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In high-density perpendicular magnetic recording channels, nonlinear transition shift (NLTS) is one of the distortions that can degrade
the system performance. Write precompensation is a standard method used to combat the negative effect of NLTS. In this paper, we
propose a modified pattern-dependent noise predictive (PDNP) detection algorithm for use on channels with electronics noise, transition
jitter noise, and NLTS. We show that this detector can offer significant improvement in bit-error-rate (BER) compared to conventional
Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple
write precompensation scheme.

Index Terms—Jitter noise, NLTS, pattern-dependent noise prediction, perpendicular recording.

I. INTRODUCTION

AS THE areal density in a perpendicular recording system
increases, nonlinear effects in the recording and read-

back process can have a more significant impact on overall
performance. Nonlinear transition shift (NLTS) is an important
example of such effects. NLTS occurs during the write process,
and it is caused by magnetization effects due to previously
recorded transitions. The extent of the transition shift depends
on the head and media parameters, as well as on the preceding
data pattern. Write precompensation is a method that is widely
used to partially counteract the distortion induced by NLTS.

In this paper, we propose a new detection method designed
to further reduce the performance degradation resulting from
NLTS effects. We show that the new detector performs sig-
nificantly better than a conventional Viterbi detector and a
pattern-dependent noise prediction (PDNP) detector, while its
computational complexity is comparable to that of a PDNP
detector. In contrast to write precompensation, which generally
requires empirical optimization of the precompensation levels,
the new detection algorithm incorporates parameters that reflect
the channel nonlinearity and noise statistics. These parameters
can be determined either adaptively or through the use of
training sequences.

Several equalization and detection techniques have previ-
ously been proposed to reduce the effects of nonlinear distortion
and media noise in the magnetic recording readback channel.
A Volterra equalizer design method was proposed in [1] to
combat channel nonlinearities. Detector design has generally
concentrated on techniques that mitigate the effects of nonlinear
media noise and noise correlation. In particular, the conven-
tional Viterbi detector has been modified in various ways. For
example, in [2] and [3], partial local feedback noise prediction
was used to reduce the impact of correlated noise and media
noise. Kavčić and Moura [4] derived a maximum-likelihood se-
quence detector (MLSD) for an intersymbol-interference (ISI)
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channel with data-dependent finite-memory Gauss–Markov
noise and applied the detector to an autoregressive (AR) model
for the magnetic recording channel. The detector incorporates
pattern-dependent noise prediction filters. Moon and Park
[5] examined various suboptimal pattern-dependent noise
prediction (PDNP) detectors that offer a tradeoff between
performance and implementation complexity in the presence
of media noise. Zayed and Carley [6] and Sun et al. [7] both
proposed a modified Viterbi detector with a data-dependent
offset in the branch metric calculation, intended to deal with
both nonlinearities and media noise.

In this paper, we address the data-dependent nature of
NLTS and derive a modified PDNP detector for perpendicular
recording channels with additive Gaussian noise, transition
jitter noise, and NLTS. Computer simulations show that the
new detector, which we refer to as the mean-adjusted PDNP
(MA-PDNP) detector, improves the bit-error-rate (BER) perfor-
mance when compared to the conventional Viterbi detector and
the PDNP detector. In our simulations, we calculate the NLTS
according to the model proposed by Bertram et al. [8]. We
also show that the MA-PDNP detector can be combined with
write precompensation schemes to achieve further performance
improvement.

The paper is organized as follows. In Section II, the channel
model is introduced. Section III describes the structure of the
MA-PDNP detector. Section IV gives the simulation results and
comparisons between the MA-PDNP detector, Viterbi detector,
and PDNP detector. The performance of the MA-PDNP de-
tector combined with a dibit precompensation scheme is also
presented. Section V concludes the paper.

II. CHANNEL MODEL

We consider a channel model with AWGN, jitter noise, and
NLTS, described in [10]. Let the channel transition response be

(1)

where is the error function and is the width of the
transition response at half of its maximum amplitude.

Let be the binary input data sequence to the channel,
where . The corresponding transition sequence

0018-9464/$25.00 © 2008 IEEE

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 28, 2009 at 13:47 from IEEE Xplore.  Restrictions apply.



