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Abstract

A numerical method has recently been presented to determine the noise thresholds of
low density parity-check (LDPC) codes that employ the message passing decoding algo-
rithm on the additive white Gaussian noise (AWGN) channel. In this paper, we extend
this technique to the uncorrelated flat Rayleigh fading channel. Using a nonlinear code
optimization technique, we optimized irregular LDPC codes for the uncorrelated Rayleigh
fading channel. The thresholds of the optimized irregular LDPC codes are very close to
the Shannon limit for this channel. For example, at rate 1/3, the optimized irregular LDPC
code has a threshold only 0.08dB away from the channel capacity.

1 Introduction
Recent advances [1][2] in error correcting codes have shown that, using the message pass-
ing decoding algorithm, irregular low density parity-check (LDPC) codes can achieve reliable
transmission at signal-to-noise ratios (SNR) extremely close to the Shannon limit on the addi-
tive white Gaussian noise (AWGN) channel, outperforming turbo codes of the same block size
and code rate. LDPC codes have certain advantages, such as simple descriptions of their code
structure and fully parallelizable decoding implementations. Moreover, they are amenable to
theoretical decoding analysis. With iterative message passing decoders, LDPC codes exhibit
an interesting threshold effect [1][3]: if the noise level of the channel is smaller than a cer-
tain threshold, the bit error probability goes to zero as the block size goes to infinity; if the
noise level is above the threshold, the probability of error is always bounded away from zero.
Richardson, et al. [1] developed a numerical technique, called density evolution, to analyze
the performance of the message passing decoding algorithm on the AWGN channel, enabling
the determination of thresholds to any desired degree of accuracy. In this paper, we extend this
technique to the uncorrelated flat Rayleigh fading channel.

The code optimization of irregular LDPC codes is a nonlinear cost function minimization
problem, a problem where differential evolution has been shown to be very effective and robust
[4]. This technique has been successfully applied to the design of good irregular LDPC codes
for both the erasure channel [4] and the AWGN channel [2]. We show that this technique
is also very effective in the code optimization of irregular LDPC codes for the uncorrelated
Rayleigh fading channel, and the threshold values of the optimized codes are extremely close
to the capacity of this channel.
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2 Low Density Parity-Check (LDPC) codes
An LDPC code is a linear block code specified by a very sparse parity-check matrix. As a
linear block code, an LDPC code can be represented by a bipartite graph. Suppose the low
density parity-check matrix H has N columns and M rows; the corresponding bipartite graph
consists of N bit nodes, M check nodes, and a certain number of edges. Each bit node, called
“left node,” represents a bit of the codeword. Each check node, called “right node,” represents
a parity check of the code. An edge exists between a bit node and a check node if and only if
there is a 1 in the corresponding entry in the parity-check matrix. We refer to the corresponding
bit node and check node as the left and right neighbor nodes of the edge.

Regular LDPC codes are those for which all nodes of the same type have the same degree,
where the degree of a node is the number of edges for which it is a neighbor node. A (j,k)
regular LDPC code has a bipartite graph in which all bit nodes have degree j and all check
nodes have degree k. Correspondingly, in the parity-check matrix H , all the column weights
are j and all the row weights are k.

For irregular LDPC codes, the bit nodes (correspondingly the check nodes) can have differ-
ent degrees. We say an edge has left (resp., right) degree i if its left (resp., right) neighbor node
has degree i. An irregular LDPC code ensemble is specified by a degree sequence (λ, ρ) or its
corresponding generating functions λ(x) =

∑dlmax

i=2 λix
i−1 and ρ(x) =

∑drmax

i=2 ρix
i−1, where

λi (resp., ρi) is the fraction of edges with left (resp., right) degree i and dlmax (resp., drmax) is
the maximal left (resp., right) degree of any edge.

