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Abstract—We propose an approximation of maximum- >
likelihood detection in I1SI channels based on linear progranming | Channel [% ] 0= L& [ [ | | PR/LDPC
or message passing. We convert the detection problem into a |Encoder | —>_1 E—P—b Decoder
binary decoding problem, which can be easily combined with
LDPC decoding. We show that, for a certain class of channels
and in the absence of coding, the proposed technique providehe Fig. 1. Binary-input ISI channel.
exact ML solution without an exponential complexity in the sze
of channel memory, while for some other channels, this metttb Motivated by the success of LP decoding, in this work we
has a non-di_mir_lishing_probability of failure as SNR increa®s. study the problem of ML detection in the presence of IS,
ts ome analysis is provided for the error events of the propose ik can be written as an integer quadratic program (IQP).
echnique under linear programming. . . . )

We convert this problem into a binary decoding problem,
|. INTRODUCTION which can be used for message-passing decoding, or, after

Intersymbol interference (ISI) is a characteristic of mankelaxing the binary constraints, LP decoding. Furthermore
data communications and storage channels. Systems apgragiecoding an underlying LDPC code can be incorporated into
on these channels employ error-correcting codes in conjuriis problem simply by including the parity checks of the eod
tion with some ISI reduction technique, which, in magnetic By a geometric analysis we show that, in the absence of
recording systems, is often a conventional Viterbi detedto coding, if the impulse response of the ISI channel satisfies
is known that some gain will be obtained if the equalizatiogertain conditions, the proposed LP relaxation is guasthte
and decoding blocks are combined at the receiver by exchat@-produce the ML solution at all SNR values. This means
ing soft information between them. A possible approach tbat there are ISI channels, which we daft-properchannels,
achieving this gain is to use soft-output equalization roé¢h for which uncoded ML detection can be achieved with a
such as the BCJR algorithm [1] or the soft-output Viterbgomplexity polynomial in the channel memory size. On the
algorithm (SOVA) [2] along with iterative decoders. Howeve other end of the spectrum, some channels l&eimpropey
both BCJR and SOVA suffer from exponential complexity ine. the LP method results in a nonintegral solution with a
the length of the channel memory. probability bounded away from zero, even in the absence of

Kurkoski et al. [3] proposed a bit-based and a state-basewise. Furthermore, we observe some intermechatemptot-
graph representation of the ISI channel that can be combirieally LP-properchannels where the performance approaches
with the Tanner graph of a low-density parity-check (LDPChat of ML detection at high SNR. When message passing is
code for joint message-passing (MP) decoding. They showegsed instead of LP, we observe a similar behavior. Moreover,
that the bit-based method suffers from a significant perfoshen LDPC decoding is incorporated in the detector, LP-
mance degradation due to the abundance of 4-cycles, but fieper channels achieve very good performance, while some
state-based method has a performance and overall complegther channels cannot go below a certain word error rate.
similar to BCJR, while benefiting from a parallel structuredla  The rest of this paper is organized as follows. In Section
reduced delay. II, we describe the channel, and introduce the LP relaxation

Linear programming (LP) has been recently applied bgf ML detection. The performance analysis is presented in
Feldmanet al. [4] to the decoding of LDPC codes, as arbection lll. Simulation results are given in Section 1V, and
alternative to message-passing techniques. In this mgthed Section V concludes the paper.
binary parity-check constraints of the code are relaxedgeta
of linear constraints in the real domain, thus turning thteger
problem into an LP problem. While LP decoding perform4- Channel Model
closely to message-passing algorithms such as the sunugirod We consider a partial-response (PR) channel with bipolar
algorithm (SPA) and the min-sum algorithm (MSA), it is muc{BPSK) inputs, as described in Fig. 1, and use the following
easier to analyze for finite code lengths. notation for the transmitted symbols.
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Il. RELAXATION OF THE EQUALIZATION PROBLEM
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Notation 1: The bipolar version of a binary symbadl, € complexity linear inn, but exponential inu:. However, this
{0,1}, is denoted by € {—1,1}, and is given by model can also be used to describe other problems such as
detection in MIMO or two-dimensional ISI channels. Also,
when the source symbols have a non-binary alphabet with a
regular lattice structure such as the QAM and PAM alphabets,
fhe problem can be reduced to the binary problem of (5) by
mFroducing some new variables.

b=1-—2b. (1)
The partial-response channel transfer polynomial(i®) =
" o hiD*, wherey is the channel memory size. Thus, th
output sequence of the PR channel in Fig. 1 before adding
white Gaussian noise can be written as
C. Problem Relaxation

