
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014 933

Lattice-Based WOM Codes for
Multilevel Flash Memories

Aman Bhatia, Minghai Qin, Aravind R. Iyengar, Brian M. Kurkoski, and Paul H. Siegel

Abstract—We consider t-write codes for write-once memo-
ries with n cells that can store multiple levels. Assuming an
underlying lattice-based construction and using the continuous
approximation, we derive upper bounds on the worst-case sum-
rate optimal and fixed-rate optimal n-cell t-write write-regions
for the asymptotic case of continuous levels. These are achieved
using hyperbolic shaping regions that have a gain of 1 bit/cell
over cubic shaping regions. Motivated by these hyperbolic write-
regions, we discuss construction and encoding of codebooks
for cells with discrete support. We present a polynomial-time
algorithm to assign messages to the codebooks and show that
it achieves the optimal sum-rate for any given codebook when
n = 2. Using this approach, we construct codes that achieve high
sum-rate. We describe an alternative formulation of the message
assignment problem for n ≥ 3, a problem which remains open.

Index Terms—Write-Once Memories, WOM Codes, Rewriting
Codes, Flash Memories, Lattices

I. INTRODUCTION

THE STUDY of write-once memory (WOM) codes was
motivated by various applications in the field of data

storage [1], [2]. More, recently, they have been proposed as a
lifetime-enhancing method for flash memories. Flash memory
stores information in the form of charge in a floating gate
transistor, referred to as a cell. While increasing the charge
level of an individual cell is a simple program operation
with low latency, decreasing the level of a cell requires a
complex erase operation on a large block of cells that also
decreases the lifetime of the device. WOM codes can be used
to write information multiple times before an erase operation
is required, thereby enhancing the lifetime of the device [3],
[4], [5].

Considerable progress has been made in the last few years in
the study of binary WOM code constructions for single-level

Manuscript received May 15, 2013; revised October 1, 2013 and December
10, 2013. B. M. Kurkoski’s work was supported by the Ministry of Education,
Science, Sports and Culture; Grant-in-Aid for Scientific Research (C) number
23560439. The work of other authors was supported by National Science
Foundation Grant CCF-1116739, UC Lab Fees Research Program Award No.
09-LR-06-118620-SIEP and the Center for Magnetic Recording Research.
This paper was presented in part at the 34th Symposium on Information
Theory and Applications, Ousyuku, Iwate, Japan, Nov. 29 – Dec. 2 2011; the
Non-Volatile Memories Workshop, San Diego, CA, USA, Mar. 4–6, 2012;
the 2012 IEEE Information Theory Workshop, Lausanne, Switzerland, Sept.
3–7, 2012 and the IEEE International Symposium on Information Theory and
its Applications, Honolulu, HI, USA, Oct. 28–31, 2012.

A. Bhatia, M. Qin, and P. H. Siegel are with the University of Califor-
nia, San Diego, La Jolla, CA 92093-0401, USA (e-mail: {amanbh, mqin,
psiegel}@ucsd.edu).

A. R. Iyengar was with the University of California, San Diego. He is now
with Qualcomm Technologies Inc., Santa Clara, CA 95051, USA (e-mail:
ariyengar@qti.qualcomm.com).

B. M. Kurkoski is with the Japan Advanced Institute of Science and
Technology, Nomi, Ishikawa 923-1292, Japan (e-mail: kurkoski@jaist.ac.jp).

Digital Object Identifier 10.1109/JSAC.2014.140513.

cell (SLC) flash memory devices where each cell supports
q = 2 levels [3], [5], [6]. However, to increase storage
densities, future flash memory devices are expected to support
a large number of cell levels, continuing the trend seen with
the use of MLC and TLC devices that support 4 and 8
levels, respectively. This has motivated a body of work on the
construction of WOM codes for multilevel cells that support
q ≥ 3 levels [7], [8], [9], [10], [11]. The capacity of rewrite
codes for t writes on q-ary cells is known to be log2

(
q+t−1
q−1

)
[12], although explicit characterization of the capacity region
remains an open problem.

In this paper, we consider the construction of lattice-based
WOM codes for t writes on q-level cells. Lattice-based 2-
write WOM codes over n cells in the asymptotic setting of
continuous cell levels were derived in [11] for the fixed-rate
scenario, where the cardinality of the message set is the same
on each write. Allowing the cardinality of the message set on
each write to be different can increase the sum-rate. Using
a continuous approximation approach, it was hypothesized
in [11] that the hyperbolic shaping regions were optimal for
maximizing sum-rates of two writes over lattices in arbitrary
dimensions. Optimality of hyperbolic shaping regions was
proven in [13] for lattices in n = 2 dimensions when the
number of writes, t, is arbitrary. A proof of optimality was
provided in [14] for the case of an arbitrary number of cells,
n, and t = 2 writes.

Here, we consider the most general case of an arbitrary
number of writes on an arbitrary number of cells where each
cell supports a large number of levels. Using the continuous
approximation approach we prove that hyperbolic shaping
regions are optimal for maximizing the sum-rate. The results
are then extended to the fixed-rate case, a scenario of practical
importance. We also discuss the problem of encoding for
these codes. Encoding requires a consistent assignment of
messages to cell levels that does not depend on the state of
the memory after the previous write. A consistent message
assignment algorithm is optimal if, for any given codebook,
the message set cardinality is the largest possible. We show
that a consistent assignment scheme for a given codebook and
message set cardinality may not always exist when n > 2.
The problem of determining the existence of a consistent
assignment for arbitrary n is shown to be an instance of an
NP-complete problem, but with additional structure introduced
by the geometry of the shaping regions. We exploit this
structure to find an optimal linear-time algorithm for the case
where n = 2. For n ≥ 3, we use a sub-optimal algorithm
for finding consistent assignments. Using these results, we
construct codes that achieve high sum-rates for memories with
multilevel cells.

0733-8716/14/$31.00 c© 2014 IEEE

934 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

The rest of the paper is organized as follows. Section II
formulates the code design problem. In Section III, we extend
ideas presented in [11] and invoke the continuous approxi-
mation to obtain an upper bound on the worst-case sum-rate
optimal t-write regions for n cells and consider its asymptotic
behavior as the number of cells grows large. In Section IV,
we derive the worst-case fixed-rate optimal t-write regions for
n cells. Section V shows that the contribution of the lattice
and shaping regions to the upper bound are separable, and the
shaping gain of hyperbolic shaping regions is given. In Section
VI, we discuss the case where the cells support a finite number
of levels and propose methods for assignment of messages to
cell levels. Finally, we present our conclusions in Section VII.
Proofs of the lemmas and propositions appearing in Sections
III, IV and VI are given in the appendices.

II. LATTICE-BASED WOM CODES

A. Lattices, Lattice Codes and Flash Memories

An n-dimensional lattice Λ is defined by an n-by-n gener-
ator matrix G. The lattice consists of the discrete set of points
x = (x1, x2, . . . , xn) for which

x = b ·G, (1)

where b = (b1, b2, . . . , bn) ∈ Zn is any n-dimensional
integer-valued vector.

The Voronoi region of a point x ∈ Λ is the set of points of
Rn which are closer to x than to any other point x′ ∈ Λ. The
volume of a Voronoi region Vol (Λ) is

Vol (Λ) � |detG| . (2)

A lattice code L is a finite subset of a lattice Λ, described
by a shaping region A ⊂ Rn,

L = Λ ∩ A. (3)

For a thorough treatment of lattices, refer to [15].
The coordinate values of an n-dimensional lattice code may

be stored in n cells of a flash memory. In the most general
case, cell j stores a continuous value between 0 and �j , so that
the stored values in n cells are represented by x ∈ [0, �1] ×
[0, �2] × . . . [0, �n] � A where xj ∈ R, ∀ j = 1, 2, . . . , n. The
volume of region A is ‖A‖ =

∏n
j=1 �j . Allowing arbitrary

�j proves to be helpful in the sequel. However, in the typical
case of a q-ary flash memory, we have �j = q − 1 for all j,
so A = [0, q − 1]n and the codebook is L = Zn

q .

B. WOM Codebooks

Consider a flash memory device with n cells storing values
(x1, x2, . . . , xn) ∈ L such that the level of a cell can only
be increased during a write operation. We consider writing
information in these cells t times before there is a need for a
block erasure.

A t-write WOM code stores Mi messages in n cells in the
worst case at write i, i = 1, . . . , t. The instantaneous rate for
write i and the worst-case sum-rate for the t-write code are

Ri,t =
1

n
log2Mi bits per cell per write, and (4)

Rt =

t∑
i=1

Ri,t bits per cell per erase, respectively. (5)

A lattice-based t-write WOM codebook is defined by a
partition of a lattice code L into t subsets, denoted as
L1,L2, . . . ,Lt. The subset Li is the codebook for write i and
has cardinality |Li|. Note that since these codes have disjoint
codebooks for each write, they are a special case of WOM
codes referred to as synchronized WOM codes in [1].

