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a matrix satisfying the hypothesis of Lemma 1. Hence, Lemma 1
implies that i 6= i. Similarly, by considering 0

j(q; (q)), we have
j 6= j . This proves dH( ; ) = 4.

This shows that Aq(q; 4; 3) =
q

3
for all q � 3. Theorem 4 now

follows.

V. CONCLUSION

In this correspondence, we complete the determination of
Aq(n; 4; 3) by employing large sets with holes to construct op-
timal (n; 4; 3)q-codes for n � 4 or 5mod 6, n � q � 1, and by
using a new technique based on special sequences to construct optimal
(q; 4; 3)q-codes. The results of this correspondence combine with
those in [1] to give:

Main Theorem: Aq(n; 4; 3) = minfUq(n);
n

3
g for all n and q.
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Markov Processes Asymptotically Achieve the Capacity of
Finite-State Intersymbol Interference Channels

Jiangxin Chen and Paul H. Siegel, Fellow, IEEE

Abstract—Recent progress in capacity evaluation has made it possible to
compute a sequence of lower bounds on the capacity of a finite-state in-
tersymbol-interference (ISI) channel by finding a sequence of optimized
Markov input processes with increasing order r, for which the state of the
process is the previous r input symbols. In this correspondence, we prove
that, as the order r goes to infinity, the sequence of optimized Markov
sources asymptotically achieves the capacity of the channel. The conclu-
sion is extended to two-dimensional finite-state ISI channels, the binary-
symmetric channel (BSC) with constrained inputs, and general indecom-
posable finite-state channels with a mild constraint.

Index Terms—Capacity, finite-state channels, intersymbol interference
(ISI) channels, Markov processes, run-length limited constraints, two-
dimensional channels.

I. INTRODUCTION

Magnetic recording channels are generally modeled as finite-state,
linear intersymbol-interference (ISI) channels with additive Gaussian
noise and a binary input constraint. While the capacity of a general
Gaussian linear ISI channel can be evaluated with the water-filling for-
mula [1], a formula for the capacity when the input is constrained to a
finite alphabet remains unknown.
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Recently, several groups independently proposed a numerical
technique to estimate information rates of such finite-state ISI chan-
nels [2]–[5]. The method requires the generation of a long channel
output realization and the application of the forward recursion of the
Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [6].

Lower bounds on the channel capacity have been computed by using
this technique to estimate the information rates I(r) of optimized,
order-r Markovian input processes (see, e.g., [4], [7], [8]), where the
Markov state of the source consists of the past r source symbols. As
the order r increases, the optimized information rates I(r) form a
nondecreasing sequence of capacity lower bounds. This approach has
been further utilized to design channel codes with the property that
the probability distribution of the codewords approximates that of the
optimized, order-r Markov source. Such codes have been shown to
approach the mutual information rate I(r) (see, e.g., [9]–[11]).

A subtle, but important question is: Does the sequence I(r) converge
to the true capacity, or does it remain bounded away from the capacity
for some or all finite-state ISI channels? The answer will not only de-
termine whether the capacity lower bound I(r) is asymptotically tight,
but also verify that the code design methodologies based upon the op-
timized Markov source distribution produce good codes. While empir-
ical evidence suggests that the sequence converges to the capacity for
certain simple recording channel models [13], [14], a rigorous analysis
has been lacking.

We remark that Blackwell et al. [12] proved that a periodic Mar-
kovian input of period n which generates consecutive, optimized block
codewords of length n can achieve the capacity of a one-dimensional
finite-state indecomposable channel as the order (and the period) of
the Markov process goes to infinity. However, the state of such a
Markov process is not observable, whereas we are considering the
class of Markov processes for which the state is explicitly determined
by the last r symbols.

We can reformulate the question above as follows: For a finite-state
ISI channel as described above, can a sequence of finite-order Markov
sources, whose states are determined by the last r symbols, be used
to approximate arbitrarily closely a capacity-achieving, discrete input
process, in the sense that the information rates achieved by the Mar-
kovian inputs asymptotically achieve the channel capacity?

In this correspondence, we give an affirmative answer to this ques-
tion. We then extend the result to another input-constrained, finite-
state channel model, namely, the one-dimensional binary-symmetric
channel (BSC) with a (d; k)-run-length limited (RLL) input. Informa-
tion rates for this channel have been addressed in [8], [15]. Next, we
discuss the proof of an analogous result for two-dimensional Gaussian
linear finite-state ISI channels.1 Finally, we demonstrate that this is a
general result applicable to all finite-state indecomposable channels.

The correspondence is organized as follows. In Section II, we give
the proof of the convergence result for one-dimensional ISI channels.
We then discuss the relatively straightforward extension to the RLL-
constrained BSC channel. In Section III, we consider the issue of Mar-
kovian approximations for capacity-achieving processes for two-di-
mensional Gaussian linear finite-state ISI channels and state a corre-
sponding convergence result. The extension to general finite-state in-
decomposable channels is given in Section IV. Concluding remarks are
made in Section V.

1The one-dimensional BSC with a (d; k) RLL-constrained input is also a
recording channel model for traditional magnetic storage devices. The two-di-
mensional finite-state ISI channel is used to model newly developed, page-ori-
ented storage devices such as holographic memory [21]. In the two-dimensional
channel model, the input, output, and channel impulse response are all two-di-
mensional arrays (see Section III for more detailed definition of two-dimen-
sional finite-state ISI channels). In general, we denote a channel to be D-di-
mensional if the channel input, output, and the channel impulse response are all
D-dimensional arrays.

