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Abstract— We propose an approximation of maximum-
likelihood detection in ISI channels based on linear programming
or message passing. We convert the detection problem into a
binary decoding problem, which can be easily combined with
LDPC decoding. We show that, for a certain class of channels
and in the absence of coding, the proposed technique provides the
exact ML solution without an exponential complexity in the size
of channel memory, while for some other channels, this method
has a non-diminishing probability of failure as SNR increases.
Some analysis is provided for the error events of the proposed
technique under linear programming.

I. I NTRODUCTION

Intersymbol interference (ISI) is a characteristic of many
data communications and storage channels. Systems operating
on these channels employ error-correcting codes in conjunc-
tion with some ISI reduction technique, which, in magnetic
recording systems, is often a conventional Viterbi detector. It
is known that some gain will be obtained if the equalization
and decoding blocks are combined at the receiver by exchang-
ing soft information between them. A possible approach to
achieving this gain is to use soft-output equalization methods
such as the BCJR algorithm [1] or the soft-output Viterbi
algorithm (SOVA) [2] along with iterative decoders. However,
both BCJR and SOVA suffer from exponential complexity in
the length of the channel memory.

Kurkoski et al. [3] proposed a bit-based and a state-based
graph representation of the ISI channel that can be combined
with the Tanner graph of a low-density parity-check (LDPC)
code for joint message-passing (MP) decoding. They showed
that the bit-based method suffers from a significant perfor-
mance degradation due to the abundance of 4-cycles, but the
state-based method has a performance and overall complexity
similar to BCJR, while benefiting from a parallel structure and
reduced delay.

Linear programming (LP) has been recently applied by
Feldmanet al. [4] to the decoding of LDPC codes, as an
alternative to message-passing techniques. In this method, the
binary parity-check constraints of the code are relaxed to aset
of linear constraints in the real domain, thus turning the integer
problem into an LP problem. While LP decoding performs
closely to message-passing algorithms such as the sum-product
algorithm (SPA) and the min-sum algorithm (MSA), it is much
easier to analyze for finite code lengths.

Fig. 1. Binary-input ISI channel.

Motivated by the success of LP decoding, in this work we
study the problem of ML detection in the presence of ISI,
which can be written as an integer quadratic program (IQP).
We convert this problem into a binary decoding problem,
which can be used for message-passing decoding, or, after
relaxing the binary constraints, LP decoding. Furthermore,
decoding an underlying LDPC code can be incorporated into
this problem simply by including the parity checks of the code.

By a geometric analysis we show that, in the absence of
coding, if the impulse response of the ISI channel satisfies
certain conditions, the proposed LP relaxation is guaranteed
to produce the ML solution at all SNR values. This means
that there are ISI channels, which we callLP-properchannels,
for which uncoded ML detection can be achieved with a
complexity polynomial in the channel memory size. On the
other end of the spectrum, some channels areLP-improper,
i.e. the LP method results in a nonintegral solution with a
probability bounded away from zero, even in the absence of
noise. Furthermore, we observe some intermediateasymptot-
ically LP-properchannels where the performance approaches
that of ML detection at high SNR. When message passing is
used instead of LP, we observe a similar behavior. Moreover,
when LDPC decoding is incorporated in the detector, LP-
proper channels achieve very good performance, while some
other channels cannot go below a certain word error rate.

The rest of this paper is organized as follows. In Section
II, we describe the channel, and introduce the LP relaxation
of ML detection. The performance analysis is presented in
Section III. Simulation results are given in Section IV, and
Section V concludes the paper.

II. RELAXATION OF THE EQUALIZATION PROBLEM

A. Channel Model

We consider a partial-response (PR) channel with bipolar
(BPSK) inputs, as described in Fig. 1, and use the following
notation for the transmitted symbols.
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Notation 1: The bipolar version of a binary symbol,b ∈
{0, 1}, is denoted bỹb ∈ {−1, 1}, and is given by

b̃ = 1 − 2b. (1)
The partial-response channel transfer polynomial ish(D) =

∑µ

i=0 hiD
i, whereµ is the channel memory size. Thus, the

output sequence of the PR channel in Fig. 1 before adding the
white Gaussian noise can be written as

yt =

µ
∑

i=0

hix̃t−i. (2)

B. Maximum-likelihood (ML) Detection

Having the vector of received samplesr = [r1 r2 · · · rn]T ,
the ML detector solves the optimization problem

