4(z) and write it as

P2;4(z) = z
5
� z

2
� z � 1 = (z3 � z � 1)� (z2 + 1):

Since �d;k is real, then it must be a root of z3�z�1, which completes
the proof.

For the remaining suboptimal cases we can numerically optimize the
rates of both algorithms. Table I shows optimal average rates for the bit
stuffing and the bit flipping algorithms for a number of constraints. Also
shown are the corresponding optimal biases (i.e., the probability of a
0), the capacity of each constraint, and the relative performance of the
algorithms.

REFERENCES

[1] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299, Oct.
1998.

[2] B. H. Marcus, P. H. Siegel, and J. K. Wolf, “Finite-state modulation
codes for data storage,” IEEE J. Select. Areas Commun., vol. 10, no.
1, pp. 5–37, Jan. 1992.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

[4] P. Lee, “Combined error-correcting/modulation recording codes,” Ph.D.
dissertation, Univ. California, San Diego, La Jolla, CA, 1988.

[5] P. E. Bender and J. K. Wolf, “A universal algorithm for generating op-
timal and nearly optimal run-length-limited, charge constrained binary
sequences,” in Proc. IEEE Int. Symp. Information Theory, San Antonio,
TX, Jan. 1993, p. 6.

[6] J. K. Wolf, “An information theoretic approach to bit stuffing for net-
work protocols,” in Proc. 3rd Asia-Europe Workshop on Information
Theory, Kamogawa, Japan, Jun. 2003, pp. 18–21.

[7] N. Abramson, Information Theory and Coding. New York: McGraw-
Hill, 1963.

[8] C. B. Jones, “An efficient coding system for long source sequences,”
IEEE Trans. Inf. Theory, vol. IT-27, no. 3, pp. 280–291, May 1981.

[9] P. E. Bender, “Redundancy re-organization for the magnetic channel,”
Ph.D. dissertation, Univ. California, San Diego, La Jolla, CA, 1992.

[10] E. Zehavi and J. K.Wolf, “On runlength codes,” IEEE Trans. Inf. Theory,
vol. 34, no. 1, pp. 45–54, Jan. 1988.