I
Yyt = Z hiZy—i. ) A common approach for solving the IQP problem is to first
=0 convert it to an integer LP problem by introducing a new
B. Maximume-likelihood (ML) Detection variable for each quadratic term, and then relax the intigra
Having the vector of received samples= [ry 75 -+ )7, condition; e.g. see [5].. While this relaxgd problem does not
the ML detector solves the optimization problem necessarily have an integer solution, it can be used along
with branch-and-cut techniques to solve integer probleins o
Minimize |z -], reasonable size. A more recent method is based on dualizing
Subjectto  z €%, (3) the IQP problem twice to obtain a convex relaxation in the

form of a semi-definite program (SDP) [6][7].
where%” C {0,1}" is the codebook and - || denotes the |n this work, we use the linear relaxation due to the lower
Ly-norm. By expanding the square of the objective functiogomplexity of solving LPs compared to SDPs. Unlike in [5],
the problem becomes equivalent to minimizing where the auxiliary variables are each defined as the product
2 of two 0-1 variables, we define them as the producttdf
2 2 o o variables, which, as we will see, translates into the mo@ulo
zt:(rt be) zt: e Zi:hlxt_l - (21: hlxt_l) addition of two bits when we move to the 0-1 domain. This
relaxation is more suitable for our purpose, since modulo-
= Z {Tf — 2y Z hiFr_i + Z hz? . 2 additive constraints are similar to parity-check corietsa
t i i thus, message-passing decoders designed for linear cades ¢
L be applied without any modification. However, it can be shown
+ Zzhih-jxt‘imt‘j}’ 4 that this relaxation gives the exact same solution as in [5].
7 To linearize (4), we define

where, for simplicity, we have dropped the limits of the ~ L ) )
summations. Equivalently, we can write the problem in a  2tJ = Tt~ Tt—j, J =1, t=j+1....n. (7)
general matrix form In the binary domain, this will be equivalent to
. 1
Minimize -q¢"i+ §iTP@, Ztj =Tt D Ty_j, (8)
Subject to T EC, (5 where@ stands for modulo-2 addition. Hence, the right-hand

side of (4) is a linear combination dfz;} and {z ;}, plus
a constant, given that;> = 1 is a constant. With some
simplifications, the IQP in (5) can be rewritten as

where in this problemy, = 3", hiri4, and P = HTH, with
H defined as ther x n Toeplitz matrix

(R 0
0 Minimize > g+ > A jzg,
: : e t t g
H= hOM h ho l? 0 ) (6) Subject to z € ¥,
. ’ Ztaj:xtEth*j?j:lv'--a,uﬂ
: - . t=j+1,....,n, (9)
L0 -+ 0 huy - hol

~where, in the equalization problem,
Here we have assumed thareros are padded at the beginning

and the end of the transmitted sequence, so that the trellis
diagram corresponding to the ISI channel starts and ends at Atj = —Pri—j =~ Z hihi;. (10)

the zero state. If the signals are uncoded, #e= {0,1}", =0

and ¢ and P are chosen arbitrarily, (5) will represent theln this optimization problem, we calz;} the information
general form of an integer quadratic programming (IQR)its, and{z. ;} the state bits. It can be seen from (10) that
problem, which is, in general, NP-hard. In the specific casg ; is independent of, except for indices near the two ends
of a PR channel, where we have the Toeplitz structure of (&), the block; ie.l1 <t < pandn—pu+1 <t <mn.In

the problem can be solved by the Viterbi algorithm with @ractice, this “edge effect” can be neglected due to the zero

min(p—j,n—t)

2552



ISIT2007, Nice, France, June 24 — June 29, 2007

padding at the transmitter. For clarity, we sometimes dirap t
first subscript in); ;, when the analysis is specific to the PR
detection problem.

The combined equalization and decoding problem (9) has
the form of a single decoding problem, which can be repre-
sented by a low-density Tanner graph. Fig. 2 shows an example
of the combination of a PR channel of memory stz@ith an
LDPC code. We call the upper and lower layers of this Tanner
graph the code layer and the PR layer (or the PR graph),
respectively. The PR layer of the graph consistg.afcheck
nodesc; ; of degree 3, each connected to two information bit
nodesz:, z:—;, and one distinct state bit node; ;. Also,
the PR layer can contain cycles of length 6 and higher. Ife@ndition than the nonnegativity of; ;, as the necessary and
coefficient, )\ ;, is zero, its corresponding state bit nodg,, sufficient condition for the success of the LP relaxation to
and the check node it is connected to can be eliminated frégsult in an integer solution for any value gfin (9). This
the graph, as they have no effect on the decoding processanalysis also sheds some light on the question of how the