3762 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 11, NOVEMBER 2008

is given by , so . The
channel output can be written as

(2)

Here, is the net shift of the transition with respect to its
nominal location in the recording medium, is the random po-
sition jitter for transition , is the channel bit spacing (as well
as the sampling period), and is the electronics noise. For
each transition, the jitter value is assumed to be a zero-mean
Gaussian random variable with variance . The jitter values
for recorded transitions are mutually independent. The elec-
tronics noise is modeled as a zero-mean, AWGN process.
The variance of the sampled AWGN is denoted by

. We define the signal-to-AWGN ratio to be
.

The net transition shift is given by , where
is the NLTS induced by previously recorded transitions, and

is the precompensation applied to the transition . The
NLTS value , determined according to the NLTS model in [8]
and [9], is a function of and the locations of the previously
written transitions (including any precompensation applied
to them) and depends upon the parameters of the recording
medium and head.

In order to reduce computational complexity in our simu-
lations, we approximate the channel output by truncating the
Taylor series expansion of the transition response. Specifically,
we use an order-2 channel approximation, incorporating both
first- and second-derivative terms, as given by

(3)

where and are the first and second derivatives of the
transition response , respectively.

The system diagram is shown in Fig. 1. During the readback
process, the channel output is sampled and then passed through
the equalizer before it enters the detector. The discrete-time
signal at the detector input can thus be written as

(4)

where , , and denote the convolution of the FIR equalizer
taps with the samples of the channel dibit response, the first
derivative of the transition response, and the second derivative
of the transition response, respectively. The equalized sample
of the AWGN at time is denoted . With a target equalizer
response , the equalizer output
can be written as

(5)

Fig. 1. System diagram.

where

(6)
The noise , which has nonzero mean and a non-Gaussian
density, includes contributions from the NLTS, transition jitter
noise, equalized AWGN, and misequalization error .

III. MEAN-ADJUSTED PATTERN-DEPENDENT NOISE

PREDICTION

In this section, we will first give some background on the
PDNP detector and then introduce the MA-PDNP detector.

A. PDNP Detector

The conventional Viterbi algorithm with squared-Euclidean
metric is an MLSD only if the noise term in (5) is sam-
pled AWGN. The number of trellis states in such a Viterbi de-
tector is . For a channel with zero-mean, data-dependent, fi-
nite-memory Gauss–Markov noise, the MLSD was derived in
[4]. We refer to this as the pattern-dependent noise-prediction
(PDNP) detector. The branch metric corresponding to a trellis
branch at time can be expressed as

(7)

where is the memory length of the Markovian noise process,
and , denote the target equalizer output
samples. The noise variance and the noise prediction
coefficients , are data-dependent and can
be calculated from the noise covariance matrix. Denoting the
covariance matrix for by and for

by , we can write

(8)

where is a column vector and . The noise vari-
ance and prediction coefficients are then given by

(9)

(10)

where and .
The PDNP trellis complexity is increased by the memory

length of the Markovian noise as well as the span of its data
dependence. For example, suppose that the signal-dependent
noise depends on the data values in positions to

. Then, the trellis state at time is defined by
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, and the number of
states is therefore .

The noise in a magnetic recording channel is not fi-
nite-memory Gauss–Markov, so the PDNP detector is, strictly
speaking, not optimal, although it achieves near-optimal perfor-
mance [5]. Several methods have been proposed to reduce the
complexity of the PDNP detector, yielding a variety of simpler,
yet still effective detectors. Strategies include reducing the
prediction filter length, limiting the required number of predic-
tors by shortening the data-dependence length, and eliminating
trellis states by using feedback of tentative decisions.

B. MA-PDNP Detector

As we discussed in Section II, the noise in (6) is non-
Gaussian with non-zero mean. Along with the jitter noise, the
NLTS affects the noise mean and variance. However, unlike the
jitter noise, the NLTS is a deterministic, data-dependent non-
linear effect. To account for the NLTS, we propose a mean-ad-
justed PDNP (MA-PDNP) detector in which the branch metric
for a branch is written as:

(11)

where represents the data-dependent mean of the noise
.

The methods used to reduce the complexity of the PDNP de-
tector can also be applied to the MA-PDNP detector. More pre-
cisely, we can rewrite the branch metric in (11) as

(12)

where represents the data pattern from which the noise vari-
ance and the prediction filter coefficients corresponding to time

are determined. Since the noise is not a finite-memory Mar-
kovian process, we cannot assign a value for the memory length

. Instead, we specify a value to represent the length of the
noise prediction filters, and we denote the span of the data-de-
pendence by . The number of trellis states is given by .
When , the data pattern includes tentative decisions
from the survivor path ending at the initial state of the branch

The computational complexity of the MA-PDNP detector de-
pends upon the parameters and , while determines the
memory size required to store the pattern-dependent mean, vari-
ance and noise prediction filter coefficients. Thus, the overall
implementation complexity of the MA-PDNP detector is com-
parable to that of the corresponding PDNP detector.