A point x ∈ L is said to be accessible from another point
s, denoted as x � s, if xj ≥ sj for all j = 1, 2, . . . , n and
s 	= x. Suppose the point stored at write i − 1 is s; then the
set of points that may be stored at write i is

Li(s) � {x ∈ Li : x � s} . (6)

Here, Li(s), the subset of Li accessible from s, may be a
proper subset of the codebook Li. Since the worst-case rate is
of interest, define the codebook cardinality, denoted by Ci, as
the minimum number of points in Li that are accessible from
any point in Li−1,

Ci � min
s∈Li−1

|Li(s)|. (7)

Also define the total codebook cardinality, Πt, as

Πt �
t∏

i=1

Ci. (8)

The state of the memory before the first write is s = 0 and
all points in the codebook L1 are accessible. Thus, M1 = C1.
However, the set of points that may be stored at any other write
i > 1 depends on the point stored on the previous write. As
a result, there may not exist a scheme which can consistently
map Ci messages to points in the codebook Li. In some cases,
then, Mi may be smaller than Ci,

Mi ≤ Ci, (9)
and accordingly each rate Ri,t is upper bounded as

Ri,t ≤
1

n
log2 Ci, (10)

and the worst-case sum-rate is upper bounded as

Rt ≤
1

n
log2 Πt. (11)

Parts of this paper concentrate on maximizing Ci and Πt be-
cause they provide upper bounds on Ri,t and Rt, respectively.
The matter of consistent encoding-decoding is introduced in
the next subsection and is discussed again in Section VI.

C. WOM Encoding and Decoding

The set of messages that can be stored on write i is
Mi � {1, 2, . . . ,Mi}. For given codebooks L1,L2, . . . ,Lt,
the encoder-decoder pair (φ, ψ) is

φ :

t⋃
i=1

(
Mi × Li−1

)
�→ L, ψ : L �→ [t]×

t⋃
i=1

Mi (12)

where [t] � {1, 2, . . . , t} which satisfy

φ(m,x) ∈ Li(x) ∀ m ∈ Mi,x ∈ Li−1, (13)
ψ(x) ∈ {i} ×Mi ∀ x ∈ Li (14)

for i = 1, . . . , t. The condition in (13) implies that on write
i, the t-write code encodes a message by only increasing the
cell levels and the condition in (14) implies that the decoder

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 935

maps every point in Li to a message in Mi. For a consistent
encoder-decoder pair, we will further require

ψ (φ(m,x)) = (i,m) ∀ m ∈ Mi,x ∈ Li−1 (15)

for i = 1, . . . , t. The condition in (15) requires that the
cell levels after write i are decoded to the correct mes-
sage without the knowledge of any of the previous i − 1
writes. Thus, an n-cell t-write code ({Li}, φ, ψ) that satisfies
conditions (13), (14) and (15) achieves worst-case sum-rate
Rt =

1
n

∑t
i=1 logMi.

Sections III and IV only consider the problem of partition-
ing the code L into t codebooks {Li}. Since the value of
Mi cannot be determined without giving a consistent encoder-
decoder scheme, the codebook cardinality, Ci, will be used as
the figure of merit to define sum-rates in Sections III and IV.

D. Continuous Approximation

According to the continuous approximation principle for
dense lattices [16], [17], the number of points in a codebook
L formed using (3) can be approximated as

|L| ≈ ‖A‖
Vol (Λ)

, (16)

where |L| denotes the cardinality of the discrete set L and
‖A‖ denotes the volume of the shaping region A. This
approximation becomes increasingly accurate as the density of
the lattice increases. The use of the continuous approximation
principle for WOM codes was introduced in [11].

WOM codebooks L1, . . . ,Lt may be constructed by par-
titioning A into t write-regions, A1,A2, . . . ,At. To construct
codebooks for cells that support discrete levels, let

Li = L ∩ Ai. (17)

Applying the continuous approximation to the individual
write-regions, the codebook cardinality for the first write is
approximated by

C1 = |L1| ≈
‖A1‖
Vol (Λ)

� V1. (18)

If the state of the memory after write i − 1 is s ∈ Ai−1,
then the set of possible levels that can be written on write i
is

Ai(s) � {x ∈ Ai : x � s}. (19)

Applying the continuous approximation for writes 2, 3, . . . , t,
the codebook cardinality is approximated by

Ci ≈
1

Vol(Λ)
inf

s∈Ai−1

‖Ai(s)‖ � Vi, (20)

and the total codebook cardinality in t writes is approximated
by

Πt ≈
t∏

i=1

Vi � St. (21)

In the following sections, the quantities Vi and St are also
referred to as the codebook cardinality and the total codebook
cardinality, respectively. Since both the lattice and the maxi-
mum cell values �i may be scaled arbitrarily, in Sections III
and IV we assume that Vol (Λ) = 1.

III. OPTIMAL CODEBOOK CARDINALITY

In this section and the next section, we do not design
WOM codebooks directly. Rather, we select shaping regions
A1,A2, . . . ,At and maximize the total codebook cardinality
St. Under the continuous approximation principle, this corre-
sponds to maximizing the upper bound on the worst-case sum
rate (11).

Subsection III-A shows that for t = 2 writes, the optimal
shaping region A1 has a hyperbolic shape. Subsection III-B
extends this result to an arbitrary number of writes t. Sub-
section III-C considers the parameters defining the shaping
regions which provide the optimal total codebook cardinality.
Subsection III-D finds the value of St asymptotic in n, and
gives conditions under which St approaches capacity.

A. Optimal 2-Write Regions

This subsection describes the case where n cells are used to
store information twice before being erased, that is, t = 2. We
will assume that the levels of the cell can only be increased
from a previously written level.

Let B1 be the manifold that forms the boundary between
A1 and A2. Alternatively, for a given boundary B1, A1(B1) is
defined as the closed region bounded by B1 and hyperplanes
xj ≥ 0. The explicit dependence of the region A1 on the given
boundary B1 will be suppressed when the meaning is clear
from the context. With this notation, the codebook cardinality
in the first write is

V1(B1) � ‖A1‖ . (22)

Suppose the state of the memory after the first write is s.
Then, the region that remains available for writing is

A2(s) = {x ∈ A2 : x � s} . (23)

This is a rectangular region with volume
n∏

j=1

(�j − sj), that is

‖A2(s)‖ =

n∏
j=1

(�j − sj) . (24)

In the worst case, the total codebook cardinality with two
writes using n cells is

S2 (B1) = V1 (B1) · V2 (B1) (25)
= ‖A1‖ · inf

s∈A1

‖A2(s)‖ . (26)

This quantity is a function of the boundary B1 alone. We refer
to

B
∗
1 = argmax

B1⊂A

S2 (B1) , (27)

as the optimal boundary for the first write, assuming that the
cells are to be used twice before each erase. The optimal
boundary between the two write regions is known to be a
rectangular hyperbola [14].

Definition III.1: Define H(u) as the region in A enclosed
by an n-dimensional rectangular hyperbola with parameter u,
i.e.,

H(u) �

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) ≥ u · ‖A‖

⎫⎬
⎭ , (28)

with 0 ≤ u ≤ 1.

936 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

x

‖H(u)‖ = Δ(u) · �n

‖{x′ : x′ � x}‖ = u · �n

�(1− u)

�(1− u)

0

�

�

Fig. 1. A 2-dimensional rectangular hyperbola H(u) in region A = [0, �]×
[0, �]. The region under the hyperbola and the region accessible from a given
point x on the hyperbola are shaded in blue and red, respectively, and their
volumes are equal to Δ(u) · �n and u · �n, respectively.

Definition III.2: The normalized volume of the region H(u)
is denoted as

Δ(u) � ‖A‖−1 · ‖H(u)‖ . (29)

Geometrically, the parameter u, given in Definition III.1,
characterizes the point where the hyperbola touches the axes,
and is also equal to the normalized volume of the region
accessible from any point on the boundary of the hyperbola.
Δ(u) is equal to the normalized volume of the region under
the hyperbola. As will be shown in Lemma III.5, Δ(u) can
be expressed in closed form. Figure 1 shows a 2-dimensional
rectangular hyperbola H(u).

The next lemma, first stated in [14], shows the optimality
of the hyperbolic boundary.