3 Decoding Analysis
Firstly, we briefly review the decoding algorithm [2][5] for LDPC codes. For each edge of
the underlying bipartite graph, the decoding algorithm iteratively updates two types of log a
posteriori probability ratio (LAPPR) messages, q and r. The quantity q is the message sent from
the bit node to the check node along a connecting edge e, which is expressed as q = log p(x=0|t)

p(x=1|t) ,
where t denotes all the messages coming from the channel and the edges connected to the bit
node, other than edge e. The quantity r is the message sent from the check node to the bit node
along an edge e, which is defined as r = log p(x=0|v)

p(x=1|v)
, where v denotes the messages coming

from the edges connected to the check node, other than edge e.
After l such iterations, the algorithm would produce the exact LAPPRs of all the bits if the

bipartite graph defined by the parity-check matrix contains no loops of length up to 2l [5]. If we
assume that the graph is loop-free, we can analyze the decoding algorithm directly because the
incoming messages to every node are independent. Also, by the general concentration theorem
of [1], for almost all the graphs in a code ensemble (λ, ρ) and almost all inputs, the decoder
performance will converge to that of a corresponding loop-free graph as the codeword length
approaches infinity.

Based on the assumption above, the following decoding analysis tries to track the average
fraction of incorrect messages that is passed in each iteration of the decoding algorithm. Here,
the fraction of incorrect messages is averaged over all the bits of a codeword.

First, we consider a regular (j, k) LDPC code. Since LDPC codes are linear block codes,
we can assume that the all-zero codeword is sent and BPSK modulation (0 → 1, 1 → −1) is
used. Considering the message passed from the bit node to the check node, we have [2]

q = q0 +

j−1∑
i=1

ri , (1)



where q0 is the initial message conditioned on the channel output, and ri , i = 1, ..., j − 1, are
the incoming LAPPR messages from all the incident edges, other than edge e. Since q0 and ri

are independent random variables, the density function of q is the convolution of the density
functions of all the elements in (1). This convolution can be efficiently computed in the Fourier
domain. Let P0 denote the density of q0, Pl denote the density of q after l iterations, and Rl

denote the density of r after l iterations. Letting F denote the Fourier transform operation,

Pl = F−1
(
F (P0) (F (Rl−1))

j−1
)
, (2)

where R0(r) can be set to ∆0, and ∆0 is defined as 1 if r = 0 and 0 if r �= 0. We can write
Pl = P 1

l + P 0
l , where P 1

l is supported on (−∞, 0] and P 0
l is supported on [0,∞). Therefore,

the fraction of incorrect messages after l iterations can be defined as

Pe(l) =

∫ 0

−∞
Pl(z)dz . (3)

On the other hand, considering the message r passed from the check node to the bit node
r, we have [2]

tanh
r

2
=

k−1∏
i=1

tanh
qi

2
, (4)

where qi , i = 1, ..., k − 1 are the incoming LAPPRs from the neighbor edges, other than edge
e. To use the same method as described for the bit node to calculate the density function Rl, we
need to apply logarithm operations on both sides of (4) to change the product into a summation,

(sgnr , log
∣∣∣tanh

r

2

∣∣∣) =
k−1∑
i=1

(sgnqi , log
∣∣∣tanh

qi

2

∣∣∣) , (5)

where the sign function sgnx = 0 if x ≥ 0, and sgnx = 1 otherwise. Note that the summation
for (5) is the mod-2 summation of the sign parts and the real summation of the magnitude parts.
Therefore, the density of r can be computed in the Fourier domain in a manner similar to the
computation of the density of q in (2).

This two-phase computation algorithm, called density evolution, makes it possible to track
the fraction of incorrect messages, Pe(l). At a certain noise level, we can run this algorithm
iteratively until the error probability Pe(l) either goes to zero or stops at a finite probability
of error. The threshold, σ∗, denotes the supremum of all values of the noise level σ such that
liml→∞ Pe(l) = 0, where σ is the standard deviation of the noise.

The density evolution algorithm can be extended to the irregular LDPC codes with only
minor modifications, taking into consideration the irregular degree sequences; for example, at
a bit node,

Pl = F−1 (F (P0) · λ (F (Rl−1))) , (6)

where λ(x) =
∑dlmax

i=2 λix
i−1 is as defined above.