The branch metric calculation requires the values of the data-
dependent mean, variance and filter coefficients. These param-
eters are derived from the channel noise statistics which can be
determined by means of a training sequence, or adaptively by
using an algorithm such as that proposed in [7], [11], or a com-
bination of these two methods. Of course, an adaptive scheme
requires extra computation to determine the noise variances and

Fig. 2. Comparison between Viterbi, PDNP, and MA-PDNP detectors.

filter coefficients using (9) and (10) at each time the noise sta-
tistics get updated.

IV. SIMULATION RESULTS

For the NLTS calculation, we set the medium to soft-under-
layer spacing to 20 nm, and the medium thickness is set to 10
nm. The channel spacing is 16 nm, corresponding to a linear
density of about bits/in. The remanent magnetiza-
tion to head field gradient ratio is set to 1.5. With these param-
eters, the NLTS of the isolated dibit pattern is about 20% of the
channel bit spacing .

The simulation uses pseudorandom input data divided
into 5000-bit sectors. The equalizer utilizes the minimum
mean-squared error (MMSE) monic constraint design [12].
The equalization target has length 3 and the number of FIR
equalizer taps is set to 15. The noise statistics are obtained by
means of a training sequence.

A comparison between the Viterbi detector, the PDNP de-
tector, and the MA-PDNP detector is shown in Fig. 2. The nor-
malized jitter noise variance is . The bit density is
set to . The BER for different detectors is plotted
versus SNR . The PDNP detector and the MA-PDNP detector
have the same number of states as the Viterbi detector,

. The data-dependence parameter is set to for both
the PDNP detector and the MA-PDNP detector. The two detec-
tors also have the same noise prediction filter length .
From the figure, it is clear that the MA-PDNP detector is su-
perior to the PDNP detector, which, in turn, outperforms the
conventional Viterbi detector. The intuitive explanation for this
relative behavior is that the pattern-dependent noise prediction
reduces the effect of the correlated jitter noise, while the pat-
tern-dependent mean compensates for the NLTS.

Fig. 3 compares MA-PDNP detector performance with var-
ious values of the noise prediction length and the data-de-
pendence length , assuming . Note that the per-
formance achieved with is very close to that obtained
with . We also note that the BER at dB
is nearly identical for . Even when we set ,
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Fig. 3. Comparison between different � and � .

Fig. 4. MA-PDNP detector with dibit precompensation.

corresponding to no noise prediction, the BER is only slightly
higher.

The MA-PDNP detector can also be used in combination with
write precompensation. To illustrate this, we simulated the BER
for the MA-PDNP detector used in conjunction with a dibit pre-
compensation scheme, with the results shown in Fig. 4. The
channel parameters were set to SNR dB, ,
and . The parameter settings for the NLTS calcula-
tion were the same as in the previously discussed simulations.
We set , and used the same number of trellis states in the
MA-PDNP detector as in the conventional Viterbi detector, i.e.,

. The figure shows that for a channel with NLTS,
the MA-PDNP detector can achieve a much lower BER than a
Viterbi detector even with dibit precompensation. For prediction
filter lengths , we see that the MA-PDNP detector with

dibit precompensation achieves the same performance as that of
a PDNP detector applied to a channel with no NLTS. This is true
over a wide range of precompensation values.

V. CONCLUSION

In this paper, we presented an MA-PDNP detector for per-
pendicular recording channels with NLTS, transition jitter, and
additive Gaussian noise. The new detector reduces the perfor-
mance degradation caused by data-dependent NLTS and media
noise. According to simulation results for an order-2 channel ap-
proximation, the MA-PDNP detector improves the performance
significantly as compared to both the conventional Viterbi de-
tector and the PDNP detector. At the same time, the computa-
tional complexity of the MA-PDNP detector is comparable to
that of the PDNP detector. The MA-PDNP detector can also be
combined with write precompensation to achieve further perfor-
mance improvements. Simulation results show that, when used
with a simple dibit precompensation technique, the MA-PDNP
detector provides the same BER performance as a PDNP de-
tector applied to a channel with no NLTS, over a wide range of
precompensation values.
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