Lemma III.3 (Optimal boundary for 2 writes): The optimal
boundary for the first write-region for a 2-write WOM code
is an n-dimensional rectangular hyperbola, i.e.,

B
∗
1 =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) = u∗2 · ‖A‖

⎫⎬
⎭ (30)

where

u∗2 = argmax
u∈[0,1]

u ·Δ(u). (31)

Proof: Let B∗
1 denote the optimal boundary for the first

write. Then, the codebook cardinality for the first write is

V1 (B
∗
1) = ‖A1 (B

∗
1)‖ (32)

and for the second write is

V2 (B
∗
1) = inf

x∈A1(B∗
1)
‖A2 (x)‖ = inf

x∈B∗
1

n∏
j=1

(�j − xj) . (33)

Define another boundary B′
1 ⊂ A such that

B
′
1 =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) = V2 (B
∗
1)

⎫⎬
⎭ . (34)

Then, for any x ∈ B
′
1, ‖A2(x)‖ = V2 (B

∗
1), and therefore, the

boundaries B′
1 and B∗

1 achieve the same codebook cardinality
on the second write, i.e.,

V2 (B
′
1) = V2 (B

∗
1) . (35)

We claim that A1 (B
′
1) ⊇ A1 (B

∗
1). Suppose the opposite

is true, i.e., there exists some x′ ∈ A1 (B
∗
1) such that x′ /∈

A1 (B
′
1) which implies that x′ /∈ H

(
V2 (B

∗
1) · ‖A‖

−1
)

. Then,

n∏
j=1

(
�j − x′j

)
< V2 (B

∗
1) , (36)

which contradicts the assumption that the codebook cardinality
from any point in A1 (B

∗
1) is

V2 (B
∗
1) = inf

x∈B∗
1

n∏
j=1

(�j − xj) . (37)

Hence, A1 (B
′
1) ⊇ A1 (B

∗
1) and ‖A1 (B

′
1)‖ = V1 (B

′
1) ≥

V1 (B
∗
1) = ‖A1 (B

∗
1)‖; that is, the codebook cardinality on

the first write when using the boundary B′
1 is at least as large

as the codebook cardinality when using the optimal boundary.
Suppose V1 (B′

1) > V1 (B
∗
1). Thus, using B′

1 as the boundary
for the first write increases the codebook cardinality for
the first write, while ensuring that the worst-case codebook
cardinality on the second write is still the same. This con-
tradicts the assumption that B

∗
1 is optimal, and therefore,

‖A1 (B
′
1)‖ = V1 (B

′
1) = V1 (B

∗
1) = ‖A1 (B

∗
1)‖. We have

shown that the first write-regions corresponding to boundaries
B∗
1 and B′

1 have the same volume, and one is a subset of
the other. It follows from Lemma A.1 in Appendix A that
A1(B

∗
1) = A1(B

′
1) and B∗

1 = B′
1. The optimal total codebook

cardinality in two writes is given by

S2(B
∗
1) = V1 (B

∗
1) · V2 (B∗

1) (38)
= V1 (B

′
1) · V2 (B′

1) (39)
= (Δ (u∗2) · ‖A‖) · (u∗2 · ‖A‖) . (40)

Since B∗
1 is optimal, it follows that u∗2=argmaxu∈[0,1]u·Δ(u).

This completes the proof.
In the next subsection, we extend Lemma III.3 to the case

of t > 2 writes.

B. Optimal t-Write Regions

Consider n cells that can store levels [0, �1]× [0, �2]× . . .×
[0, �n] = A. Let the subset Ai ⊂ A denote the set of points
that may be used on write i, for i = 1, . . . , t. If si ∈ Ai is
written on write i, the set of points, Ai+1(si), that can be
written in write i+ 1 is

Ai+1(si) = {x ∈ Ai+1 : x � si}. (41)

Let Bi denote the boundary for write i, Vi denote the codebook
cardinality for write i, and St(�1, �2, . . . , �n) denote the total
codebook cardinality.

The following theorem gives the sum-rate optimal write-
regions for t writes on n cells.

Theorem III.4 (Sum-rate optimal t-writes): The boundary
for the ith write when storing information t times on n

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 937

cells such that the total codebook cardinality is maximized
is given by

B
∗
i =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

t∏
m=t−i+1

u∗m · ‖A‖

⎫⎬
⎭ (42)

for all i = 1, . . . , t− 1 where u∗1 = 0 and

u∗k � argmax
u∈[0,1]

Δ(u) · uk−1 (43)

for all k = 2, . . . , t. The codebook cardinality on write i, for
i = 1, . . . , t, is

V ∗
i =

(
t∏

m=t−i+2

u∗m

)
·Δ

(
u∗t−i+1

)
· ‖A‖ , (44)

and the total codebook cardinality in t writes is

S∗
t (�1, . . . , �n) =

(
t∏

m=2

(u∗m)
m−1

Δ(u∗m)

)
· (‖A‖)t . (45)

Proof: The theorem is proved by induction. From Lemma
III.3, the claim is true for t = 2. Suppose the claim is true
for k writes. Consider the case for k + 1 writes. Let the
optimal boundary for the first write be B∗

1,k+1. Here the second
subscript denotes that the total number of writes is k+1. The
codebook cardinality on the first write is

V1,k+1(B
∗
1,k+1) =

∥∥A1,k+1(B
∗
1,k+1)

∥∥ . (46)

Suppose that a point x ∈ A1,k+1(B
∗
1,k+1) is written on the first

write; then an upper bound on the total codebook cardinality in
k subsequent writes is S∗

k (�1 − x1, �2 − x2, . . . , �n − xn). Let
Ωk+1

2 (B∗
1,k+1) denote the product of the codebook cardinali-

ties for writes i = 2, 3, . . . , k + 1 after an arbitrary first write
with B∗

1,k+1 as the boundary of the first write-region. Thus,
we can upper bound this product of codebook cardinalities as

Ωk+1
2 (B∗

1,k+1)

≤ inf
x∈A1,k+1(B∗

1,k+1)
S∗
k (�1 − x1, . . . , �n − xn) (47)

= c∗k

⎡
⎣ inf
x∈A1,k+1(B∗

1,k+1)

n∏
j=1

(�j − xj)

⎤
⎦
k

, (48)

where c∗k =
k∏

m=2
(u∗m)

m−1
Δ(u∗m) is a constant independent

of x or B∗
1,k+1. Here the equality labeled (48) follows from

the induction hypothesis. Let p ∈ [0, 1] satisfy

p � ‖A‖−1 · inf
x∈A1,k+1(B∗

1,k+1)

n∏
j=1

(�j − xj). (49)

Define B′ to be an n-dimensional hyperbola such that
n∏

j=1

(�j − yj) = p · ‖A‖ (50)

for all y ∈ B′. Then, using the definition of p, one can easily
show that

A1,k+1

(
B
∗
1,k+1

)
⊆ A1,k+1 (B

′) = H(p) (51)

and therefore,

V1,k+1

(
B
∗
1,k+1

)
≤ V1,k+1 (B

′) = Δ(p) · ‖A‖ . (52)

By the induction hypothesis, for a point x′ ∈ B′, the optimal
boundary for the ith subsequent write in [x′1, �1] × [x′2, �2] ×
. . .× [x′n, �n], is

x′ + B
∗
i,k (�1 − x′1, . . . , �n − x′n) (53)

=

⎧⎨
⎩x ∈ A :

n∏
j=1

(
(�j − x′j)− (xj − x′j)

)

=

k∏
m=k−i+1

u∗m ·
n∏

j=1

(
�j − x′j

)⎫⎬⎭ (54)

=

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

k∏
m=k−i+1

u∗m · p · ‖A‖

⎫⎬
⎭ (55)

where B∗
i,k (a1, . . . , an) is the optimal boundary for cells that

can store levels [0, a1]× . . .× [0, an] and x+B denotes the set
{x+y : y ∈ B}. Note that the boundary in (53) is independent
of the point x′ written on the first write, for all i = 1, . . . , k−1.
This implies that

Ωk+1
2 (B′) = c∗k · pk ‖A‖

k (56)

≥ Ωk+1
2 (B∗

1,k+1). (57)

Therefore the optimal boundary B∗
1,k+1 is the same as the

hyperbolic boundary B′, and

V1,k+1

(
B
∗
1,k+1

)
= ‖A1,k+1 (B

′)‖ = Δ(p) · ‖A‖ (58)

for some p ∈ [0, 1]. Then the total codebook cardinality in
k + 1 writes is

Sk+1(B
∗
1,k+1)

= V1,k+1 (B
′) · Ωk+1

2 (B′) (59)

= c∗k ‖A‖k+1 · Δ(p) · pk (60)

By (43), the value of p that maximizes pk · Δ(p) is u∗k+1,
which implies that

B
∗
i,k+1 =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

k+1∏
m=k−i+2

u∗m · ‖A‖

⎫⎬
⎭
(61)

for i = 1, . . . , k. Hence the claim is true for k + 1 writes.
This completes the induction step, proving the theorem.

C. Computing the optimal hyperbola parameters, u∗k
The expression defining u∗k in (43) can be interpreted

as follows. When the first write region is H(u∗k), the total
codebook cardinality for k writes, Sk, is given by the product
of the codebook cardinality in the first write, V1, and the total
codebook cardinality in the last k − 1 writes, Sk−1. V1 is
proportional to Δ(u∗k), the normalized volume enclosed by
the hyperbola. In the worst case, the volume accessible for
the last k− 1 writes is equal to the volume accessible from a
point on the boundary of H(u∗k) and, thus, proportional to u∗k.
Then, replacing t by k− 1 and ‖A‖ by a constant times u∗k in

938 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

x1

x
′

1

A1

A2(x1)

A2(x
′

1
)

0

�

�

Fig. 2. Optimal boundaries for 3 writes over 2 cells. We can see that the
boundaries for the second write are independent of the points written on the
first write.

