Error Event Characterization and Coding for the Equalized Lorentzian Channel

Bruce E. Moision	$\operatorname{Paul} \operatorname{Siegel}^1$
$\mathbf{ECE},\ 0407$	$\mathbf{ECE},\ 0407$
University of California, San Diego	University of California, San Diego
La Jolla, CA 92093-0407	La Jolla, CA 92093-0407
bmoision@ucsd.edu	psiegel@cwc.ucsd.edu

Emina Soljanin Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974 emina@research.bell-labs.com

Abstract — Coding methods to enhance the performance of sequence estimators for an intersymbol interference (ISI) channel are presented. The ISI channel considered is modeled with a Lorentzian step response, and equalized to a finite-duration, discrete impulse response. The coding follows from a characterization of the dominant error events for a suboptimal sequence estimator which uses a Euclidean distance metric for detection of a signal in colored noise.

I. INTRODUCTION

The performance of a sequence detector for an ISI channel may be enhanced by eliminating the dominant error events via a constrained code that forbids a set of input sequences[1]. In [2], the dominant error events were characterized assuming the equalized signal has a white Gaussian noise component. In this paper, the problem of characterizing the dominant error events in colored noise is treated. The error event characterization motivates the construction of distance-enhancing codes.

II. CHANNEL MODEL

Assume the input to the channel is a binary sequence, $a_n \in \{0, 1\}$, and the detector receives a discrete sequence r(D),

$$r(D) = a(D)x(D) + n(D)$$

where x(D) is a finite duration target response and n(D)is a zero mean, Gaussian random process with autocorrelation sequence $\phi_{nn,k}$. The detector chooses an estimate of the transmitted sequence closest to the received sequence in Euclidean distance, $\hat{a}(D) = \arg\min_{b(D)} ||r(D) - x(D)b(D)||^2$. The probability of a symbol error for this estimate may be upper bounded by application of the union bound [3].

$$Pr(symbol\ error) \leq \sum_{\varepsilon_a(D)} w[\varepsilon_a(D)] Q\left(\frac{1}{2} \sqrt{\frac{(\varepsilon_y^T \varepsilon_y)^2}{\varepsilon_y^T R_{nn} \varepsilon_y}}\right)$$

where $w[\varepsilon_a(D)]$ is a weighting factor for the event, $\varepsilon_y(D) = a(D)x(D) - \hat{a}(D)x(D) = \varepsilon_a(D)x(D)$, $Q(\cdot)$ is the error function, and \mathbf{R}_{nn} is the autocorrelation matrix of n(D). Define the squared argument of the Q function as the effective distance, d_{eff}^2 .

III. ERROR EVENT CHARACTERIZATION

The performance of the sequence estimator at high SNR is determined by the error sequences ε_a with small effective distance. Using the relation

$$\{oldsymbol{arepsilon}_a | d_{eff}^2 \leq K_d\} \subseteq \{oldsymbol{arepsilon}_a | oldsymbol{arepsilon}_y^T oldsymbol{arepsilon}_y \leq K_d K_\lambda\},$$

where K_{λ} is an upper bound on $\frac{\varepsilon_y^T \boldsymbol{R}_{nn} \varepsilon_y}{\varepsilon_y^T \varepsilon_y}$, one can form the set $\{\varepsilon_a | d_{eff}^2 \leq K_d\}$ by searching over all sequences with $\varepsilon_y^T \varepsilon_y \leq K_d K_{\lambda}$ and discarding sequences with $d_{eff}^2 \geq K_d$. A similar approach was described in [4].

The search was performed for a target response which has been proposed for use on the Lorentzian channel, $x_{EPR4}(D) = (1-D)(1+D)^2$. For a Lorentzian channel at density $\beta = 2.5$ equalized to the target x_{EPR4} , the dominant error event is $\varepsilon_a = + - + (-+)000$, with $d_{eff}^2 = .36$.

IV. CODING TO IMPROVE PERFORMANCE

We constrain the inputs to the channel to prevent minimum effective distance events. The constrained input, denoted $X_{\mathcal{F}}$, is described by a set of forbidden strings $\mathcal{F} = \{\omega_1, \omega_2, \cdots\}$ over the input alphabet. For example, the constraint $X_{\mathcal{F}=\{01010,10101,101000,010111\}}$, with capacity $C \approx .913$, eliminates the event $\varepsilon_a = + - + (-+)000$, increasing the minimum effective distance to $d_{eff}^2 = .42$, corresponding to the event $\varepsilon_a = +0(+0)00$. Applying the constraint to the input of the channel will yield an asymptotic coding gain $ACG = 10log_{10}(.36/.42) \approx .67dB$. Simulation results confirm that the coded system exhibits the expected gain at a symbol error rate of 10^{-5} .

V. CONCLUSION

The techniques presented may be used to form the set of dominant error events for a Euclidean distance metric sequence estimator with possibly colored noise at the input. An interesting result is that a constrained code which provides no coding gain in white noise may provide coding gain in colored noise.

References

- R. Karabed and P.H. Siegel, "Coding for Higher Order Partial Response Channels," Proc. 1995 SPIE Int. Symp. on Voice, Video, and Data Comm., Philadelphia, PA, Oct. 1995, vol. 2605, pp. 115-126.
- [2] S. A. Altekar, M. Berggren, B. E. Moision, P. H. Siegel, and J. K. Wolf, "Error-event characterization on partial-response channels," *Proc. 1997 IEEE Int. Sym. on Info. Theory*, Ulm, Germany, June 29-July4, 1997.
- [3] L. C. Barbosa, "Maximum likelihood sequence estimators: A geometric view," *IEEE Trans. Info. Theory*, vol. IT-35, pp. 419-427, Mar. 1989.
- [4] S. Altekar, Detection and Coding Techniques for Magnetic Recording Channels, Ph.D. dissertation, University of California, San Diego, September 1997.

 $^{^1\,\}rm This$ work was supported in part by NSF Grant NCR-9612802 and by UC MICRO Grant 97-160 in cooperation with Marvell Semiconductors, Incorporated.