Minimize
∥

∥r − y
∥

∥

2

Subject to x ∈ C , (3)

where C ⊂ {0, 1}n is the codebook and‖ · ‖2 denotes the
L2-norm. By expanding the square of the objective function,
the problem becomes equivalent to minimizing

∑

t

(rt − yt)
2 =

∑

t



r2
t − 2rt

∑

i

hix̃t−i +

(

∑

i

hix̃t−i

)2




=
∑

t

[

r2
t − 2rt

∑

i

hix̃t−i +
∑

i

h2
i x̃

2
t−i

+
∑∑

i6=j

hihj x̃t−ix̃t−j

]

, (4)

where, for simplicity, we have dropped the limits of the
summations. Equivalently, we can write the problem in a
general matrix form

Minimize − qT x̃ +
1

2
x̃T P x̃,

Subject to x ∈ C , (5)

where in this problemqt =
∑

i hirt+i, andP = HT H , with
H defined as then × n Toeplitz matrix

H =





















h0 0 · · ·
...

. . .
hµ · · · h0 0
0 hµ h0 0
...

. . .
. . .

0 · · · 0 hµ · · · h0





















. (6)

Here we have assumed thatµ zeros are padded at the beginning
and the end of the transmitted sequence, so that the trellis
diagram corresponding to the ISI channel starts and ends at
the zero state. If the signals are uncoded, i.e.C = {0, 1}n,
and q and P are chosen arbitrarily, (5) will represent the
general form of an integer quadratic programming (IQP)
problem, which is, in general, NP-hard. In the specific case
of a PR channel, where we have the Toeplitz structure of (6),
the problem can be solved by the Viterbi algorithm with a

complexity linear inn, but exponential inµ. However, this
model can also be used to describe other problems such as
detection in MIMO or two-dimensional ISI channels. Also,
when the source symbols have a non-binary alphabet with a
regular lattice structure such as the QAM and PAM alphabets,
the problem can be reduced to the binary problem of (5) by
introducing some new variables.

C. Problem Relaxation

A common approach for solving the IQP problem is to first
convert it to an integer LP problem by introducing a new
variable for each quadratic term, and then relax the integrality
condition; e.g. see [5]. While this relaxed problem does not
necessarily have an integer solution, it can be used along
with branch-and-cut techniques to solve integer problems of
reasonable size. A more recent method is based on dualizing
the IQP problem twice to obtain a convex relaxation in the
form of a semi-definite program (SDP) [6][7].

In this work, we use the linear relaxation due to the lower
complexity of solving LPs compared to SDPs. Unlike in [5],
where the auxiliary variables are each defined as the product
of two 0-1 variables, we define them as the product of±1
variables, which, as we will see, translates into the modulo-2
addition of two bits when we move to the 0-1 domain. This
relaxation is more suitable for our purpose, since modulo-
2 additive constraints are similar to parity-check constraints;
thus, message-passing decoders designed for linear codes can
be applied without any modification. However, it can be shown
that this relaxation gives the exact same solution as in [5].

To linearize (4), we define

z̃t,j = x̃t · x̃t−j , j = 1, . . . , µ, t = j + 1, . . . , n. (7)

In the binary domain, this will be equivalent to

zt,j = xt ⊕ xt−j , (8)

where⊕ stands for modulo-2 addition. Hence, the right-hand
side of (4) is a linear combination of{xt} and {zt,j}, plus
a constant, given that̃xi

2 = 1 is a constant. With some
simplifications, the IQP in (5) can be rewritten as

Minimize
x,z

∑

t

qtxt +
∑

t

∑

j

λt,jzt,j,

Subject to x ∈ C ,

zt,j = xt ⊕ xt−j , j = 1, . . . , µ,

t = j + 1, . . . , n, (9)

where, in the equalization problem,

λt,j = −Pt,t−j = −

min(µ−j,n−t)
∑

i=0

hihi+j . (10)

In this optimization problem, we call{xi} the information
bits, and{zt,j} the state bits. It can be seen from (10) that
λt,j is independent oft, except for indices near the two ends
of the block; i.e.1 ≤ t ≤ µ and n − µ + 1 ≤ t ≤ n. In
practice, this “edge effect” can be neglected due to the zero
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padding at the transmitter. For clarity, we sometimes drop the
first subscript inλt,j , when the analysis is specific to the PR
detection problem.