II. CONVERGENCE FOR ONE-DIMENSIONAL FINITE-STATE

ISI CHANNELS

A. Linear Gaussian ISI Channels

We first consider the following one-dimensional finite-state ISI
channel model

yk =

m�1

l=0

hlxk�l + nk

where xk is the discrete-time finite-alphabet channel input, yk is the
channel output,nk is the additive white Gaussian noise with zero mean,
variance �2, and hk is the channel impulse response. The memory
length of this ISI channel is m � 1. Without loss of generality, we
assume the channel is causal.

The capacity of such a channel model is generally defined as

C = lim
n!1

sup
p(X )

1

n
I (Xn

1 ; Y
n
1 ) : (1)

As pointed out in [16], this definition requires that the input maxi-
mizing the mutual information behave ergodically. Indeed, Feinstein
[17] proved that for a one-dimensional finite-memory channel with
discrete input and discrete or continuous output, the capacity C can be
achieved by a stationary ergodic input process. Since the one-dimen-
sional finite-state ISI channel is a special case of the one-dimensional
finite-memory channel, the same conclusion holds. Therefore, we will
restrict our attention to stationary and ergodic input processes. Note that
even though the definition of capacity in (1) only refers to the portion of
the input and output processes for positive indices k > 0, we assume
that all processes considered in the correspondence are bi-infinite.

The mutual information rate achieved by a stationary input process
X , with corresponding output process Y , is defined as

I(X ;Y) = lim
n!1

1

n
I (Xn

1 ;Y
n
1 )

= lim
n!1

1

n
H (Xn

1 ) + lim
n!1

1

n
H (Y n

1 )

� lim
n!1

1

n
H (Xn

1 ; Y
n
1 )

=H(X ) +H(Y)�H(X ;Y):

The capacity is therefore the supremum of the mutual information rates
over all the stationary ergodic input processes.

To prove the convergence result, we need to answer two questions.
1) Given a capacity-achieving input process X and a Markov order

r, how do we find a good approximating Markov input process ~X
whose state is its past r input symbols?

2) Given such a Markov input ~X , how do we evaluate the difference
between the mutual information rate achieved by the capacity-
achieving input process X and that achieved by ~X ?

Therefore, we can summarize the proof procedure as follows. To an-
swer the first question, we will use a systematic procedure to construct
a Markov approximation, given a stationary input process X and a
Markov order r. Although the resulting order-r Markov approximation
may not achieve the maximum mutual information rate for the given
Markov order r, we show that the mutual information rates of the ap-
proximating processes approach the channel capacity as the Markov
order r goes to infinity.

To answer the second question, we first establish some equalities
between the entropies related to the desired processX and those related
to its approximation ~X . More specifically, for an order-r (r � m� 1)
Markov approximation, we will establish

H X
r+1
1 =H ~Xr+1

1

H X
r�m+2
1 Y

r�m+2
1 =H ~Xr�m+2

1
~Y r�m+2
1 : (2)
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Then we will show that by choosing a sufficiently large Markov order
r during the approximation, the mutual information rate induced by ~X
is lower-bounded by I (X ;Y)� � for any prespecified � > 0.

We now consider how to approximate a discrete stationary ergodic
input process by a Markov chain of order r whose Markov state is
the past r input symbols. Denote a cylinder set of length r + 1 in a
discrete, stationary ergodic process X with finite alphabet by Xr+1

1 =
[X1; . . . ; Xr+1]. Using the same approximation approach as in [19],
we define an order-r Markov chain ~X as follows. Set the transition
probabilities to

~Xr+k+1 = xr+1 ~Xr+k
1+k = xr1

= ~Xr+1 = xr+1 ~Xr
1 = xr1

=
Xr+1
1 = xr+11

(Xr
1 = xr1)

for all k, and the initial probability distribution to

~Xr
1 = xr1 = (Xr

1 = xr1)

for every set Xr
1 whose probability (Xr

1 = xr1) > 0. Thus, the set
of states of this Markov process is S ~X = fxr1 : (Xr

1 = xr1) > 0g.
It can be shown that this defines a stationary, ergodic Markov
process whose finite distribution satisfies ( ~Xd+j�1

d = xj1) =
Xj
1 = xj1 whenever j r + 1. This is due to the fact that, for

every state in S ~X

~Xr+1
1 = xr+11

= ~Xr
1 = xr1 ~Xr+1 = xr+1 ~Xr

1 = xr1

= (Xr
1 = xr1)

Xr+1
1 = xr+11

(Xr
1 = xr1)

= Xr+1
1 = xr+11 : (3)

When the channel input is a stationary process, the channel output
is also stationary. Let the channel output processes induced by the
input processes ~X and X be denoted by ~Y and Y , respectively. It is
straightforward to show that the joint probability density function (pdf)
f ~Xr+1

1 = xr+11 ; ~Y r+1
m = yr+1m , for r � m � 1, is also equal to

f Xr+1
1 = xr+11 ; Y r+1

m = yr+1m when (3) holds. Specifically

f ~Xr+1
1 = xr+11 ; ~Y r+1

m = yr+1m

= ~Xr+1
1 = xr+11 f ~Y r+1

m = yr+1m
~Xr+1
1 = xr+11

=
Xr+1
1 = xr+11

(2��2)
exp �

r+1

l=m

yl �
m�1

k=0

hkxl�k

2

2�2

= f Xr+1
1 = xr+11 ; Y r+1

m = yr+1m : (4)

From (4), we conclude that

H Xr+1
1 =H ~Xr+1

1

H Xr+1
m Y r+1

m =H ~Xr+1
m

~Y r+1
m :

Due to the stationarity of both the input and the output processes, we
can also have

H Xr�m+2
1 Y r�m+2

1 = H ~Xr�m+2
1

~Y r�m+2
1 :

if we look at the input/output segments Xr�m+2
�m+2 ; Y r�m+2

1 and
~Xr�m+2
�m+2 ; ~Y r�m+2

1 instead.
We now state and prove the main result of this section.