It follows from (10) that the coefficients of the statedlgorithm behaves when this condition is not satisfied.
bits in the objective function{),;}, are only a function For a check node in the Tanner graph connecting infor-
of the PR channel impulse response, while the coefficierféation bit nodesr; and z;—; and state bit node; ;, the
of the information bits are the results of matched filteringonstraints (11) can be summarized as
the noisy received signal by the channel impulse response,
and therefore dependent on the noise realization. Once the .
variable coefficients in the objective function are deterexi, 2, < MiN[ze + 25,2 = & — 2],
LP decoding can be applied to solve a linear relaxation ghich can be further simplified as
decoding on this Tanner graph. We call this methioe
detection In the relaxation of [4], the binary parity-check [we — me—j| < 25 <1 — | + 25 — 1. (13)
constraint corresponding to each check neds relaxed as gjnce there is exactly one such pair of upper and lower bounds
follows. Let V. be the index set of neighbors of check nade ¢ gach state bit, in the solution vectay,; will be equal to
i.e. the variable npdes it is directly gonnected t_o in therBN gjiher the lower or upper bound, depending on the sign of its
graph. Then, we include the following constraints coefficient in the linear objective function, ;. Hence, having

in_ Z 2; <|V|-1, YV C N.s.t.|V]is odd (11) the coefficients, the cost af,; in the objective function can
be written as

>LDPC

> PR

Fig. 2. PR channel and LDPC code represented by a Tanner.graph

Z¢j > MaXzy — Ty j, To—j — Ty
(12)

eV i€ENAN\V

In addition, the integrality constraints, € {0,1} are relaxed Aejotg = Atjlee — il ff Atj =0, (14)
to box constraint$) < z; < 1. This relaxation has the “ML c Atj = Avjlee +a—y — 1 if Ay <O,
certificate property,” i.e. if the solution of the relaxed Li$

integral, it will also be the solution of (9).

where the first term in the second line is constant and does
h ici in the i sctive funcli ; not affect the solution. Consequently, by substituting) (14
The coefficients in the linear objective function, after @M, o ghjective function, the LP problem will be projected

normalization, can also be treated as log-likelihood Etliqy, the originaln-dimensional space, giving the equivalent
(LLR) of the corresponding bits, which can be used f%inimization problem

iterative message-passing decoding. In this work, we hagd u
the Min-Sum Algorithm (MSA), since, similar to LP decoding, Minimize fla) = Z qexe + Z Z [Aeillze — ze—j]
it is not affected by the uniform normalization of the vati@b t t,5: A, ;>0

coefficients in (9). n Z Z el + iy — 1],
I1l. PERFORMANCEANALYSIS t,j: A, <0
In this section, we study the performance of LP detectiopuPiectto  O<az <1, Vi =1,....n, (15)

in the absence of coding, i.e. solving (5) with = {0,1}".  which has a convex and piecewise-linear objective function
It is known that if the off-diagonal elements df are all Each absolute value term in this expression corresponds to a

nonpositive; i.e.\,; > 0, Vj # 0.t the 0-1 problem check node in the PR layer of the Tanner graph representation
is solvable in polynomial time by reducing it to the MIN-

CUT problem; e.g. see [8]. As an example, Sankaran afid LP-Proper Channels: Guaranteed ML Performance
Ephremides [9] argued using this fact that when the spreadin For a class of channels, which we caP-proper channels
sequences in a synchronous CDMA system have nonpositiie proposed LP relaxation of uncoded ML detection always
cross correlations, optimal multiuser detection can beedan gives the ML solution. The following theorem provides a
polynomial time. In this section, we derive a slightly weakecriterion for recognizing LP-proper channels.
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Theorem 1:The LP relaxation of the integer optimization
problem (9), in the absence of coding, is exact for every
transmitted sequence and every noise configuration if ahd on ----0
if the following condition is satisfied fof\; ;}:

Weak Nonnegativity Condition (WNC): Every N
check nodec, ;, connected to variable nodes A
and z;_;, which lies on a cycle in the PR Tanner N
graph corresponds to a nonnegative coefficient; i.e.
/\m > 0. Fig. 3. The dependence graph of the system of linear equatwith
Proof: We first prove that WNC is sufficient for guaran-cne cluster of cycles. Solid lines represent positive edyes dashed lines
teed convergence of LP to the ML sequence, and then shiGi/esent negative edges.
that if this condition is not satisfied, there are cases whelfewe modify the dependence graph by concentrating each
the LP algorithm fails. Some of the details in the proof areluster to a vertex of valug;, the graph will not contain any
omitted, and the reader is referred to a future longer papgycle. Therefore, the system of equations for determinireg t
[10]. In the proof, we make use of the following definition. variables is under-determined, and none of the nodes in this