The combined equalization and decoding problem (9) has
the form of a single decoding problem, which can be repre-
sented by a low-density Tanner graph. Fig. 2 shows an example
of the combination of a PR channel of memory size2 with an
LDPC code. We call the upper and lower layers of this Tanner
graph the code layer and the PR layer (or the PR graph),
respectively. The PR layer of the graph consists ofµn check
nodesct,j of degree 3, each connected to two information bit
nodesxt, xt−j , and one distinct state bit node,zt,j. Also,
the PR layer can contain cycles of length 6 and higher. If a
coefficient,λt,j , is zero, its corresponding state bit node,zt,j,
and the check node it is connected to can be eliminated from
the graph, as they have no effect on the decoding process.

It follows from (10) that the coefficients of the state
bits in the objective function,{λt,j}, are only a function
of the PR channel impulse response, while the coefficients
of the information bits are the results of matched filtering
the noisy received signal by the channel impulse response,
and therefore dependent on the noise realization. Once the
variable coefficients in the objective function are determined,
LP decoding can be applied to solve a linear relaxation of
decoding on this Tanner graph. We call this methodLP
detection. In the relaxation of [4], the binary parity-check
constraint corresponding to each check nodec is relaxed as
follows. LetNc be the index set of neighbors of check nodec,
i.e. the variable nodes it is directly connected to in the Tanner
graph. Then, we include the following constraints
∑

i∈V

xi−
∑

i∈Nc\V

xi ≤ |V |−1, ∀ V ⊂ Nc s.t. |V | is odd. (11)

In addition, the integrality constraintsxi ∈ {0, 1} are relaxed
to box constraints0 ≤ xi ≤ 1. This relaxation has the “ML
certificate property,” i.e. if the solution of the relaxed LPis
integral, it will also be the solution of (9).

The coefficients in the linear objective function, after some
normalization, can also be treated as log-likelihood ratios
(LLR) of the corresponding bits, which can be used for
iterative message-passing decoding. In this work, we have used
the Min-Sum Algorithm (MSA), since, similar to LP decoding,
it is not affected by the uniform normalization of the variable
coefficients in (9).

III. PERFORMANCEANALYSIS

In this section, we study the performance of LP detection
in the absence of coding, i.e. solving (5) withC = {0, 1}n.
It is known that if the off-diagonal elements ofP are all
nonpositive; i.e.λt,j ≥ 0, ∀j 6= 0, t, the 0-1 problem
is solvable in polynomial time by reducing it to the MIN-
CUT problem; e.g. see [8]. As an example, Sankaran and
Ephremides [9] argued using this fact that when the spreading
sequences in a synchronous CDMA system have nonpositive
cross correlations, optimal multiuser detection can be done in
polynomial time. In this section, we derive a slightly weaker

Fig. 2. PR channel and LDPC code represented by a Tanner graph.

condition than the nonnegativity ofλt,j , as the necessary and
sufficient condition for the success of the LP relaxation to
result in an integer solution for any value ofq in (9). This
analysis also sheds some light on the question of how the
algorithm behaves when this condition is not satisfied.

For a check node in the Tanner graph connecting infor-
mation bit nodesxt and xt−j and state bit nodezt,j , the
constraints (11) can be summarized as

zt,j ≥ max[xt − xt−j , xt−j − xt]

zt,j ≤ min[xt + xt−j , 2 − xt − xt−j ], (12)

which can be further simplified as

|xt − xt−j | ≤ zt,j ≤ 1 − |xt + xt−j − 1|. (13)

Since there is exactly one such pair of upper and lower bounds
for each state bit, in the solution vector,zt,j will be equal to
either the lower or upper bound, depending on the sign of its
coefficient in the linear objective function,λt,j . Hence, having
the coefficients, the cost ofzt,j in the objective function can
be written as

λt,jzt,j =

{

λt,j |xt − xt−j | if λt,j ≥ 0,

λt,j − λt,j |xt + xt−j − 1| if λt,j < 0,
(14)

where the first term in the second line is constant and does
not affect the solution. Consequently, by substituting (14)
in the objective function, the LP problem will be projected
into the originaln-dimensional space, giving the equivalent
minimization problem

Minimize f(x) =
∑

t

qtxt +
∑∑

t,j:λt,j >0

|λt,j ||xt − xt−j |

+
∑∑

t,j:λt,j <0

|λt,j ||xt + xt−j − 1|,

Subject to 0 ≤ xt ≤ 1, ∀t = 1, . . . , n, (15)

which has a convex and piecewise-linear objective function.
Each absolute value term in this expression corresponds to a
check node in the PR layer of the Tanner graph representation.