Theorem 1: Let C denote the capacity of a finite-state ISI channel
with finite input alphabet and additive Gaussian noise. Then, for any
� > 0, there exists a finite-order Markov process ~X whose state is the
previous r symbols, with corresponding output process ~Y , such that

I( ~X ; ~Y) > C � �:

Proof: From the definition of the capacity and Feinstein’s result,
we know that for any � > 0, there exists a stationary ergodic input
process X such that the mutual information rate satisfies I (X ;Y) >
C � (�=2). Since both input X and output Y are stationary processes,
we also have that for any � > 0, there exists N > 0 such that when
n > N

H (X jY )�
1

n
H (Xn

1 jY
n
1 ) < �: (5)

If we approximate the stationary input process X with an order-r
Markov process ~X , with r m � 1, we get

p Xr�m+2
�m+2 = xr�m+2

�m+2 ; Y r�m+2
1 = yr�m+2

1

= p ~Xr�m+2
�m+2 = xr�m+2

�m+2 ; ~Y r�m+2
1 = yr�m+2

1 :

The stationarity of the input/output processes and the above equation
lead to the following relationships:

H ~X =H ~Xr+1
~Xr
1 = H (Xr+1 jX

r
1 )

H (Xr+1 jX
r
�1 ) = H (X ) ; (6)

and

H ~Xn
1

~Y n
1 = H (Xn

1 jY
n
1 ) (7)

where 1 n r �m + 2.
Using the chain rule, the stationarity of the processes, and the fact

that conditioning reduces entropy, we get the following:

H ~Xsn
1

~Y sn
1 =

s

i=1

H ~Xin
(i�1)n+1

~Y sn
1 ; ~X

(i�1)n
1

s

i=1

H ~Xin
(i�1)n+1

~Y in
(i�1)n+1

= sH ~Xn
1

~Y n
1 :

As s ! 1

H ~X ~Y = lim
s!1

1

sn
H ~Xsn

1
~Y sn
1

1

n
H ~Xn

1
~Y n
1 : (8)

Choosing r N +m� 1, n = r�m+2, and combining (5), (6),
(7), (8), we can bound I ~X ; ~Y from below by

I ~X ; ~Y =H ~X �H ~X ~Y

H (X )�
1

n
H ~Xn

1
~Y n
1

=H (X )�
1

n
H (Xn

1 jY
n
1 )

>H (X )�H (X jY )� �

= I (X ;Y)� �:
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Setting � = �=2, we see that

I( ~X ; ~Y) > I (X ;Y)� �=2 > C � �:

It follows that the mutual information rates of the approximating
Markov processes constructed in the proof converge to the channel ca-
pacity as their order goes to infinity.

B. BSC With RLL-(d; k) Inputs

RLL (d; k)-constrained binary sequences have seen wide use in
data storage devices. The parameters d and k represent the minimum
number and maximum number, respectively, of 0’s separating two
consecutive 1’s. The capacity of an RLL-(d; k), input-constrained
BSC is defined as

C = sup
X

I(X ;Y)

where the supremum is over all stationary input processes which
satisfy the RLL-(d; k) constraint. We have the following analogue of
Theorem 1.

Theorem 2: Let C denote the capacity of an RLL-(d; k), input-
constrained BSC. Then, for any � > 0, there exists a finite-order,
RLL-(d; k)-constrained Markov process ~X , with corresponding output
process ~Y , such that

I( ~X ; ~Y) > C � �:

The proof of Theorem 2 follows from reasoning similar to that
used in the proof of Theorem 1. The only significant difference is
that we need to ensure that the approximating Markov processes
generate sequences that satisfy the RLL-(d; k) constraint. This
will be the case if the finite-dimensional distribution of ~X satisfies

~Xl+k
l = xl+kl = 0 for sequences xl+kl that violate the con-

straint. If k = 1, we substitute d for k in this condition.
If we choose the Markov order r large enough to satisfy

r > maxfN + m � 1; kg, where N has the same meaning as
in Section II-A, then we can define an approximating Markov process
with a finite-dimensional distribution such that

( ~X l+r
l = xl+rl ) = (X l+r

l = xl+rl )

for all length-(r + 1) words. (If k = 1, then the corresponding con-
dition is r > maxfN + m � 1; dg.) This condition guarantees that
all patterns forbidden by the RLL-(d; k) constraint will have proba-
bility zero, since the process X obeys that constraint. Moreover, if N
is chosen to be sufficiently large, the approximating Markov process
can achieve a mutual information rate I( ~X ; ~Y) > C � �, for any pre-
specified � > 0.

We remark that Kavčić [8] described a sequence of lower bounds on
the capacity of the BSC with stationary RLL-(d; k)-constrained inputs.
These were obtained by applying an iterative algorithm that is conjec-
tured to produce a constrained Markov input process of specified order
that maximizes the mutual information. If the conjecture is true, then
our result shows that this sequence of lower bounds converges to the
constrained channel capacity.