For the uncorrelated Rayleigh fading channel, if the code symbol x is mapped into the
signal point w = (1 − 2x), the conditional pdf of the matched filter output y is

p(y|w, a) =
1√

2πσ2
exp

(
−(y − w · a)2

2σ2

)
, (7)

where σ2 is the variance of the noise, and a is the normalized Rayleigh fading factor with
E[a2] = 1 and density function p(a) =2a exp(−a2).



3.1 Ideal side information (SI)
When we have ideal SI, the initial message passed from the bit node to the check node is

q0 = log
P (x = 0|y, a)
P (x = 1|y, a) =

2

σ2
y · a . (8)

In the decoding analysis, assuming w = 1, q0 has the conditional density function

P0 (q0|a) =
σ

2a
√

2π
exp


−

(
q0 − 2a2

σ2

)2

8a2/σ2


 . (9)

To get the unconditional density function of q0, we average (9) over the density function of a,

P0(q0) =
∫∞
0

σ√
2π

exp

(
−

�
q0− 2a2

σ2

�2

8a2/σ2

)
exp(−a2)da

= σ√
2π

exp(−q0(
√

2σ2+1−1)
2

)
∫∞
0

exp

(
−

�
σ2

2a
q0−a

√
2σ2+1

�2

2σ2

)
da .

(10)

3.2 No side information (no SI)
When no SI is available, following [6], we assume that P (y|w) is Gaussian distributed in the
region of the most probable y, and we approximate q0 as

q0 ≈
2

σ2
y · E[a] , (11)

where E[a] = 0.8862. The corresponding conditional density function is

P0 (q0|a) =
σ

2E[a]
√

2π
exp


−

(
q0 − 2aE[a]

σ2

)2

8(E[a])2/σ2


 . (12)

Averaging over the density function of a, we get

P0(q0) = σ∆2

2E[a]
exp

(
− ∆2σ2q2

0

4(E[a])2

)
×[√

2
π

exp
(
− ∆2q2

0

8(E[a])2

)
+ ∆q0

E[a]
Q(−∆q0

2E[a]
)
]
,

(13)

where ∆ =
√

σ2

2σ2+1
and Q(x) = 1

2
erfc( x√

2
).

4 Consistency and Stability
Consistency is an important property associated with the message distribution in the density
evolution. As defined in [2], a density function f on [−∞,∞] is consistent if it satisfies
f(x) = f(−x)ex for all x ∈ [0,∞], and it is shown that the initial message distributions for all
the binary-input symmetric channels (including the AWGN channel) discussed in [2] satisfy
this condition.



It was shown in [2] that the consistency property is invariant under density evolution, i.e.,
if P0 is consistent, then the density functions of Pl and Rl calculated in density evolution are
also consistent. It was next proved in [2] that if the density function of Pl is consistent, the
average fraction of incorrect messages as defined in (3) is a non-increasing function of l and
will always converge to a certain value, which might be zero.

In [2], the consistency property is then used to prove another important property of density
evolution, which is summarized as follows: There exists an ε > 0 such that if density evolution
is initialized with a consistent message density P0 satisfying

∫ 0

−∞ P0(x)dx < ε, the fraction of
incorrect messages could converge to zero under density evolution if

λ′(0)ρ′(1) < es (14)

where the parameter s is defined as

s = − log(2

∫ ∞

0

P0(x)e−x/2dx) . (15)

Conversely, if λ′(0)ρ′(1) > es, then the fraction of incorrect messages is strictly bounded away
from 0.