Definition 1: Consider a piecewise-linear functiofi : graph will have a unigue solution. Hence, the only case that
R" — R. We call ¢ a breakpointof f if the derivative of will have a unigue solution for all the variables ks = n,
f(a+ sv) with respect tos changes at = 0, for any nonzero which means that all of the variablds;} are integral.
vectorv € R™. 2) Necessity: (Outline) We prove the necessity by a

1) Sufficiency:lIt is sufficient to show that under WNC, counter-example. Consider a case where the realizationeof t
the solution of (15) is always at one of the vertices of theoise sequence is such that the received sequence is 2ere. Si
unit cube, [0, 1]". In the absence of the box constraints, ththis makes the{q;} equal to zero, we will be left with the
minimum of the objective function has to occur either apositive-weighted sum of a number of absolute value terms.
infinity or at a breakpoint of this piecewise-linear functio The objective function will become zero if and only if all
Each breakpoing, is determined by making of the absolute these terms are zero, which is satisfied: i [%7 ce %]T. By
value termsactive i.e. setting their arguments equal to zerausing similar ideas to those in the sufficiency proof, we can
When the feasible region is restricted to the unit c{hé|”, show that if WNC is not satisfied, this is the unique vectot tha
the optimum can also occur at the boundaries of this regianakes all the terms equal to zero, and therefore, this traati
We can assume that the optimum lies on a numbkerof vector will be the solution of LP detection. [
hyperplanes corresponding to the box constraints, makingCorollary 1: The solutions of the LP relaxation of uncoded
exactlyk variables equal to either 0 or 1. In order to determingIL equalization are in the spad@, 3, 1}". (Proof omittedls
the remainingn — k fractional variables, at least — k other In a PR channel, due to the periodic structure of the
equations are needed, resulting from making a number Tdnner graph, WNC implies that either the graph is acyclic,
absolute value terms active. Each of these equations wié haor all the coefficients{\; ;} are nonnegative. An interesting
one of the two formse; = z;_; or z; +x:,; = 1, depending application of this result is in 2-D channels, for which ther
on whether); ; > 0 or \;; < 0, respectively. In each of is no feasible extension of the Viterbi algorithm. In a 2-D
these equations, either both, or neither of its variablesbE channel, the received signal ; at coordinate(t, s) in terms
integer. Since the former case does not provide an equatiorof the transmitted symbol arrafi; ,} has the form
terms of the fractional variables, we can assume that aflethe v
equations only mv_olve fractional variables. N Ty = Z Z i Tt i i+ Nese (16)

Now the question becomes under what condition such
equa_mons can _have a unique a_nd nonintegral solution. \M%nce, the state variable defined as.) ;) = 1. @
can illustrate this system of equations bgdependence graph : - 8)51%

. . . zi—1.s—; Will have the coefficient
where the vertices correspond to the- & fractional variable '

i=1 j=1

nodes, and between vertices and x,_; there is apositive ko Z

edge if A, ; > 0 and anegativeedge if A, ; < 0. An example Voo ==Y highivig 17)

of a dependence graph satisfying WNC is shown in Fig. 3. =15=1

In general, this graph contains clusters,C1,Cs,...,Cr, Theorem 1 guarantees that ML detection can be achieved by

of cycles, and also/ additional edges which do not lie onlinear relaxation ify,; > 0, Yk, > 0. An example of a 2-D
any cycle. If WNC is satisfied, each cluster will contain onlghannel satisfying this condition is given by the matrix
positive edges. This means that if we separate the equations 11

corresponding only to vertices within a clust€f of cycles, [hi ] = [1 _1] - (18)
these equations will all have the form, = x:_;, where . ) )

verticest andt — j belong toC;. Consequently, all vertices B- High SNR Analysis: asymptotically LP-Proper Channels
in C; have the same valuei,. The values of{3;} should Here we outline a method to characterize the event that
be determined by the edges (equations) between the clusteP detection fails to find the ML solution at high SNR. This
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analysis is motivated by the observation that for some célann 0

not satisfying WNC, this event at high SNR is dominated by & &— & & —a &6 crr. ip
the failure of the ML detector to find the transmitted sequenc igg; ["PSA
We call these channelssymptotically LP-propersince their lo’l’w —o—CH2. MSA
high-SNR performance is similar to that of ML. - - - CH2,ML