III. CONVERGENCE FOR TWO-DIMENSIONAL FINITE-STATE

ISI CHANNELS

In this section, we extend the convergence result to two-dimensional
finite-state ISI channels

yk ;k =

m �1

l =0

m �1

l =0

hl ;l xk �l ;k �l + nk ;k (9)

where xk ;k is the discrete-time finite-alphabet channel input, yk ;k

is the channel output, nk ;k is the additive white Gaussian noise with
zero mean, variance �2, and hk ;k is the channel impulse response.
Again, we assume the channel is causal. This channel model is appli-
cable to page-oriented storage technologies [21] or to certain image
processing applications.

Equation (9) defines a two-dimensional finite-state ISI model with
a very regular structure. That is, the local relationships of the channel
input, the interference, the noise, and the channel output are identical
throughout the two-dimensional space. The regular channel structure
makes it possible to extend Shannon’s coding theorem to this two-di-
mensional setting.

More specifically, let Xk;l
i;j be a rectangular array of X whose

upper left corner position is (i; j) and lower right corner position is
(k; l) (k i; l j). A code is defined as a collection of two-dimen-
sional arrays of size u � v with probability distribution p Xu;v

1;1 . As
the dimensions of the arrays go to infinity, the achievable coding rate is

lim
u;v!1

1

uv
I Xu;v

1;1 ;Y
u;v
1;1 :

The capacity of this two-dimensional channel is defined as

C = lim
u;v!1

sup
p X

1

uv
I Xu;v

1;1 ;Y
u;v
1;1

which is a direct extension of the capacity definition for one-dimen-
sional ISI channels in (1). However, in contrast to the one-dimensional
case, it is not known, to the best of our knowledge, whether the ca-
pacity of a two-dimensional ISI channel is achieved by a stationary
ergodic input process. Therefore, we will focus on the stationary ca-
pacity, meaning the supremum of the mutual information rates achiev-
able with stationary input processes, defined by

Cs = sup
X

I(X ;Y)

= sup
X

[H(X ) +H(Y)�H(X ;Y)]

where X is the stationary two-dimensional input process, and H(�)
is the entropy rate of the corresponding two-dimensional stationary
process. (For a stationary two-dimensional process W , the subaddi-
tivity of H W u;v

1;1 in each dimension ensures that the entropy rate
exists [22].)

We still denote the desired two-dimensional stationary discrete input
process by X , the approximating Markov input by ~X , and the corre-
sponding outputs by Y and ~Y , respectively. Using the notation in [23],
we define the “past” of element Xi;j in the row direction as

PastR fXi;jg = fXu;v : u < ig [ fXu;v : u = i; v < jg : (10)

This definition applies to arrays of finite size as well as arrays of infi-
nite size. For arrays of infinite size, PastR fXi;jg consists of infinite
elements. We denote by PastR;l fXi;jg a finite region in the past of
Xi;j in the row direction

PastR;l fXi;jg = fXu;v : i� l1 u < i; j � l2 v j + l3g

[ fXu;v : u = i; j � l2 v < jg

where l = [l1; l2; l3] and li 0, i = 1; 2; 3. The r-close neighborhood
of Xi;j is defined as2

L
(r)
R (Xi;j) = PastR;[r;r;0] fXi;jg :

2This is only one of many ways of defining a two-dimensional neighborhood.
Many other neighborhood definitions can be used to prove the results in this
section.
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Fig. 1. The regions Past fX g and L fX g.

The definitions above are illustrated in Fig. 1. A two-dimensional
Markov chain of order r in the row direction3 is a two-dimensional
process ~X that satisfies

~Xi;j = xi;j PastR;1 ~Xi;j = PastR;1 (xi;j)

= ~Xi;j = xi;j L
(r)
R ( ~Xi;j) = L

(r)
R (xi;j) ; 8 (i; j)

where 1 = [1;1;1].
Given a two-dimensional stationary process X , we can approximate

it with a Markov chain ~X of order r by specifying the transition proba-
bilities as shown in the equation at the bottom of the page, and assigning
the boundary (initial) probability distribution

~X0;1
�r+1;�r+1 = x

0;1
�r+1;�r+1

= X
0;1
�r+1;�r+1 = x

0;1
�r+1;�r+1

~X1;0
�r+1;�r+1 = x

1;0
�r+1;�r+1

= X
1;0
�r+1;�r+1 = x

1;0
�r+1;�r+1 : (11)

It is easy to see that ~X is a two-dimensional stationary process with the
property that

~Xi;j = xi;j ; L
(r)
R ( ~Xi;j) = L

(r)
R (xi;j)

= Xi;j = xi;j ; L
(r)
R (Xi;j) = L

(r)
R (xi;j) ; 8 i > 0; j > 0:

(12)

A stationary two-dimensional input also produces a stationary
channel output, and (12) leads to an equality similar to (4) for the joint
probability density of the finite-dimensional input/output array, which
further leads to equalities similar to (2).

To extend the one-dimensional proof to two-dimensional ISI chan-
nels, we first invoke a theorem on the entropy rate of d-dimensional sta-
tionary processes on the Zd lattice due to Katznelson and Weiss [24].
Anastassiou and Sakrison [25] obtained a similar result for stationary

3In the rest of this section, we will for simplicity refer to this as a Markov
chain of order r.

two-dimensional processes on Z2. For simplicity, we state this result
in the context of the Z2 lattice.