In [2], (14) is referred to as the stability condition for the channel with initial message
density P0. For example, for the AWGN channel, the stability condition is given by [2]

λ′(0)ρ′(1) < e
1

2σ2 . (16)

We now show that the initial message density function of the uncorrelated Rayleigh fading
channel with SI also satisfies the consistency property, and then we derive the stability condi-
tion for this channel. For the density function of the uncorrelated Rayleigh fading channel with
SI, as defined in (10), it is easily verified that

P0(q0) =
∫∞
0

σ√
2π

exp

(
−

�
q0− 2a2

σ2

�2

8a2/σ2

)
exp(−a2)da

= exp(q0)
∫∞
0

σ√
2π

exp

(
−

�
−q0− 2a2

σ2

�2

8a2/σ2

)
exp(−a2)da

= P0(−q0) exp(q0) ,

(17)

i.e., the initial message density function of the uncorrelated Rayleigh fading channel with SI
satisfies the consistency condition. From (15) and (10), we have

e−s = 2
∫∞
0

P0(q0)e
−q0/2dq0

= 2
∫∞
0

da σ√
2π
e−a2 ∫∞

0
exp(−

�
q0− 2a2

σ2

�2

8a2/σ2 )e−q0/2dq0

=
∫∞
0

2a exp(−(1 + 1
2σ2 )a

2)da
= 1/(1 + 1

2σ2 )

, (18)

i.e., the stability condition for the uncorrelated Rayleigh fading channel with SI is

λ′(0)ρ′(1) < 1 +
1

2σ2
. (19)



In the next section, we will numerically optimize the degree sequences for this channel,
and we will verify empirically that they fulfill condition (19). As to the Rayleigh fading chan-
nel without SI, the initial density function (13) does not have the consistency property. We
conjecture that this is because the expression (11) for the message, q0, is only an approxi-
mation. Nevertheless, as shown in the numerical results, the density evolution technique for
determining the thresholds still works quite well for this channel.

5 Results
5.1 Threshold calculation and code optimization
Using the density evolution technique discussed in Section 3, we can calculate the threshold
values of LDPC codes for both the AWGN channel and the uncorrelated Rayleigh fading chan-
nel with or without SI. For convenience, in the following results, we will express the threshold
by both σ and its corresponding (Eb/N0)(dB). Since σ2 = 1

2R·(Eb/N0)
, the threshold can also be

defined as the smallest Eb/N0 such that liml→∞ Pe(l) = 0. Fig. 1 compares the thresholds and
the simulation results of rate-1/2 regular (3,6) LDPC codes on both the AWGN channel and
the uncorrelated Rayleigh fading channel, where both ideal SI and no SI are considered. As
shown, the thresholds for regular (3,6) LDPC codes on the AWGN channel, the fading channel
with SI, and the fading channel with no SI, are 1.10dB, 3.06dB, and 4.06dB, respectively. The
(3,6) LDPC codes used in the simulations are of length 105 and 106. The numerical threshold
results are very consistent with the simulation results, and we conjecture that as the block size
goes to infinity, the simulation results will converge to the thresholds. The results show that
the regular (3,6) LDPC code suffers a loss of nearly 2dB and 3dB, respectively, in the fading
channels with SI and without SI, relative to the AWGN channel.

Combining the density evolution and differential evolution techniques, we searched for
good degree sequences with constraints on the maximal left degree dlmax for the uncorrelated
Rayleigh fading channel with SI. The differential evolution algorithm that we used in the code
optimization is based on [4] with minor modifications. The resulting degree sequences of
rate-1/3 codes for the Rayleigh fading channel with SI are shown in Table 1 for dlmax =
10, 16, 30, and 50. Each column corresponds to one particular degree sequence. For each
degree sequence, the coefficients of λ and ρ are given, as well as the threshold σ∗, and the
corresponding (Eb/N0)

∗ in dB. Also listed is λ∗
2, the maximal value of λ2 satisfying the stability

condition (19). As can be seen, λ2 < λ∗
2 for every degree sequence in the table, which confirms

that these degree sequences satisfy the stability condition. We observe the higher the maximal
left degree, the better the performance of the code.

Similar to the results that Richardson, et al. [2] obtained for the AWGN channel, the thresh-
olds of the degree sequences optimized for the fading channel with SI are very close to the
capacity of this channel (the capacity can be calculated following the method introduced in
[7]). At rate 1/3, the capacity of the fading channel with SI is 0.4885dB. The degree sequence
with dlmax = 50 has the threshold of 0.5712dB, which is only 0.08dB away from the capacity!