(45), the total codebook cardinality in the last k − 1 writes
is proportional to (u∗k)

k−1. Therefore, the total codebook
cardinality in k writes is proportional to (u∗k)

k−1 · Δ(u∗k)
and the optimal hyperbola parameter is clearly given by the
expression in (43). We now show how to compute this optimal
parameter. We make use of the following lemma, which gives
an expression for the normalized volume of the region H(u).

Lemma III.5: For n ≥ 2,

Δ(u) = 1− u
n−1∑
i=0

1

i!

[
ln

(
1

u

)]i
. (62)

Proof: See Appendix B.
First consider the case of n = 2 cells. The following

proposition from [13] gives the value of the optimal hyperbola
parameter, u∗k.

Proposition III.6: For n = 2 cells and for any k ≥ 2, let

fk(u) � Δ(u) · uk−1 (63)

= (1− u+ u lnu) · uk−1 (64)

for all u ∈ [0, 1] and let τk � −k−1
k . Then, fk has one local

maximum in the interval [0, 1] at

u∗k = argmax
u∈(0,1)

fk(u) =
τk

W−1 (τkeτk)
(65)

where W−1 is the real branch of the Lambert W function
satisfying W (x) < −1 [18].

Proof: See Appendix C.
For n = 2, the proposition shows that the optimal hyperbola

parameter, u∗k, can be expressed in closed form using the
Lambert W function. In contrast, for arbitrary n, the parameter
u∗k can only be found numerically. For the case of t = 2 writes
on n cells, let z∗n ∈ [0,∞) satisfy u∗2 = e−z∗

n , where u∗2 is
the optimal hyperbola parameter. We computed the value of
z∗n for different values of n and plot the results in Figure 3.

10
1

10
2

10
3

0.45

0.5

0.55

0.6

0.65

Number of cells (n)

z* n
 /

n

Fig. 3. Ratio of z∗n and n, where u∗
2 = e−z∗n is the optimal hyperbola pa-

rameter for t = 2 writes on n cells. The ratio z∗n/n converges monotonically
to 0.5 as n increases.

D. Asymptotic Rates

In this subsection, we determine the rates that the continu-
ous approximation achieves asymptotically as the number of
cells, n, becomes large, that is, as n → ∞, when cells can
store fixed discrete levels in Zn

q . We consider t = 2 writes on
n cells in the region [0, q − 1]n in this subsection.

Let the first write-region be the hyperbolic region H(u).
Then the total codebook cardinality in two writes is S2(u) =
u ·Δ(u) · ‖A‖2. We consider u = e−zn for some non-negative
zn ∈ R so that 0 ≤ u ≤ 1. Then, by Lemma III.5,

S2(e
−zn) = e−zn

(
1− e−zn

n−1∑
i=0

(zn)
i

i!

)
· (q − 1)

2n (66)

where ‖A‖ =
∏n

j=1 �i = (q − 1)n. Continuing, the sum-rate
upper bound in (11) is

R2 ≤ 1

n
log2 Π2 ≈ 1

n
log2 S2(e

−zn) (67)

= log2 (q − 1)
2 − log2 e ·

zn
n

+ log2 [P(n, zn)]
1
n (68)

where P(n, x) is the lower normalized incomplete Gamma
function [19].

The value of zn that maximizes the expression in (68),
denoted by z∗n, can be found numerically. Figure 3 shows
that z∗n/n approaches 0.5 monotonically as n increases. The
following proposition confirms this numerical behavior.

Proposition III.7: Consider t = 2 writes on n cells with
hyperbola parameter u2 = e−αn, where α depends on n. For
increasing n, the optimal value of α, in the sense of maximiz-
ing the total codebook cardinality, S2(e

−αn), approaches 0.5,
that is

lim
n→∞ argmax

α

1

n
log2 S2

(
e−αn

)
= 0.5, (69)

and

lim
n→∞

1

n
log2 S2

(
e−0.5n

)
= log2

(
q2 − 2q + 1

)
− 1. (70)

Proof: See Appendix D.

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 939

For comparison, the capacity for t writes on cells with q
discrete levels was shown in [12] to be Cq,t � log2

(
q+t−1
q−1

)
.

For t = 2 writes,

R2 ≤ lim
n→∞

1

n
log2 Π2 (71)

≈ lim
n→∞

1

n
log2 S2

(
e−z∗

n

)
(72)

< Cq,2 = log2
(
q2 + q

)
− 1. (73)

That is, for any fixed q, even if the optimal value z∗n is
selected, the sum-rate under the assumptions of the continuous
approximation is strictly less than the capacity. But, as q
becomes large, their ratio goes to 1.

IV. FIXED-RATE OPTIMAL t-WRITES

In practice, it might be preferable to constrain successive
writes to have the same rate. Continuing the developments
of the previous section, this section considers shaping regions
A1, . . . ,At such that the codebook cardinality is constant, that
is V1 = V2 = · · · = Vt. The following theorem, the proof of
which is analogous to the proof of Theorem III.4, gives the
optimal write-regions under this constraint.

Theorem IV.1 (Fixed-rate optimal t-writes): The unique
optimal boundary for write i when storing information t
times on n cells such that the total codebook cardinality is
maximized and the codebook cardinality on each write is the
same is given by

B
∗
i =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

t∏
m=t−i+1

v∗m · ‖A‖

⎫⎬
⎭ (74)

for all i = 1, . . . , t − 1 where v∗1 = 0, and for k ≥ 2, v∗k
satisfies

Δ(v∗k) = v∗k ·Δ
(
v∗k−1

)
. (75)

The codebook cardinality on write i, i = 1, . . . , t, is

V ∗
fix = Δ(v∗t) · ‖A‖ , (76)

and the total codebook cardinality in t writes is

S∗
fix(�1, . . . , �n) = (Δ (v∗t) · ‖A‖)

t
. (77)

Proof: We prove the theorem by induction. First, suppose
t = 2. Let the boundary be

B
′ =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) = v∗2 · ‖A‖

⎫⎬
⎭ (78)

so that the first write-region A1(B
′) is H(v∗2). The second

write-region A2 is A \ A1(B
′) and A2(x1) = {x ∈ A2 : x �

x1} for all x1 ∈ A1(B
′). Then, the codebook cardinality in

each of the two writes, under the constraint that the rates are
equal, is

Vfix(B
′) = min

{
‖A1(B

′)‖ , min
x1∈A1

‖A2(x1)‖
}

(79)

= min

{
‖A1(B

′)‖ , min
x∈B′

‖A2(x)‖
}

(80)

= min {Δ(v∗2) · ‖A‖ , v∗2 · ‖A‖} (81)

= Δ(v∗2) · ‖A‖ = v∗2 · ‖A‖ (82)

where (80) follows from the fact that the minimum is achieved
when x1 lies on the boundary B′ and (82) follows from (75).
Now, suppose the optimal write-regions are A

∗
1 and A

∗
2 with

maximum codebook cardinality V ∗
fix. Then Vfix(B

′) ≤ V ∗
fix. We

will prove that A∗
1 ⊆ A1(B

′). Suppose the opposite is true;
that is, suppose there exists x′ ∈ A∗

1 such that
∏

j(�j −x′j) <
v∗2 ·‖A‖. Since the codebook cardinality V ∗

fix is upper bounded
by the volume of the second region,

V ∗
fix ≤ ‖A∗

2(x
′)‖ =

∏
j

(�j − x′j) < v∗2 · ‖A‖ = Vfix(B
′), (83)

which contradicts the optimality of A∗
1. Thus, the optimal first

write-region A∗
1 must be contained in A1(B

′). On the other
hand, by the optimality of A∗

1 and A∗
2,

Vfix(B
′) ≤ V ∗

fix ≤ ‖A∗
1‖ (84)

≤ ‖A1(B
′)‖ = Vfix(B

′), (85)

which implies that

V ∗
fix = ‖A∗

1‖ =Vfix(B
′) = Δ(v∗2) · A. (86)

To sum up, A∗
1 ⊆ A1(B

′) and ‖A∗
1‖ = ‖A1(B

′)‖. It now
follows from Lemma A.1 that A∗

1 = A1(B
′). It can similarly

be shown that A∗
2 = A \A1(B

′). This proves that the theorem
holds for t = 2.