Theorem 3: For a stationary two-dimensional random process Y on
Z2, the entropy rate H(Y) satisfies the following equality:

H(Y) = H Yi;j PastR;1 fYi;jg ;

meaning that for any given � > 0, there exist Mi > 0, i = 1; . . . ; 3,
such that when li > Mi for every 1 i 3

H(Y)�H Yi;j PastR;l fYi;jg < �:

With Theorem 3, we can extend the proof for Theorem 1 and obtain
the following convergence result for two-dimensional finite-state ISI
channels.

Theorem 4: Let Cs denote the stationary capacity of a two-dimen-
sional finite-state linear ISI channel with finite input alphabet and ad-
ditive Gaussian noise. Then, for any � > 0, there exists a finite-order
two-dimensional Markov process in the row direction ~X , with corre-
sponding output process ~Y , such that

I( ~X ; ~Y) > Cs � �:

Schetch of Proof: We will only highlight the differences from the
proof of Theorem 1.

Similar to the one-dimensional case, for the stationary processes X
and Y , we have that for any � > 0, there exists N1 > 0 and N2 > 0
such that when u > N1, v > N2

H (X jY )�
1

uv
H X

u;v
1;1 Y

u;v
1;1 < �: (13)

We approximate the desired two-dimensional input X by a Markov
chain ~X of order r. The approximation ensures that

H ~Xu;v
1;1

~Y u;v
1;1 = H X

u;v
1;1 Y

u;v
1;1 (14)

where 1 u r �m1 + 2, and 1 v r �m2 + 2.
The two-dimensional Markov property and Theorem 3 lead to the

following inequality:

H ~X =H ~Xu;v L
(r)
R

~Xu;v

=H Xu;v L
(r)
R (Xu;v)

H Xu;v PastR;1 fXu;vg = H (X ) (15)

Now we consider the channel input array of size n1u � n2v,
~Xn u;n v
1;1 , and divide it into disjoint u � v subarrays of the form

~Xiu;jv

(i�1)u+1;(j�1)v+1, denoted by ~XB
i;j . We apply the same procedure

~Xr+k+1;r+l+1 = xr+1;r+1jL
(r)
R ( ~Xr+k+1;r+l+1) = L

(r)
R (xr+1;r+1)

= ~Xr+1;r+1 = xr+1;r+1jL
(r)
R ( ~Xr+1;r+1) = L

(r)
R (xr+1;r+1)

=
Xr+1;r+1 = xr+1;r+1; L

(r)
R (Xr+1;r+1) = L

(r)
R (xr+1;r+1)

L
(r)
R (Xr+1;r+1) = L

(r)
R (xr+1;r+1)

; 8 k; l
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to the n1u � n2v channel output array ~Y n u;n v
1;1 . Thus, we have the

decompositions

~Xn u;n v
1;1 = ~XB

1;1; ~X
B
1;2; . . . ; ~X

B
1;n ; ~XB

2;1; . . . ; ~X
B
n ;n

and
~Y n u;n v
1;1 = ~Y B

1;1; ~Y
B
1;2; . . . ; ~Y

B
1;n ; ~Y B

2;1; . . . ; ~Y
B
n ;n :

If we treat the regions ~XB
i;j and ~Y B

i;j as elements of the corresponding
two-dimensional arrays, we can order them according to the row direc-
tion within their respective arrays and define the “past” as in (10). Then
we can apply the chain rule based on this two-dimensional ordering as
follows:

H ~Xn u;n v
1;1

~Y n u;n v
1;1

=

n

i=1

n

j=1

H ~XB
i;j

~Y n u;n v
1;1 ;PastR ~XB

i;j

n

i=1

n

j=1

H ~XB
i;j

~Y B
i;j = n1n2H ~XB

1;1
~Y B
1;1 :

As n1; n2 ! 1

H ~X ~Y = lim
n ;n !1

1

n1n2uv
H ~Xn u;n v

1;1
~Y n u;n v
1;1

1

uv
H ~XB

1;1
~Y B
1;1

=
1

uv
H ~Xu;v

1;1
~Y u;v
1;1 :

The rest follows the same reasoning as the proof of Theorem 1.

IV. EXTENSION TO GENERAL INDECOMPOSABLE

FINITE-STATE CHANNELS

We now extend our previous results to the more general indecom-
posable finite-state channels with a mild constraint that the entropy of
the channel output is finite.

In the one-dimensional scenario, let Xk be the channel input at time
k, Yk be the corresponding channel output, andZk be the channel state
at time k, respectively. (While Xk and Zk are discrete with finite al-
phabets, Yk can be either discrete or continuous.) A one-dimensional
finite-state channel can be defined as

Zk = g1 (Zk�1; Xk)

Yk =w1 (Zk�1;Xk)

where g1(�) is characterized by the transition probability

(Zk = zk jZk�1 = zk�1;Xk = xk ) = q (zk jzk�1; xk )

and w1(�) is described by the conditional probability distribution

(Yk = yk jZk�1 = zk�1;Xk = xk ) = p (yk jzk�1; xk ) :

(If Yk is continuous, the left-hand side of the equation is replaced by
its corresponding pdf.) Unlike the finite-state ISI channel model which
is also a finite-memory channel, the channel state Zk in this general
finite-state channel model may not be completely determined by a finite
number of past channel inputsXk

k�l. Thus, (7) may not hold. However,
the indecomposability of the channel provides the following property
[26]: For an arbitrary � > 0, there exists M > 0 such that when
m > M

jq (zm jx
m
1 ; z0 )� q (zm jx

m
1 ; ~z0 )j < � (16)

for all z0(~z0), zm, and xm1 . This property allows us to bound the dif-
ference of the two quantities in (7) to be arbitrarily small by choosing
a Markov order large enough. Thus, the generalization of the conver-
gence theorem, Theorem 1, holds for this class of channels. More de-
tails can be found in Appendix A.