For comparison, Table 2 gives the rate-1/3 code sequences that we optimized for the AWGN
channel with dlmax = 10, 16, 30, and 50. The threshold of the code sequence optimized for
the AWGN channel with dlmax = 50 is only 0.07dB away from the channel capacity.

It is interesting to see how the code sequences optimized for the fading channel with SI
perform on the AWGN channel, and vice-versa. We compare the rate-1/3 code sequences
optimized for the AWGN channel and the code sequences optimized for the fading channel
with SI in Figs. 2. In Fig. 2(a), for each degree sequence, we show the gap between its threshold
value for the AWGN channel and the AWGN channel capacity for rate 1/3. In Fig. 2(b), for
each degree sequence, we show the gap between its threshold value for the fading channel



with SI and the capacity for that channel for rate 1/3. It can be seen from Fig. 2(a) that the
code sequences optimized for the fading channel with SI are also very good sequences on the
AWGN channel, e.g., considering the degree sequence with dlmax = 50 optimized for the
fading channel with SI, its threshold value for the AWGN channel is only 0.16dB away from
the channel capacity. Similar results can be observed from Fig. 2(b) for the reverse situation.

5.2 BER Simulation results
As shown in Fig. 1, the threshold values precisely predict the asymptotic performance as the
block length of the LDPC codes approaches infinity. We are also interested in the performance
of the optimized irregular LDPC codes when finite block size is considered. In the following
results, we considered four rate-1/3 LDPC codes at a block size of 3072. The first one, LDPC
ir1, is constructed according to the degree sequence with dlmax = 16 optimized for the AWGN
channel, as shown in Table 2. The degree sequence has thresholds of -0.32dB and 0.78dB on
the AWGN channel and the fading channel with SI, respectively. Note that the capacities for
these two channels are -0.4954dB and 0.4885dB, respectively. The second one, LDPC ir2, is
constructed according to the degree sequence with dlmax = 16 optimized for the fading channel
with SI, as shown in Table 3, with thresholds of -0.25dB and 0.68dB on the AWGN and fading
channel with SI, respectively. The third one, LDPC ir3, is constructed according to a degree
sequence1 with dlmax = 16, which has thresholds of -0.18dB and 0.96dB on the AWGN and
fading channel with SI, respectively. The last one, a quasi-regular2 LDPC code R with all
bit nodes degree-3, half of the check nodes degree-4, and half of the check nodes degree-5,
has thresholds of 0.85dB and 2.13dB on the AWGN channel and the fading channel with SI,
respectively. Among the four codes, ir1 has the best threshold on the AWGN channel and ir2
has the best threshold on the fading channel with SI.

Fig. 3(a) compares the simulation results of these four LDPC codes on both an AWGN
channel and an uncorrelated Rayleigh fading channel with SI. It is shown that all three irreg-
ular LDPC codes achieve excellent performance on both channels. Note that the simulation
results reflect the same relative performance as predicted by the computed threshold values.
Furthermore, the irregular codes perform much better than the regular code. For example, at a
BER of 2 × 10−4, ir2 outperforms the regular LDPC code on the AWGN channel and fading
channel with SI by about 0.7dB and 1.0dB, respectively.

In Fig. 3(b), ir1 and ir2 are compared to a (1,33/31,33/31) turbo code [8] of the same block
size and the same code rate on both an AWGN channel and an uncorrelated fading channel with
SI. We can see that ir1 and ir2 achieve virtually the same performance as the turbo code. On
the AWGN channel, ir1 is slightly better than the other two codes, while on the fading channel
with SI, ir2 is slightly better.

6 Conclusions
In this paper, we have shown that the numerical analysis technique for calculating the threshold
of the LDPC codes for the AWGN channel can be extended to the uncorrelated flat Rayleigh
fading channel. In addition, using the nonlinear optimization technique of differential evo-
lution, we optimized the degree sequences for the uncorrelated Rayleigh fading channel and
showed that the threshold values of these degree sequences are extremely close to the capacity

1This degree sequence was taken from Sae-Young Chung’s web site: http://truth.mit.edu/˜sychung/gaopt.html,
which is an irregular LDPC codes design applet for design of good LDPC codes on AWGN channel.