Now suppose the theorem holds when the number of writes
is k. Consider the case for k+1 writes. Suppose v∗k+1 satisfies
Δ(v∗k+1) = v∗k+1 · Δ(v∗k). Define the boundary for the first
write-region as

B
′
1,k+1 =

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) = v∗k+1 · ‖A‖

⎫⎬
⎭ (87)

so that the first write-region is A1,k+1 = H
(
v∗k+1

)
. Let

V ∗
fix,k (�1 − x1, . . . , �n − xn) denote the optimal codebook car-

dinality for the last k writes in the region [x1, �1] × . . . ×
[xn, �n]. Then the codebook cardinality on each subsequent
write is given by

Vfix,k+1

≤ min

{
‖A1,k+1‖ , min

x∈A1,k+1

V ∗
fix,k (�1 − x1, . . . , �n − xn)

}
(88)

= min

⎧⎨
⎩∥∥H(v∗k+1)

∥∥ , min
x∈A1,k+1

Δ(v∗k) ·
n∏

j=1

(�j − xj)

⎫⎬
⎭

(89)

= min

⎧⎨
⎩
∥∥H(v∗k+1)

∥∥ , min
x∈B′

1,k+1

Δ(v∗k) ·
n∏

j=1

(�j − xj)

⎫⎬
⎭

(90)

= min
{
Δ(v∗k+1) · ‖A‖ , Δ(v∗k) · v∗k+1 · ‖A‖

}
(91)

= Δ(v∗k+1) · ‖A‖ = Δ(v∗k) · v∗k+1 · ‖A‖ . (92)

Equality (89) follows from the induction hypothesis, (90)
follows from the fact that the minimum occurs when x lies
on B′

1,k+1, and (92) follows from (75). In a manner similar to
the proof of Theorem III.4, it can be shown that the optimal

940 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

boundary for the ith subsequent write after storing a point
x′ ∈ B′

1,k+1 on the first write is given by

B
∗
i+1,k+1

= x′ + B
∗
i,k (�1 − x′1, . . . , �n − x′n) (93)

=

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

k∏
m=k−i+1

v∗m · v∗k+1 · ‖A‖

⎫⎬
⎭
(94)

=

⎧⎨
⎩x ∈ A :

n∏
j=1

(�j − xj) =

k+1∏
m=k−i+1

v∗m · ‖A‖

⎫⎬
⎭ . (95)

From (95), B∗
i+1,k+1 is independent of x′, the point stored on

the first write, and the inequality in (88) is in fact an equality.
Thus, the claim in the theorem is true for k + 1 writes. This
proves the theorem by induction.

A. Computing the optimal hyperbola parameters, v∗t
As was the case for sum-rate optimal write-regions in

Section III-C, the hyperbola parameters for optimal fixed-rate
write-regions can be computed easily for the case of n = 2
cells. This is done in the following proposition which is similar
to Proposition III.6.

Proposition IV.2: For n = 2 cells, the optimal hyperbola
parameters, v∗k, are given by the recurrence relation

v∗k =
−1

W−1

(
− exp

(
−1−

k−1∏
m=1

v∗m

)) (96)

Proof: See Appendix E.
Again, as was the case for sum-rate optimal write-regions,

the hyperbola parameters for optimal fixed-rate write-regions
for n > 2 cells can only be computed numerically. In the
following proposition, we derive bounds on v∗t .

Proposition IV.3: For t ≥ 2

exp
(
− (n!)

1
n

)
< v∗t < 1. (97)

Proof: See [14, Section IV.A].

V. SEPARABILITY OF SHAPING GAIN

This section shows that the contributions of the lattice Λ and
the shaping regions Ai to the total codebook cardinality may
be separated under the continuous approximation. We allow
the lattice Λ to be scaled arbitrarily, while fixing � = 1. Define
A1 = ‖A1‖ and for i = 2, . . . , t,

Ai = inf
x∈Ai−1

‖Ai(x)‖ . (98)

Here, � = 1 implies that Ai ≤ 1. Using this Ai along with
equations (8) and (20), the sum-rate upper bound may be
written as

1

n
log2 Sn ≈ t

2
log2

(
1

Vol (Λ)
2/n

)
+ log2

(
Ashape

)
, (99)

where

Ashape =

t∏
i=1

(Ai)
1/n. (100)

This shows that the upper bound on the sum-rate can be
separated into two parts — one part that depends only on
the lattice Λ and one part that depends only on the shaping
regions Ai.

The term Vol (Λ)
2/n is sometimes called the normalized

volume of the lattice, and appears frequently in the study of
lattices for communications [17]. The design of the lattice
has a strong influence on the error-correction capability of
the code. The continuous approximation is relevant when
Vol (Λ) � 1; the contribution of the lattice dominates (99).

A “shaping gain” γshape expresses the benefit of using non-
cubic shaping regions A1, . . . ,At. A naive, cubic scheme is
a partition of A based on cubes with edge length i/t for
i = 1, . . . , t, which easily leads to Ai = 1

tn . Accordingly,
in analogy to (100), define Acube = (1

tn)
t. Then, the shaping

gain of any scheme with Ashape is defined as

γshape = log2
Ashape

Acube
bits per cell. (101)

As shown in Section III, the optimal shape for t = 2 is
a hyperbola with parameter z∗

n

n = 0.5, in the limit of n →
∞. The optimal sum-rate upper bound in (70) separates into
two parts, log2(q

2 − 2q − 1) and −1. The former part is the
contribution due to the lattice only, and the latter part is the
contribution due to the shape only; refer to (D.6). That is,
Proposition III.7 also shows that, for sum-rate optimal shaping,
limn→∞ 1

n log2Ashape = −1. This corresponds to Ashape =
1
2 ,

giving shaping gain

γshape = log2
1

2
− log2

1

4
= 1 bit per cell. (102)

That is, the sum-rate optimal shaping region gains 1 bit/cell
over the cubic shaping.

Fixed rates were studied in Section IV. In [14] it was
hypothesized that for t = 2 writes, z∗

n = 1
e is optimal for

fixed rates as n→ ∞. This corresponds to A1 = A2 = e−
n
e .

In this case,

γshape = log2 e
− 2

e − log2
1

4
≈ 0.9385 bit/cell. (103)

Thus, the hyperbolic fixed-rate shaping achieves nearly the
same shaping gain as sum-rate optimized shaping.

VI. MESSAGE ASSIGNMENT FOR CODES WITH
DISCRETE SUPPORT

In this section we consider cells that support discrete levels
x ∈ L and discuss the construction of an encoder-decoder pair
(φ, ψ) for a given codebook {Li}ti=1 as described in Section
II-B. We associate with the encoder-decoder pair a function

Φ : L �→ ∪iMi,

such that Φ(x) denotes the message associated with any
point x ∈ L. Then, the encoder and decoder are defined in
Algorithm 1 using look-ups of the message assignment Φ. We
will refer to the function Φ as the message assignment. The
encoder-decoder pair (φ, ψ) that satisfy the conditions (13),
(14) and (15) can be defined in this manner if and only if
Step 7 in Algorithm 1 can be performed successfully, that is,

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 941

Algorithm 1 Encoder-decoder pair (φ, ψ) based on matrix Φ

1: // Inputs are message to be written and current cell levels
2: // Output is next cell levels
3: function φ (m,x)

Require: (m,x) ∈ ∪t
j=1 (Mj × Lj−1)

4: // Determine the number of writes already completed
5: i←

∑t
j=1 j · 1{x ∈ Lj−1}

6: // Find an accessible point that encodes message m
7: Find x′ ∈ Li(x) : Φ(x

′) = m
8: return x′

9: end function

10: // Input is current cell levels
11: // Outputs are number of writes and message
12: function ψ (x)
13: // Determine the number of writes done
14: i←

∑t
j=1 j · 1{x∈Lj}

15: // Determine the message that point x encodes
16: m← Φ(x)
17: return (i,m)
18: end function

Φ satisfies the following property for all j = 1, . . . , t and for
all x ∈ Lj−1:

∃x′ ∈ Lj(x) : Φ(x
′) = m ∀m ∈ Mj . (104)

The condition in (104) implies that from any point, x, there
exists at least one accessible point in the next write-region,
x′, that encodes the message m, for all messages m.

In the following subsections, we discuss the construction
of a message assignment function Φ for the case of n = 2
cells, and then for an arbitrary number of cells. Note that
[10] uses a lattice to define the message assignment function
where codebooks are defined using tilings of the lattice. Here,
we consider the message assignment problem for an arbitrary
codebook {Li}. For numerical results in this section, the
codebooks were constructed using (17) with the proposed
hyperbolic shaping regions as Ai.

A. Message assignment for 2 cells

We first consider the case of n = 2 cells with cell levels
(x1, x2) ∈ L = Z2

q . In this case, we propose an algorithm
to find a function Φ that satisfies (104) for a given codebook
{Li}ti=1 such that the number of messages on write i, Mi,
is equal to the codebook cardinality, Ci. The implementation
details are given in Algorithm 2. We now describe how this
iterative algorithm works and prove its correctness.

For each write i, on iteration 0, we start at the point in the
codebook Li−1 that can access the least number of points,

(x̂1, x̂2) = argmin
(x1,x2)∈Li−1

|Li(x1, x2)| .