Similarly, a two-dimensional finite-state channel model is defined as

Zk;l = g2 (Zk�1;l; Zk;l�1; Xk;l)

Yk;l =w2 (Zk�1;l; Zk;l�1; Xk;l) :

For an arbitrary � > 0, if there exist M > 0 and N > 0 such that
when m > M and n > N

q zm+u;n
m+1;n ; z

m;n+v
m;n+1 z0;n+v0;1 ; zm+u;01;0 ; xm+u;n1;1 ; xm;n+v

1;n+1

�q zm+u;nm+1;n ; z
m;n+v
m;n+1 ~z0;n+v0;1 ; ~zm+u;01;0 ; xm+u;n1;1 ; xm;n+v

1;n+1 < �

for 8 u > 0, v > 0, we call it a two-dimensional indecomposable
channel. Following a similar procedure, we can show that Theorem
4 also holds for such indecomposable two-dimensional finite-state
channels.

V. CONCLUDING REMARKS

We have proved that an optimized Markov process whose state con-
sists of the previous finite input symbols can approach the capacity of
a finite-state ISI channel as the order of the process goes to infinity.
This conclusion holds for both one-dimensional and two-dimensional
channels. We then extend the result to the BSC channel with RLL
input constraints and to the entire class of indecomposable finite-state
channel models whose output has a finite entropy. These results con-
firm that simulation-based techniques for computing information rates
of finite-state channels with Markovian inputs can in principle be used
to estimate channel capacity to any desired degree of accuracy. They
also provide justification for the design of channel codes based upon
the optimized input distributions that emerge from the information rate
calculations.

It is also worth noting that, in contrast to the one-dimensional
case, there are many variations on the definition of a two-dimensional
Markov chain, and results analogous to Theorem 4 hold for other
classes of two-dimensional Markov processes, as well. We also remark
that, when numerically optimizing the two-dimensional input Markov
process to achieve the maximum mutual information, we need to con-
sider both the transition probabilities and the stationary distribution in
the search. This differs from the one-dimensional setting, where we
can exploit the “forgetting” property of aperiodic, irreducible Markov
chains—the stationary state distribution is achieved regardless of
the initial state distribution—and simply optimize over the transition
probabilities (see [28]).

APPENDIX

EXTENSION TO INDECOMPOSABLE FINITE-STATE CHANNELS

In this appendix, we demonstrate how to extend our main result to in-
decomposable finite-state channel models whose output Yk has a finite
entropy (i.e., jH (Yk)j <1). We will mainly focus on the one-dimen-
sional case.

Given a stationary ergodic input process X such that the mutual in-
formation rate satisfies I (X ;Y) > C � �=2, we can approximate it
with an order-(m+ n� 1) Markov process ~X . Thus, we have

Xm+n
1 = xm+n1 = ~Xm+n

1 = xm+n1 : (17)
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However these two input processes may not achieve identical proba-
bility distributions for the channel state Zm since a general finite-state
channel may not be a finite-memory channel. Thus

Y
m+n

m+1 = y
m+n

m+1 ; X
m+n

m+1 = x
m+n

m+1

6= ~Y m+n

m+1 = y
m+n

m+1 ;
~Xm+n

m+1 = x
m+n

m+1

and (7) does not hold in general. But we can show that by utilizing the
indecomposability property (16), we can make the difference between
H Xm+n

m+1 Y m+n

m+1 and H ~Xm+n

m+1
~Y m+n

m+1 arbitrarily small.
We first bound the difference between

X
m+n

1 = x
m+n

1 ; Zm = zm

and
~Xm+n

1 = x
m+n

1 ; ~Zm = zm :

It is easy to see that

X
m+n

1 = x
m+n

1 ; Zm = zm

=
z

X
m+n

1 = x
m+n

1 ; Zm = zm; Z0 = z0

= X
m+n

1 = x
m+n

1 �

z

Zm = zm; Z0 = z0 X
m+n

1 = x
m+n

1

= X
m+n

1 = x
m+n

1 �

z

q (zm jxm1 ; z0 ) Z0 = z0 X
m+n

1 = x
m+n

1 (18)

where the third equality uses the property that Zm is independent of
the future channel inputs Xm+n

m+1 given Z0 and Xm

1 . Similarly

~Xm+n

1 = x
m+n

1 ; ~Zm = zm

= ~Xm+n

1 = x
m+n

1

�
z

q (zm jxm1 ; z0 ) ~Z0 = z0 ~Xm+n

1 = x
m+n

1 : (19)

From inequality (16), we know that q (zm jxm1 ; z0 ) satisfies

A (zm; x
m

1 ) < q (zm jxm1 ; z0 ) < A(zm; x
m

1 ) + �

for all z0, if m > M , where the quantity A (zm; x
m

1 ) depends only
upon zm and xm1 , and is independent of z0. Therefore, we have

A (zm; x
m

1 ) <
z

q (zm jxm1 ; z0 ) Z0 = z0 X
m+n

1 = x
m+n

1

< A (zm; x
m

1 ) + � (20)

and

A (zm; x
m

1 ) <
~z

q (zm jxm1 ; ~z0 ) ~Z0 = ~z0 ~Xm+n

1 = x
m+n

1

< A(zm; x
m

1 ) + �: (21)