2For rate-1/3 (j, k) regular LDPC codes, if we choose j = 3, we can not make k to be an integer. Therefore,
we choose half of the check nodes degree-4 and half of the check nodes degree-5. We denote this code as a
rate-1/3 quasi-regular LDPC code.



of this channel. Simulation results for moderate block size showed that the optimized LDPC
codes can achieve excellent performance on both the AWGN channel and the Rayleigh fading
channel.

The authors wish to thank T. J. Richardson, R. Urbanke, S. Y. Chung, and H. D. Pfister for
their helpful comments about the decoding analysis, and K. Tang for providing the simulation
results for the turbo codes.
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dlmax 10 16 30 50

λ∗
2 0.351321 0.312740 0.279123 0.248068

λ2 0.328411 0.298433 0.267474 0.237738

λ3 0.300171 0.245016 0.228605 0.200028

λ4 0.001721 0.026700

λ5 0.007173

λ6 0.001274 0.167659

λ7 0.140199 0.094505

λ8 0.054426 0.050632

λ9 0.000662 0.063206 0.028717

λ10 0.367760 0.006163 0.060597

λ15 0.057204

λ16 0.281719

λ29 0.029347

λ30 0.210580 0.053621

λ49 0.174248

λ50 0.016010

ρ4 0.024056 0.004024

ρ5 0.974961 0.547412 0.049352

ρ6 0.000983 0.448564 0.949897 0.538274

ρ7 0.000751 0.359720

ρ8 0.102006

σ∗ 1.1220 1.1323 1.1440 1.1468(
Eb

N0

)∗
dB 0.7611 0.6817 0.5924 0.5712

Table 1: Good degree sequences of rate-1/3 for the uncorrelated Rayleigh fading channel with SI. For

each sequence the threshold value σ∗and the corresponding
(

Eb
N0

)∗
(dB) are given. The maximal value

of λ2 satisfying condition (19), λ∗2, is given for σ = σ∗and the given ρ′(1). Note that the capacity for
this channel at code rate 1/3 is 0.4885 dB.
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Figure 2: Comparison of the rate-1/3 code sequences optimized for the AWGN channel and the fading
channel with SI. Note that the capacity for the AWGN channel at rate 1/3 is -0.4954dB and the capacity
for the fading channel with SI at rate 1/3 is 0.4885dB.



dlmax 10 16 30 50

λ∗
2 0.342056 0.298223 0.264470 0.237297

λ2 0.329076 0.287567 0.256988 0.225792

λ3 0.261590 0.230039 0.217847 0.207865

λ4 0.048686 0.002147 0.012662

λ5 0.068969

λ6 0.095590

λ7 0.163553 0.107496

λ8 0.019108 0.061250 0.064003

λ9 0.044084 0.032510

λ10 0.360648 0.001780 0.012288

λ15 0.100307

λ16 0.296580

λ29 0.002474

λ30 0.252024 0.030314

λ50 0.206763

ρ4 0.000294 0.003426

ρ5 0.998683 0.424437

ρ6 0.001023 0.572137 0.882069 0.349540

ρ7 0.114372 0.598609

ρ8 0.003559 0.051851

σ∗ 1.2625 1.2714 1.2837 1.2858(
Eb

N0

)∗
dB -0.2637 -0.3247 -0.4084 -0.4225

Table 2: Good degree sequences of rate-1/3 for the AWGN channels. For each sequence the threshold

value σ∗ and the corresponding
(

Eb
N0

)∗
(dB) are given. The maximal value of λ2 satisfying condition

(16), λ∗
2, is given for σ = σ∗and the given ρ′(1). Note that the capacity for this channel at code rate 1/3

is -0.4954 dB.
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Figure 3: Simulation comparisons of rate-1/3, block size 3072, quasi-regular LDPC code R, irregular
LDPC codes ir1, ir2, and ir3, and turbo code on both an AWGN channel and an uncorrelated Rayleigh
fading channel with SI.