A. LP-Proper Channels: Guaranteed ML Performance

For a class of channels, which we callLP-proper channels,
the proposed LP relaxation of uncoded ML detection always
gives the ML solution. The following theorem provides a
criterion for recognizing LP-proper channels.
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Theorem 1:The LP relaxation of the integer optimization
problem (9), in the absence of coding, is exact for every
transmitted sequence and every noise configuration if and only
if the following condition is satisfied for{λt,j}:

Weak Nonnegativity Condition (WNC): Every
check nodect,j , connected to variable nodesxt

and xt−j , which lies on a cycle in the PR Tanner
graph corresponds to a nonnegative coefficient; i.e.
λt,j ≥ 0.
Proof: We first prove that WNC is sufficient for guaran-

teed convergence of LP to the ML sequence, and then show
that if this condition is not satisfied, there are cases where
the LP algorithm fails. Some of the details in the proof are
omitted, and the reader is referred to a future longer paper
[10]. In the proof, we make use of the following definition.

Definition 1: Consider a piecewise-linear functionf :
R

n 7→ R. We call a a breakpointof f if the derivative of
f(a+ sv) with respect tos changes ats = 0, for any nonzero
vectorv ∈ R

n.
1) Sufficiency: It is sufficient to show that under WNC,

the solution of (15) is always at one of the vertices of the
unit cube,[0, 1]n. In the absence of the box constraints, the
minimum of the objective function has to occur either at
infinity or at a breakpoint of this piecewise-linear function.
Each breakpoint,a, is determined by makingn of the absolute
value termsactive, i.e. setting their arguments equal to zero.
When the feasible region is restricted to the unit cube[0, 1]n,
the optimum can also occur at the boundaries of this region.
We can assume that the optimum lies on a number,k, of
hyperplanes corresponding to the box constraints, making
exactlyk variables equal to either 0 or 1. In order to determine
the remainingn − k fractional variables, at leastn − k other
equations are needed, resulting from making a number of
absolute value terms active. Each of these equations will have
one of the two formsxt = xt−j or xt + xt+j = 1, depending
on whetherλt,j > 0 or λt,j < 0, respectively. In each of
these equations, either both, or neither of its variables can be
integer. Since the former case does not provide an equation in
terms of the fractional variables, we can assume that all these
equations only involve fractional variables.

Now the question becomes under what condition such
equations can have a unique and nonintegral solution. We
can illustrate this system of equations by adependence graph,
where the vertices correspond to then− k fractional variable
nodes, and between verticesxs and xs−i there is apositive
edge ifλs,i > 0 and anegativeedge ifλs,i < 0. An example
of a dependence graph satisfying WNC is shown in Fig. 3.
In general, this graph containsL clusters,C1, C2, . . . , CL,
of cycles, and alsoJ additional edges which do not lie on
any cycle. If WNC is satisfied, each cluster will contain only
positive edges. This means that if we separate the equations
corresponding only to vertices within a clusterCi of cycles,
these equations will all have the formxt = xt−j , where
verticest and t − j belong toCi. Consequently, all vertices
in Ci have the same value,βi. The values of{βi} should
be determined by the edges (equations) between the clusters.

Fig. 3. The dependence graph of the system of linear equations with
one cluster of cycles. Solid lines represent positive edgesand dashed lines
represent negative edges.

If we modify the dependence graph by concentrating each
cluster to a vertex of valueβi, the graph will not contain any
cycle. Therefore, the system of equations for determining the
variables is under-determined, and none of the nodes in this
graph will have a unique solution. Hence, the only case that
will have a unique solution for all the variables isk = n,
which means that all of the variables{xi} are integral.

2) Necessity: (Outline) We prove the necessity by a
counter-example. Consider a case where the realization of the
noise sequence is such that the received sequence is zero. Since
this makes the{qt} equal to zero, we will be left with the
positive-weighted sum of a number of absolute value terms.
The objective function will become zero if and only if all
these terms are zero, which is satisfied ifx = [ 12 , . . . , 1

2 ]T . By
using similar ideas to those in the sufficiency proof, we can
show that if WNC is not satisfied, this is the unique vector that
makes all the terms equal to zero, and therefore, this fractional
vector will be the solution of LP detection.