Given the solutioni of LP detection, let théractional set ol igﬂg LP
F c {1,...,n}, be the set of indices of elements fthat @
have fractional values in the solution. We know from Comglla @
1 that these fractional values are all equa%toA reasonable 107}
assumption supported by our simulations at high SNR is thi
if the ML solution, z, is correct, the integer elements bfare 10l
correct, as well. For the objective functighof (15) we have

f(@) < f(z). (19) 10° :
-2 0 2 4 6 8

By expandingf, this inequality can be written in terms of Normalized SNR, dB

{A\¢; }, z, andg. Moreover, eacly, is a function of the channel
coefficients, the transmitted sequengand the additive noise. Fig: 4. BER for CH1-CH3. SNR is defined as the transmitted aligower

. . . . to the received noise variance.
Hence, (19) will provide a condition in terms af and the
noise. In the absence of noise, and for a given fractional seecessary and sufficient conditions for the LP relaxatiothef
F, we can set up an integer optimization problem to find tHéhannel equalization problem to give the ML solution for all
transmitted sequence that minimiz¢gét) — f(x). We have transmitted sequences and all noise configurations. Irtiaddi
studied the special case whefe= {1,...,n}. In this case, for certain other channels, the performance of LP appraache
f(&) — f(z) = &, wheres, which we call the al% distance that of ML at high SNRs. For a third class of channels, LP
of the channel, becomes independentzofor large block detection has a probability of failure bounded away fronozer
lengths. This distance can be used to estimate the high-SR¥en in the absence of noise. In a step to characterize these
probability of failure. In particular, if for a channél< 0, LP  channels, we showed how a condition can be derived for
detection fails with a non-diminishing probability. We eefto the failure of LP detection, which can be used to estimate
these channels dsP-improperchannels. the asymptotic behavior of this detection method. Simatati
results show that message-passing decoding techniqueshav
similar performance to that of LP decoding for most channels
We have simulated graph-based detection using LP decod-

ing and MSA for three PR channels of memory size 3: ' _ '
1) CH1: h(D) = 1— D —0.5D? —0.5D? (satisfies WNC), This work is supported in part by NSF Grant CCF-0514859.

2) CH2: h(D) =1+ D — D? + D3, REFERENCES
. _ N2 _ N3
3) CH3: h(D) =1+ D — D*— D" (EPR4 channel). -, ¢ g0 3 cocke, F. Jelinek, and 3. Raviv, “Optimataking of inear

Uncoded bit error rates (BER) of detection on these channels codes for minimizing symbol error ratdEEE Trans. Inform. Theoryol.

using LP and MSA are shown Fig. 4. Since CH1 satisfies 'T-20. pp. 284-287, Mar. 1974. o _ , N
J. Hagenauer and P. Hoecher, “A Viterbi algorithm withftsecision

WNC, LP will be equivalent to ML on this channel. For CH2,™ ;s and its applications.” ifroc. IEEE GLOBECOMDallas, TX,
we have also provided the BER of ML. Except at very low Nov. 1989, vol. 3, pp. 1680-1686.

SNR where we see a small difference, the performance [&F ‘3- Ma_KUfk?SI'_%PPéH- dSiegel,dandrtJ_.lK. Wolf, "Jori]”t messa Tssmg
. . ecoding o coaes and partial-response C annlﬂ'f rans.
LP and ML are nearly equal, which means that CH2 is an | «om. Theoryyol. 48, no. 6, pp. 1410-1422, Jun. 2002.

asymptotically LP-proper channel. For both CH1 and CHZ4] J. Feldman, M. J. Wainwright, and D. Karger, “Using lingogramming

MSA converges in at most 3 iterations and has a BER very go gzcgﬁéi fgggryw::re%ro ggdeﬂEEE Trans. Inform. Theorwol. 51, no.
close to that of LP. On the other hand, for CH3, we Obser‘[@ L.’ J. Watters, “’Reduction of integer polynomial prograing problems

that the BERs of LP and MSA are almost constant. Hence, to zero-one linear programming problem&perations Researgivol. 15,
CH3 is an LP-improper channel. The results for detection no: 6, pp. 1171-1174, Nov.-Dec. 1967.

. . . P 6] C. Lemaréchal and F. Oustry, “Semidefinite relaxati@ml Lagrangian
with LDPC COdlng are omitted due to space limitations [101' duality with application to combinatorial optimizationRapport de

However, for the cases that we have simulated, all the LP- Rechercheno. 3710, INRIA, Jun. 1999.

proper and asymptotically LP-proper channels also showed’hM-X. Goemans and D.P. Williamson, *Improved approxioat algo-
rithms for maximum cut and satisfiability problems using &efinite
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