Let us call this point the pivot point at iteration 0. Note
that |Li(x̂1, x̂2)| is equal to Ci by the definition of codebook
cardinality in (7). We assign messages Mi = {1, 2, . . . , Ci} to
the points in Li accessible from this pivot point. On the first
iteration, the algorithm considers as the pivot point a point
(x′′1 , x′′2) ∈ Li−1 such that x′′1 = x̂1 − 1 and x′′2 is the largest

Algorithm 2 Algorithm to construct Φ given {Li}ti=1

1: procedure DEFINEPHI ({Li}ti=1)
2: for all i ∈ {1, · · · , t} do
3: // Initialize Φ to Unassigned (denoted by ε)
4: for all (x1, x2) ∈ Li do
5: Φ(x1, x2) ← ε
6: end for
7: // Start with point that achieves the min. volume
8: (x̂1, x̂2) ← argmin

(x1,x2)∈Li−1

|Li(x1, x2)|

9: Mi ← {1, 2, . . . , |Li(x̂1, x̂2)|}
10: // Assign messages to points (x̂1, x̂2) can access
11: ASSIGNPHI (Li(x̂1, x̂2),Mi)
12: // Assign messages from other points in Li−1

13: // Iterations with decreasing x1
14: (x′1, x′2) ← (x̂1, x̂2)
15: while x′1 > 1 ∧ x′2 < q do
16: // Find new pivot point and lost messages
17: (x′′1 , x′′2) ← (x′1 − 1, x2) ∈ Li−1 : x2 is largest
18: Mlost ← Mi \ Φ(Li(x

′′
1 , x

′′
2))

19: ASSIGNPHI (Li(x
′′
1 , x

′′
2),Mlost)

20: (x′1, x
′
2) ← (x′′1 , x

′′
2)

21: end while
22: // Iterations with increasing x1
23: (x′1, x

′
2) ← (x̂1, x̂2)

24: while x′1 < q ∧ x′2 ≥ 1 do
25: // Find new pivot point and lost messages
26: (x′′1 , x

′′
2) ← (x′1 +1, x2) ∈ Li−1 : x2 is largest

27: Mlost ← Mi \ Φ(Li(x
′′
1 , x

′′
2))

28: ASSIGNPHI (Li(x
′′
1 , x

′′
2),Mlost)

29: (x′, y′) ← (x′′, y′′)
30: end while
31: // Repeat for all writes
32: end for
33: end procedure

possible. On subsequent iterations, the algorithm will consider
pivot points with decreasing levels on the first cell. The pivot
point in the previous iteration is denoted as (x′1, x

′
2).

At every iteration, the algorithm finds messages previ-
ously assigned to the points in Li(x

′
1, x

′
2) \ Li(x

′′
1 , x

′′
2) �

Llost(x
′′
1 , x

′′
2). Let Mlost be the set of these messages that were

encodable in the previous iteration but are not encodable in
the current iteration. The algorithm then assigns Mlost to the
points Li(x

′′, y′′) that have not yet been assigned any mes-
sages, a set we denote as Lspare(x

′′, y′′). The algorithm repeats
these steps, with a different pivot point at every iteration. We
show in Appendix F that |Lspare(x

′′, y′′)| ≥ |Mlost| at every
iteration, so that a message assignment function that satisfies
the condition in (104) can be defined for any given codebook.

A 4-write code for n = 2 cells with q = 8 levels each
is shown in Figure 4. For this code, the codebook {Li}4i=1

is constructed using Equation (17) where the shaping regions
{Ai} are as defined in Theorem III.4 with � = q− 1 = 7 and
the message assignment function Φ is defined using Algorithm
2. The code allows 8, 8, 9 and 8 messages on the sequence of

942 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

Algorithm 3 Procedure to assign messages M′ to points in
set L′

Require: |M′| ≤ |{(x1, x2) ∈ L′ : Φ(x1, x2) = ε}|
1: procedure ASSIGNPHI (L′,M′)
2: Lspare ← {(x1, x2) ∈ L′ : Φ(x1, x2) = ε}
3: for all m ∈ M′ do
4: (xspare, yspare) ← (x, y) : (x, y) ∈ Lspare
5: Φ(xspare, yspare) ← m
6: Lspare ← Lspare \ {(xspare, yspare)}
7: end for
8: end procedure

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

A
2

B
2

C
2

D
2

E
2

F
2

G
2

H
2

A
2

B
2

A
3

B
3

C
3

D
3

E
3

F
3

G
3

H
3

I
3

C
3

F
3

H
3

A
3

B
3

C
3

D
3

E
3

A
3

F
3

G
3

A
4

B
4

C
4

D
4

E
4

F
4

G
4

H
4

C
4

F
4

A
4

B
4

A
1

B
1

C
1

D
1

E
1

F
1

G
1

H
1

Fig. 4. 4-write code for 2 cells with 8 levels that achieves rate 6.085
bits/cell/erase. Points in the ith codebook are assigned messages {Ai,Bi, · · · }
according to message assignment function defined in Algorithm 2 such that
after any i− 1 writes, Mi messages may be stored on the next write.

four writes to give a worst-case sum-rate of

R4 =
1

2
log2(8 · 8 · 9 · 8)

= 6.085 bits per cell per erase. (105)

In Table I, we list the worst-case sum-rate Rt achieved by
the proposed codes over n = 2 cells that support levels
{0, 1, . . . q−1}, for various values of t and q. With no coding,
these cells achieve a sum-rate equal to log2 q bits/cell/erase.
As is clear from Table I, the proposed WOM codes achieve
a significant gain in sum-rate even when coding is done over
only 2 cells.

B. Message assignment for arbitrary number of cells

In the case of n = 2 cells above, we could always define an
encoder-decoder pair that, on any write, could store a set of
messages with cardinality equal to the codebook cardinality,
that is, Mi = Ci for all i. However, when n > 2, a consistent
encoder-decoder with this property may not exist for some
codebooks over n cells, as we show in the following example.

Example VI.1: Consider a code over 3 cells that support 2
levels, {0, 1}, with codebooks

L1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}={x0,x1,x2,x3},
L2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}={b1,b2,b3, c}.

TABLE I
WORST-CASE SUM-RATES Rt IN BITS PER CELL PER ERASE ACHIEVED

BY t-WRITE CODES ON 2 CELLS WITH q LEVELS.

q 4 8 12 16 32
↓ t\ log2 q → 2 3 3.59 4 5

2 2.70 4.55 5.63 6.44 8.40
3 2.95 5.48 7.11 8.25 11.13
4 2.59 6.09 8.17 9.71 13.46
5 2.09 6.55 9.07 10.90 15.40
6 1.79 6.61 9.63 11.80 17.21
7 − 6.70 10.10 12.54 18.72
8 − 6.42 10.26 13.15 20.22
9 − 6.38 10.55 13.73 21.43
10 − 5.88 10.78 14.19 22.57

Fig. 5. Diagram for Example VI.1 showing points of second write-region
accessible from points of first write-region.

Then, there are 3 points in the second write-region that are
accessible from points xi for i = 1, 2, 3. For example, points
b1,b2 and c are accessible from x1, but b3 is not. This
is depicted schematically in Figure 5 where points L1 are
represented as circular regions and accessible points in L2

for each of the points in L1 are represented as subregions of
the respective regions. Clearly C2 = 3. However, there does
not exist any assignment of 3 messages to points in L2 such
that all points in L1 satisfy the condition in (104) required
for a valid Φ function. Therefore, M2 < C2 for the given
codebooks.

It is easy to determine that the maximum number of
messages that can be stored in the second write for the case
discussed in Example VI.1 is 2; that is, M2 = 2. However, in
general, given codebooks Li−1 and Li and a positive integer
M ≥ 2, the problem to determine whether there exists an
encoder-decoder pair that guarantees M messages on write i
is an instance of a combinatorial problem, referred to as Set
M -Coloring in [20], and defined as follows.

Definition VI.1 (Set M -Coloring): Given a collection of
finite subsets S1,S2, . . . ,Sm of a set U , does there exist a
coloring

I :

m⋃
k=1

Sk �→ {1, 2, . . . ,M}

such that, for each k = 1, . . . ,m, and for each color j =
1, . . . ,M , the set Sk has at least one element of color j?

One can see that the existence of a message assignment
with M messages can be interpreted as an instance of
the Set M -Coloring problem. Specifically suppose Li−1 =
{x1, . . . ,xm}. Then sets U = Li and Sk = Li(xk) for
k = 1, . . . ,m. It was shown in [20, Theorem 5.5] that

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 943

the Set M -Coloring problem is NP-complete [21] for any
fixed M ≥ 2. It is important to note that this does not
prove hardness for the message assignment problem. Indeed,
Algorithm 2 is a polynomial-time algorithm that solves the
message assignment problem for n = 2.

For a given codebook, the problem of finding a message
assignment has been interpreted as finding the disjoint cover-
ings for a corresponding bipartite graph, as shown in [22].
This bipartite covering problem is an optimization version
of the Set-M Coloring problem and therefore is NP-hard.
Solving this covering problem sub-optimally [23, Algorithm
1], we have found message assignments for some codebooks
that achieve higher sum-rates with 3 cells than achieved with
2 cells in Table I. For e.g., for t = 2 writes on n = 3
cells where q = 8, we could construct a message assignment
function with M1 = 136 and M2 = 101, giving a sum-
rate 4.582 bits/cell/erase; the case n = 2 achieves 4.554
bits/cell/erase for the same t and q.