Corollary 1: The solutions of the LP relaxation of uncoded
ML equalization are in the space{0, 1

2 , 1}n. (Proof omitted)
In a PR channel, due to the periodic structure of the

Tanner graph, WNC implies that either the graph is acyclic,
or all the coefficients{λt,j} are nonnegative. An interesting
application of this result is in 2-D channels, for which there
is no feasible extension of the Viterbi algorithm. In a 2-D
channel, the received signalrt,s at coordinate(t, s) in terms
of the transmitted symbol array{x̃t,s} has the form

rt,s =

µ
∑

i=1

ν
∑

j=1

hi,j x̃t−i,s−j + nt,s. (16)

Hence, the state variable defined asz(t,s),(k,l) = xt,s ⊕
xt−k,s−l will have the coefficient

γk,l = −

µ
∑

i=1

ν
∑

j=1

hi,jhi+l,j+l. (17)

Theorem 1 guarantees that ML detection can be achieved by
linear relaxation ifγk,l ≥ 0, ∀k, l > 0. An example of a 2-D
channel satisfying this condition is given by the matrix

[hi,j ] =

[

1 1
1 −1

]

. (18)

B. High SNR Analysis: asymptotically LP-Proper Channels

Here we outline a method to characterize the event that
LP detection fails to find the ML solution at high SNR. This
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analysis is motivated by the observation that for some channels
not satisfying WNC, this event at high SNR is dominated by
the failure of the ML detector to find the transmitted sequence.
We call these channelsasymptotically LP-proper, since their
high-SNR performance is similar to that of ML.

Given the solution̂x of LP detection, let thefractional set,
F ⊂ {1, . . . , n}, be the set of indices of elements ofx̂ that
have fractional values in the solution. We know from Corollary
1 that these fractional values are all equal to1

2 . A reasonable
assumption supported by our simulations at high SNR is that
if the ML solution,x, is correct, the integer elements ofx̂ are
correct, as well. For the objective functionf of (15) we have

f(x̂) < f(x). (19)

By expandingf , this inequality can be written in terms of
{λt,j}, x, andq. Moreover, eachqt is a function of the channel
coefficients, the transmitted sequencex, and the additive noise.
Hence, (19) will provide a condition in terms ofx and the
noise. In the absence of noise, and for a given fractional set,
F , we can set up an integer optimization problem to find the
transmitted sequence that minimizesf(x̂) − f(x). We have
studied the special case whereF = {1, . . . , n}. In this case,
f(x̂) − f(x) = δ, whereδ, which we call the all-12 distance
of the channel, becomes independent ofx for large block
lengths. This distance can be used to estimate the high-SNR
probability of failure. In particular, if for a channelδ ≤ 0, LP
detection fails with a non-diminishing probability. We refer to
these channels asLP-improperchannels.

IV. SIMULATION RESULTS

We have simulated graph-based detection using LP decod-
ing and MSA for three PR channels of memory size 3:

1) CH1: h(D) = 1−D−0.5D2−0.5D3 (satisfies WNC),
2) CH2: h(D) = 1 + D − D2 + D3,
3) CH3: h(D) = 1 + D − D2 − D3 (EPR4 channel).

Uncoded bit error rates (BER) of detection on these channels
using LP and MSA are shown Fig. 4. Since CH1 satisfies
WNC, LP will be equivalent to ML on this channel. For CH2,
we have also provided the BER of ML. Except at very low
SNR where we see a small difference, the performance of
LP and ML are nearly equal, which means that CH2 is an
asymptotically LP-proper channel. For both CH1 and CH2,
MSA converges in at most 3 iterations and has a BER very
close to that of LP. On the other hand, for CH3, we observe
that the BERs of LP and MSA are almost constant. Hence,
CH3 is an LP-improper channel. The results for detection
with LDPC coding are omitted due to space limitations [10].
However, for the cases that we have simulated, all the LP-
proper and asymptotically LP-proper channels also showed a
good performance in the presence of coding.

V. CONCLUSION

We introduced a new graph representation of ML detection
in ISI channels, which can be used for combined equalization
and decoding using LP relaxation or iterative message-passing
methods. By a geometric study of the problem, we derived
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Fig. 4. BER for CH1-CH3. SNR is defined as the transmitted signal power
to the received noise variance.

necessary and sufficient conditions for the LP relaxation ofthe
channel equalization problem to give the ML solution for all
transmitted sequences and all noise configurations. In addition,
for certain other channels, the performance of LP approaches
that of ML at high SNRs. For a third class of channels, LP
detection has a probability of failure bounded away from zero
even in the absence of noise. In a step to characterize these
channels, we showed how a condition can be derived for
the failure of LP detection, which can be used to estimate
the asymptotic behavior of this detection method. Simulation
results show that message-passing decoding techniques have a
similar performance to that of LP decoding for most channels.
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