Combining (17), (18), (19), (20), and (21), we can show that

X
m+n

1 = x
m+n

1 ; Zm = zm

� ~Xm+n

1 = x
m+n

1 ; ~Zm = zm

X
m+n

1 = x
m+n

1 �;

and

X
m+n

m+1 = x
m+n

m+1 ; Zm = zm

� ~Xm+n

m+1 = x
m+n

m+1 ;
~Zm = zm

X
m+n

m+1 = x
m+n

m+1 �:

Similarly, since the joint probability

X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1

can be rewritten as

X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1

=
z

X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1 ; Zm = zm

=
z

p y
m+n

m+1 x
m+n

m+1 ; zm

� X
m+n

m+1 = x
m+n

m+1 ; Zm = zm ;

and the joint probability

~Xm+n

m+1 = x
m+n

m+1 ;
~Y m+n

m+1 = y
m+n

m+1

=
z

~Xm+n

m+1 = x
m+n

m+1 ;
~Y m+n

m+1 = y
m+n

m+1 ;
~Zm = zm

=
z

p y
m+n

m+1 x
m+n

m+1 ; zm

� ~Xm+n

m+1 = x
m+n

m+1 ;
~Zm = zm ;

we can bound the difference as

X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1

� ~Xm+n

m+1 = x
m+n

m+1 ;
~Y m+n

m+1 = y
m+n

m+1

z

p y
m+n

m+1 x
m+n

m+1 ; zm X
m+n

m+1 = x
m+n

m+1 �

= jZj u X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1 �; (22)

where u Xm+n

m+1 = xm+n

m+1 ; Y
m+n

m+1 = ym+n

m+1 is the joint channel
input/output distribution when the channel state Zm is initialized with
equal probability for every possible value zm.4 Thus, the L1-norm of
the difference can be bounded as

X
m+n

m+1 = x
m+n

m+1 ; Y
m+n

m+1 = y
m+n

m+1

� ~Xm+n

m+1 = x
m+n

m+1 ;
~Y m+n

m+1 = y
m+n

m+1
1

jZj �: (23)

Following the same line of reasoning, we can bound the channel
output distributions induced by the two input processes as follows:

Y
m+n

m+1 = y
m+n

m+1 � ~Y m+n

m+1 = y
m+n

m+1

x
z

p y
m+n

m+1 x
m+n

m+1 ; zm X
m+n

m+1 = x
m+n

m+1 �

= jZj u Y
m+n

m+1 = y
m+n

m+1 � (24)

where u Y m+n

m+1 = ym+n

m+1 is the channel output distribution when
the channel state Zm is initialized with equal probability for every pos-
sible value zm. The L1-norm of the difference satisfies

Y
m+n

m+1 = y
m+n

m+1 � ~Y m+n

m+1 = y
m+n

m+1
1

jZj �: (25)

4Note that this distribution remains the same whether the input is the original
processX or the approximating process ~X , because the initial state distribution
is the same and the finite-dimensional input distribution is also identical.
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To complete the extension of Theorem 1, we consider three possible
scenarios for the channel output characteristics.

A. Channel Output With Finite Alphabet

Applying [18, Theorem 16.3.2] and (25), we can obtain the following
bound:

H Y
m+n
m+1 �H ~Y m+n

m+1 � jZj � log
jZj �

jYjn
:

Similarly, we can show that

H X
m+n
m+1 ; Y

m+n
m+1 �H ~Xm+n

m+1 ;
~Y m+n
m+1

� jZj � log
jZj �

(jX j jYj)n
: (26)

It is straightforward to see that the terms on the right-hand side of the
two inequalities above go to 0 as � goes to 0. Recalling that (17) implies

H X
m+n
m+1 = H ~Xm+n

m+1 (27)

we can conclude that H Xm+n
m+1 Y m+n

m+1 �H ~Xm+n
m+1

~Y m+n
m+1

can indeed be made arbitrarily small if we choose m large enough in
the approximation. Following the reasoning of the proof of Theorem 1,
we can then reach the same conclusion as in Theorem 1.

B. Channel Output With Infinite Alphabet

The infinite alphabet of the channel output makes it impossible
to apply [18, Theorem 16.3.2] directly. But we will show that the
difference between the entropies induced by the two input processes
is mainly determined by a finite subset of the infinite alphabet when
H (Yk) < W for some finite value W . This implies that

H Y
m+n
m+1 =�

y

Y
m+n
m+1 = y

m+n
m+1

� log Y
m+n
m+1 = y

m+n
m+1

n

i=1

H (Ym+i) nW:

To see how we can bound the entropy difference by decomposing
the infinite alphabet, we consider an alphabet in which the magnitudes
of the elements are not bounded, while the number of elements with
magnitude bounded by any specified positive value is finite. The other
scenarios involving infinite alphabets can be treated similarly.