VII. CONCLUSIONS

This paper described the design of lattice-based WOM
codebooks using minimal assumptions of the continuous
approximation and a worst-case rate. The optimal shaping
regions were shown to bounded by rectangular hyperbolas,
and we defined a total codebook cardinality Πt which gave
an upper bound on the sum-rate. For large q, corresponding
to the condition of the continuous approximation, this upper
bound approaches the capacity, for the case of t = 2 writes.

Note that the analysis only considered maximizing the size
of codebooks. Indeed, an example showed that a consistent
encoder-decoder pair that achieves rates equal to the codebook
cardinality may not exist for all codebooks when n ≥ 3. That
is, it has not been shown that hyperbolic shaping regions have
a consistent encoder-decoder that can achieve capacity. But
for n = 2 cells, we proposed an algorithm to find a message
assignment for codes and proved that the algorithm achieves a
message set cardinality equal to the codebook cardinality and
is therefore optimal.

Determining the existence of a message assignment with
M ≥ 2 messages for codes over multiple cells for a given
codebook is a special case of the Set M -Coloring problem. An
important open problem is finding low-complexity algorithms
to determine message assignments that can achieve high rates
for a given codebook.

APPENDIX A
LEMMA FOR SECTION III

Lemma A.1: Let C and D be closed subsets of A. Let
Ex,δ = {y ∈ A : ‖y − x‖ < δ} be an open ball with radius δ
and center x and let ‖x− y‖ denote the Euclidean distance
between x and y. Suppose C ⊆ D and ‖C‖= ‖D‖ > 0. If,
∀ δ>0 and ∀x ∈ D, ‖D ∩ Ex,δ‖>0, then C=D.

Proof: Suppose the opposite is true; that is, suppose C is
strictly contained in D. Let x′ ∈ A be a point in A such that
x′ ∈ D, but x′ /∈ C. Since C is closed, there exists an open
ball Ex′,δ′ such that Ex′,δ′ ∩C = ∅. ‖D ∩ Ex′,δ′‖ > 0 implies
that ‖D‖ ≥ ‖C‖+ ‖D ∩ Ex′,δ′‖ > ‖C‖, which contradicts the
assumption that ‖C‖ = ‖D‖. Therefore, C = D.

APPENDIX B
PROOF OF LEMMA III.5

Δ〈n〉(u) = ‖A‖−1 ·
∫

x∈H(u)

dx

=

an−1∫
0

an−2∫
0

· · ·
a1∫
0

(
1− u

n−1∏
j=1

(1− xj)

)
dx1 · · ·dxn−1 (B.1)

where
ai � 1− u∏n−1

j=i+1(1 − xj)
for all i = 1, 2, . . . , n− 1 (B.2)

is the normalized volume of region H(u) when the number of
cells is n. One can verify the claim for n = 2, namely

Δ〈2〉(u) =

1−u∫
0

(
1− u

1− x1

)
dx1 = 1− u− u ln

(
1

u

)
.

(B.3)

Now, let the hypothesis be true for some n−1, n ≥ 3. Then
from (B.1),

Δ〈n〉(u) =

1−u∫
0

Δ〈n−1〉
(

u

1− xn−1

)
dxn−1

=

1−u∫
0

(
1−

(
u

1− x

) n−2∑
i=0

1

i!

[
− ln

(
u

1− x

)]i)
dx

(B.4)

= (1− u)−
n−1∑
i=0

(−1)i

i!
Ψi(u) (B.5)

where the equality labeled (B.4) is true from the induction
hypothesis and

Ψi(u) �
1−u∫
0

u

1− x

[
ln

(
u

1− x

)]i
dx = − u

i+ 1
(lnu)i+1 .

(B.6)

Then, replacing (B.6) in (B.5), we get the required result for
n. Hence, the lemma is true for all n ≥ 2 by induction.

APPENDIX C
PROOF OF PROPOSITION III.6

Set the derivative of fk(u) with respect to u to 0 and solve
for u to get

u = 0 or
(
1− u− 1

τk
u lnu

)
= 0 (C.1)

with τk = −k−1
k as defined in the statement of the proposition.

For u = 0, fk(0) = 0; thus u∗k 	= 0. The other expression in
(C.1) is equivalent to e

τk
u

τk
u = τke

τk . But, by the definition
of the Lambert W function, eW (τke

τk)W (τke
τk) = τke

τk ;
therefore, u = τk

W (τke
τk) is a root of (C.1). Since τkeτk ∈(

− 1
e ,−

1
2
√
e

]
⊂
(
− 1

e , 0
)
, W (τke

τk) is multi-valued and takes
two values W0 (τke

τk) and W−1 (τke
τk) corresponding to the

944 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 5, MAY 2014

two branches of the Lambert W function. One can check that
the root τk

W0(τke
τk) equals 1 and is a local minimum. The other

root, denoted as u∗k = τk
W−1(τkeτk)

, corresponds to the local
maximum.

APPENDIX D
PROOF OF PROPOSITION III.7

An asymptotic expression is needed for the last term in (68)
as it depends on n. From [19],

P(n, αn) =
1

2
erfc

(
−ζ

√
n/2

)
− R(n, ζ), (D.1)

where ζ = − (2 (α− 1− loge α))
1
2 for α < 1, erfc is

the complementary error function and function R has the
following asymptotic expansion that is valid for all α ≥ 0:

R(n, ζ) ∼ e−
1
2nζ

2

√
2πn

∞∑
k=0

dk(ζ)n
−k (D.2)

where dk is a constant that depends only on ζ and k. The
following asymptotic expression for the complementary error
function holds for x→ ∞:

erfc(x) ∼ e−x2

x
√
π

[
1 +

∞∑
k=1

(−1)k
(2k − 1)!!

(2x2)k

]
, (D.3)

where (2k − 1)!! is the double factorial. Thus,

P(n, αn) =
e−

ζ2n
2

√
2πn

∞∑
k=0

(
(−1)k

(2k − 1)!!

ζ2k+1
− dk(ζ)

)
n−k,

� e−
ζ2n
2

√
2πn

∞∑
k=0

Dk(ζ)n
−k, (D.4)

1

n
log2 [P(n, αn)] ∼ −ζ

2

2
log2(e) +

log2(2πn)

2n

+
log2

(∑∞
k=0 Dk(ζ)n

−k
)

n
,

(D.5)
and from (68),

lim
n→∞

1

n
log2S2

(
e−αn

)
= log2 (q − 1)

2 − (2α− 1) log2(e)

+ log2(α). (D.6)

The total codebook cardinality in (D.6) is maximized when
α = 0.5 and is equal to

lim
n→∞

1

n
log2 S2

(
e−0.5n

)
= log2 (q − 1)

2 − 1. (D.7)

For α > 1, ζ = +(2 (α− 1− loge α))
1
2 so that

limn→∞ 1
n log2 [P(n, αn)] = 0.

APPENDIX E
PROOF OF PROPOSITION IV.2

For convenience of notation, we drop the asterisk from v∗k.
For k ≥ 2, the optimal hyperbola parameter, vk, satisfies
Δ(vk) = vk · Δ(vk−1) = vk · Θk where Θk �

∏k−1
m=1 vm.

Using Lemma III.5 for n = 2, we get −1
vk

· exp
(

−1
vk

)
=

−e−(1+Θk) � ξk. By the definition of Lambert W func-
tion, −v−1

k = W (ξk). However, W0 (ξk) 	= −vk−1 since
W0(x) > −1 for all x. By induction on k, ξk lies in the
domain of W−1. Therefore vk = − (W−1 (ξk))

−1 ∈ (0, 1].

APPENDIX F
PROOF OF CORRECTNESS OF ALGORITHM 2

Consider stage i where the algorithm assigns messages to
points in the codebook for write i. Let xk denote the kth pivot
point in the codebook Li−1 and Ṽk = |Li(xk)| denote the
number of points in codebook Li accessible from xk. In this
proof, we will show that at any iteration k of the ith stage,
the number of points in Li(xk) that have not been assigned
a message at any iteration � < k is larger than the number
of messages that point xk cannot encode at the start of the
kth iteration; that is, there are enough points that have not
been assigned a message such that xk satisfies the condition
in (104) at the end of the kth iteration.