For any n 1 and a positive constant YL, we denote the following
event:

jYkj YL; for every k (m+ 1 k m+ n)

as event O. Similarly, we define the event

~Yk YL; for every k (m+ 1 k m+ n)

as event ~O. For any

0 < � < min H Y
m+n
m+1 ; H ~Y m+n

m+1

and n 1, one can find a positive YL and corresponding eventsO and
~O such that for Y m+n

m+1 and ~Y m+n
m+1 , the finite partial sum

H1 Y
m+n
m+1

= �

y 2O

Y
m+n
m+1 = y

m+n
m+1 log Y

m+n
m+1 = y

m+n
m+1

H Y
m+n
m+1 � �;

H1
~Y m+n
m+1

= �

y 2 ~O

~Y m+n
m+1 = y

m+n
m+1 log ~Y m+n

m+1 = y
m+n
m+1

H ~Y m+n
m+1 � �;

and

H2 Y
m+n
m+1

= �

y 2O

Y
m+n
m+1 = y

m+n
m+1 log Y

m+n
m+1 = y

m+n
m+1

�;

H2
~Y m+n
m+1

= �

y 2 ~O

~Y m+n
m+1 = y

m+n
m+1 log ~Y m+n

m+1 = y
m+n
m+1

�

where Oc and ~Oc are the complements of O and ~O, respectively.
This decomposition is made possible by the fact that H Y m+n

m+1 and

H ~Y m+n
m+1 are finite. It is easy to see that

H Y
m+n
m+1 =H1 Y

m+n
m+1 +H2 Y

m+n
m+1

H ~Y m+n
m+1 =H1

~Y m+n
m+1 +H2

~Y m+n
m+1 :

Given that events O and ~O are true, the conditional channel output
has finite alphabet of size jY1j. Following the approach in [18, the proof

of Theorem 16.3.2], we can bound H1 Y m+n
m+1 �H1

~Y m+n
m+1 as

follows:

H1 Y
m+n
m+1 �H1

~Y m+n
m+1 � jZj � log

jZj �

jY1j
n :

Therefore, we can bound the entropy difference as

H Y
m+n
m+1 �H ~Y m+n

m+1

= H1 Y
m+n
m+1 +H2 Y

m+n
m+1

� H1
~Y m+n
m+1 +H2

~Y m+n
m+1

H1 Y
m+n
m+1 �H1

~Y m+n
m+1

+ H2 Y
m+n
m+1 �H2

~Y m+n
m+1

� jZj � log
jZj �

jY1j
n + 2�: (28)

By choosing � and � (or m) appropriately, we can make the differ-
ence H Y m+n

m+1 �H ~Y m+n
m+1 arbitrarily small. A similar conclu-

sion can be derived for the difference

H X
m+n
m+1 ; Y

m+n
m+1 �H ~Xm+n

m+1 ;
~Y m+n
m+1 :

Thus, we can conclude that

H X
m+n
m+1 Y

m+n
m+1 �H ~Xm+n

m+1
~Y m+n
m+1

can be made arbitrarily small if we choose m large enough and � suf-
ficiently small. The rest of the proof then follows.

C. Continuous Channel Output

When the channel output Yk is continuous, we first consider the
conditional entropy H Xm+n

m+1 Y m+n
m+1 (�) where Yk(�) is the

quantized output corresponding to quantization interval �. It is
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well known that as � ! 0, I Xm+n

m+1 ; Y
m+n

m+1 (�) converges to
I Xm+n

m+1 ;Y
m+n

m+1 (see [18, p. 231]). We can show similarly that
H Xm+n

m+1 Y m+n

m+1 (�) converges to H Xm+n

m+1 Y m+n

m+1 . In other
words, the difference between

H Xm+n

m+1 Y m+n

m+1 (�) and H Xm+n

m+1 Y m+n

m+1

can be made arbitrarily small if we choose � small enough. Further-
more, we have shown in the previous two scenarios that the difference

H Xm+n

m+1 Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1 (�)

can be made arbitrarily small if we choose m and � appropriately.
Therefore, for any � > 0, we can choose an appropriate � > 0 such
that

H Xm+n

m+1 Y m+n

m+1 (�) �H Xm+n

m+1 Y m+n

m+1 <�=4

H ~Xm+n

m+1
~Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1 <�=4

and we can find m and � such that

H Xm+n

m+1 Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1 (�) < �=2

for the chosen �. Thus, we can bound the difference in the conditional
entropy as

H Xm+n

m+1 Y m+n

m+1 �H ~Xm+n

m+1
~Y m+n

m+1

= H Xm+n

m+1 Y m+n

m+1 �H Xm+n

m+1 Y m+n

m+1 (�)

+H Xm+n

m+1 Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1 (�)

+H ~Xm+n

m+1
~Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1

H Xm+n

m+1 Y m+n

m+1 �H Xm+n

m+1 Y m+n

m+1 (�)

+ H Xm+n

m+1 Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1 (�)

+ H ~Xm+n

m+1
~Y m+n

m+1 (�) �H ~Xm+n

m+1
~Y m+n

m+1

�=4 + �=2 + �=4 = �:

We can conclude that by properly choosingm, �, and �, we can make
the difference H Xm+n

m+1 Y m+n

m+1 �H ~Xm+n

m+1
~Y m+n

m+1 arbi-
trarily small. The rest of the proof then follows.

For the two-dimensional indecomposable finite-state channel model,
we can also show that if we choose the Markov order and other param-
eters properly, the difference

H Xm+u;n+v

m+1;n+1 Y m+u;n+v

m+1;n+1 �H ~Xm+u;n+v

m+1;n+1
~Y m+u;n+v

m+1;n+1

can become arbitrarily small. The proof is similar to its one-dimen-
sional counterpart. We begin with the channel state Zm+u;0

1;0 Z0;n+v

0;1

and the input Xm+u;n

1;1 Xm;n+v

1;n+1 , and make use of the indecompos-
ability of the channel. The rest of the derivation follows the same line
of reasoning as above.
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