Let S−
k (or S+

k) be the number of points in Li(xk) that
were not assigned any messages up to any iteration � < k
(or � ≤ k). The set Llost(xk+1) denotes the points in Li that
were accessible from xk but are not accessible from xk+1.
Partition Llost(xk+1) into sets of points that were assigned
(or were not assigned) messages up to some iteration � ≤ k.
Denote the cardinality of these sets as Ak,k+1 and Sk,k+1,
respectively. Finally, let Gk,k+1 be the number of points in
Li accessible from xk+1 but not accessible from xk. By the
definitions above, for all �,

Ṽ� = Ṽ�−1 − (A�−1,� + S�−1,�) +G�−1,�, (F.1)

S−
� = |Lspare(x�)| = S+

�−1 − S�−1,� +G�−1,� ≥ S�,�+1,
(F.2)

S+
� = S−

� −A�−1,� = S−
� − |Mlost(x�)| . (F.3)

Now, from (F.1), (F.2), and (F.3),

S−
k+1 − S−

0 =
(
Ṽk+1 − Ṽ0

)
+Ak,k+1 −A−1,0. (F.4)

Since S−
0 = A−1,0 = Ṽ0 =Mi and Ṽk+1 ≥Mi by definition

of the first pivot point, we have

|Lspare(xk+1)| = S−
k+1 ≥ Ak,k+1 = |Mlost(xk+1)| (F.5)

and S+
k+1 ≥ 0. Thus, at every iteration, the algorithm has

enough spare points that have not yet been assigned a message
to assign all the missing messages.

REFERENCES

[1] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,”
Information and Control, vol. 55, Dec. 1982.

[2] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Körner, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089 – 1112,
1984.

[3] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting Codes for joint
information storage in flash memories,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5300 – 5313, Oct. 2010.

[4] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48th Ann. Allerton Conf. on Comm.,
Control and Computing, Monticello, IL, Sep. 29 - Oct. 1, 2010.

[5] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3692 – 3697,
Jun. 2011.

[6] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient
two-write WOM-codes,” in IEEE Inf. Theory Workshop, Dublin, Ireland,
Aug. 2010.

[7] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes
for flash coding,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097 –
6108, Sep. 2011.

[8] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy, and J. K.
Wolf, “Non-binary WOM-codes for multilevel flash memories,” in IEEE
Inf. Theory Workshop, Paraty, Brazil, pp. 40 – 44, Oct. 16 - 20, 2011.

BHATIA et al.: LATTICE-BASED WOM CODES FOR MULTILEVEL FLASH MEMORIES 945

[9] A. Shpilka,“Capacity achieving two-write WOM codes,” in Latin Amer-
ican Symp. on Theor. Informatics, Peru, Apr., 2012.

[10] Y. Cassuto and E. Yaakobi, “Short q-ary WOM codes with hot/cold
write differentiation,” in Proc. IEEE International Symp. on Inf. Theory,
Cambridge, MA, pp. 1391 – 1395, Jul. 1 - 6, 2012.

[11] B. M. Kurkoski, “Notes on a lattice-based WOM construction that
guarantees two writes,” in Proc. 34th Symp. Information Theory and
Applications, Ousyuku, Iwate, Japan, pp. 520 – 524, Nov. - Dec. 2011.

[12] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308 – 313, Jan.
1999.

[13] A. Bhatia, A. R. Iyengar, and P. H. Siegel, “Multilevel 2-cell t-write
codes,” in Proc. IEEE Inf. Theory Workshop, Lausanne, Switzerland, pp.
247 – 251, Sep. 3 - 7, 2012.

[14] B. Kurkoski, “Lattice-based WOM codebooks that allow two writes,”
in International Symp. on Inf. Theory and its Applications, Honolulu,
Hawaii, pp. 101 – 105, Oct. 28 - 31, 2012.

[15] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups,
New York, NY, Springer-Verlag, 3rd ed., 1999.

[16] G. D. Forney, R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. H.
Qureshi, “Efficient modulation for band-limited channels,” IEEE J. Sel.
Areas Commun., JSAC-2, pp. 632 – 647, Sep. 1984.

[17] G. D. Forney and L.-F. Wei, “Multidimensional constellations – Part 1:
Introduction, figures of merit, and generalized cross constellations,”
IEEE J. Sel. Areas Commun., JSAC-7, pp. 877 – 892, Aug. 1989.

[18] R. L. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. Knuth,
“On the Lambert W function,” Adv. in Comp. Math. 5(4):329–359, 1996.

[19] N. M. Temme, “Uniform asymptotic expansions of the incomplete
Gamma functions and the incomplete Beta function,” Math. of Com-
putation, vol. 29, no. 132, pp. 1109 – 1114, Oct. 1975.

[20] J. J. Ashley, R. Karabed, and P. H. Siegel, “Complexity and sliding-
block decodability,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 1925 –
1947, Nov. 1996.

[21] M. Garey, and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, San Fransisco, CA: W. H. Freeman,
1979.

[22] Y. Wu, “Low complexity codes for writing a write-once memory twice,”
in Proc. IEEE International Symp. on Inf. Theory, Austin, TX, pp. 1928
– 1932, Jun. 13 - 18, 2010.

[23] M. Qin, E. Yaakobi, and P. H. ‘Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” in IEEE
J. Sel. Areas Commun., 2014.

Aman Bhatia (S’11) is a Ph.D. candidate at the
University of California San Diego. He received his
B.Tech degree in Electrical Engineering from the
Indian Institute of Technology, Kanpur, India, in
2009; and his M.S. degree in Electrical and Com-
puter Engineering from the University of California
San Diego in 2011. His interests include coding
and information theory. His current work focuses
on various coding techniques for data storage.

Minghai Qin (S’11) received the B.E. degree in
Electronic and Electrical Engineering from Tsinghua
University, Beijing, China, in 2009. He is currently
pursuing the Ph.D. degree in Electrical Engineering
from the Department of Electrical and Computer
Engineering at the University of California, San
Diego, where he is associated with the Center for
Magnetic Recording Research.

Aravind R. Iyengar (S’09–M’12) received his
B.Tech degree in Electrical Engineering from the
Indian Institute of Technology Madras, Chennai,
in 2007; his M.S. and Ph.D. degrees in Electrical
Engineering from the University of California in
San Diego, La Jolla, where he was affiliated with
the Center for Magnetic Recording Research, in
2009 and 2012 respectively. He is currently with
Qualcomm Technologies Inc., Santa Clara, where he
is involved in the design of baseband modems. In
2006, he was a visiting student intern at the École

Nationale Supérieure de l’Electronique et de ses Applications (ENSEA),
Cergy, France. He was a visiting doctoral student at the Communication
Theory Laboratory at the École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland in 2010. His research interests are in the areas
of information and coding theory, and in signal processing and wireless
communications. A. R. Iyengar was the recipient of the Sheldon Schultz Prize
for Excellence in Graduate Student Research at the University of California,
San Diego in 2012.

Brian M. Kurkoski Brian M. Kurkoski was born
in Portland, Oregon, USA. He received the B.S.
degree from the California Institute of Technology
in 1993, and then worked in industry for several
years. He received the M.S. and Ph.D. degrees from
the University of California San Diego in 2000
and 2004, respectively. He was at the University of
Electro-Communications in Tokyo, Japan, first as a
postdoctoral researcher from 2004 to 2006, and then
as an Associate Professor from 2007 to 2012. He
is currently an Associate Professor at the Japan Ad-

vanced Institute of Science and Technology (JAIST). Since 2010, he has been
an associate editor for IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences. He has organized or been technical
co-chair for several data storage tracks and workshops. His research interests
include coding theory, information theory and communication theory and their
application to storage systems.

Paul H. Siegel (M’82–SM’90–F’97) received the
S.B. and Ph.D. degrees in mathematics from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1975 and 1979, respectively.

He held a Chaim Weizmann Postdoctoral Fellow-
ship at the Courant Institute, New York University.
He was with the IBM Research Division in San
Jose, CA, from 1980 to 1995. He joined the faculty
at the University of California, San Diego in July
1995, where he is currently Professor of Electrical
and Computer Engineering in the Jacobs School of

Engineering. He is affiliated with the Center for Magnetic Recording Research
where he holds an endowed chair and served as Director from 2000 to
2011. His primary research interests lie in the areas of information theory
and communications, particularly coding and modulation techniques, with
applications to digital data storage and transmission.

Prof. Siegel was a member of the Board of Governors of the IEEE
Information Theory Society from 1991 to 1996 and from 2009 to 2011.
He was re-elected for another 3-year term in 2012. He served as Co-Guest
Editor of the May 1991 Special Issue on “Coding for Storage Devices” of the
IEEE Transactions on Information Theory. He served the same Transactions
as Associate Editor for Coding Techniques from 1992 to 1995, and as Editor-
in-Chief from July 2001 to July 2004. He was also Co-Guest Editor of the
May/September 2001 two-part issue on “The Turbo Principle: From Theory
to Practice” of the IEEE Journal on Selected Areas in Comminucations.

Prof. Siegel was co-recipient, with R. Karabed, of the 1992 IEEE Informa-
tion Theory Society Paper Award and shared the 1993 IEEE Communications
Society Leonard G. Abraham Prize Paper Award with B. H. Marcus and J.
K. Wolf. With J. B. Soriaga and H. D. Pfister, he received the 2007 Best
Paper Award in Signal Processing and Coding for Data Storage from the
Data Storage Technical Committee of the IEEE Communications Society. He
holds several patents in the area of coding and detection, and was named
a Master Inventor at IBM Research in 1994. He is an IEEE Fellow and a
member of the National Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

