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On Viterbi Detector Path Metric Differences
Andrei Vityaev and Paul H. Siegel,Fellow, IEEE

Abstract—This letter continues the investigation of methods
for computing exact bounds on the path metric differences in
maximum-likelihood sequence detectors based upon the Viterbi
algorithm. New upper and lower estimates for these bounds
are presented and recast in terms of a collection of linear pro-
gramming problems. These estimates improve upon previously
proposed linear programming bounds. The estimates are applied
to derive exact bounds or provably close to exact bounds for
several Viterbi detectors corresponding to coded and uncoded
partial-response channels of practical interest in digital magnetic
and optical recording.

Index Terms—Magnetic recording, partial response channels,
path metric differences, Viterbi algorithm.

I. INTRODUCTION

T HE VITERBI algorithm (VA) is widely used in digital
communications and recording to implement maximum-

likelihood (ML) sequence estimation of signals generated by
an underlying Markov chain and corrupted by additive white
Gaussian noise (AWGN). An important problem in efficient
circuit implementation of the ML detector is the determination
of the observable range of the path metric differences. Tight
bounds on the extremes of these differences are valuable for
a number of reasons. They bear upon requirements for the
dynamic range of the arithmetic section of the add-compare-
select (ACS) processor, the circuit data path width, and the
implementation of path metric normalization techniques, par-
ticularly the modular renormalization approach based upon
two’s complement number representations and arithmetic [4],
[8].

In [1], the problem of finding exact difference metric bounds
was addressed in the context of uncoded and coded binary-
input partial-response channels arising in digital recording
applications. A method of computing upper estimates of the
bounds by solving a collection of linear programming (LP)
problems was developed. This method, referred to as the LP
bound, was applied in [1] to determine the exact bounds
for some simple examples of interest in digital recording:
the binary-input, dicode partial-response channel, the biphase-
coded dicode partial-response channel, and the binary-input,
class-2 partial-response (PR2) channel for magnetic recording.
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Upper estimates were also calculated for the exact bounds of
the even-mark-modulation (EMM) coded class-1 (duobinary
or PR1) partial-response channel for optical recording. For
systems described by trellis structures with more than four
states, the estimates are much more difficult to apply and, if
applied, are not guaranteed to be tight.

A more challenging problem, addressed in [2], is the com-
plete characterization of the state-space of the path metric
differences, as well as the determination of the steady-state
probability distribution of these differences as a function of the
additive noise statistics. By examining the one-step dynamics
of the binary-input dicode channel and the EMM-coded duobi-
nary channel, the recurrent region of the state-space containing
the all-zero path metric difference state was calculated. For
the dicode channel, a closed-form expression was derived
for the steady-state distribution as a function of the noise
statistics. For the EMM-coded duobinary channel, the state-
space characterization verified the tightness of a conjectured
set of exact bounds that the LP methods were not able to
confirm. More recently, this approach has been successfully
applied to the characterization of the recurrent region for the
class-2 partial-response channel, but the analysis is extremely
intricate [3]. For channels with more than four states, the
analytic state-space characterization becomes infeasible.

In this letter, we make several contributions to the theory
and application of methods for computing exact bounds on
path metric differences. In Section II, we introduce a sequence
of computable upper estimates that can improve upon the
estimates obtained using the methods mentioned above. We
also derive a sequence of lower estimates. In Section III,
we give a partial characterization of the received vectors that
achieve the LP bounds in [1]. In Section IV, we formulate the
upper estimates and lower estimates in terms of a collection of
LP problems. Section V gives some applications of the new
estimates. We calculate improved, and in some cases tight,
estimates of the survivor path metric difference bounds for a
number of systems of practical interest that could not be easily
treated using the earlier approaches, including EMM-code
partial-response class-2 (PR2); constrained extended
partial-response class-4 (EPR4); constrained, doubly-
extended partial-response class-4 (EPR4).

II. UPPER AND LOWER ESTIMATES FOR THEBOUNDS

Given a state in the detector trellis , let denote the
depth- predecessor set of, meaning the set of states in
from which can be reached by a path of lengthedges. For a
state in , the set of output sequences generated by paths
from to of length is denoted , and the set of all
paths of length ending at state, that is ,
is denoted by . For a pair of states and , we let
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denote the minimum such that , and denote
the common predecessor set by .

For any given path we denote the edges of by
and we denote the states through whichpasses

by . We will also use the notation
for the symbols generated by the corresponding edges. The
meaning will be clear from context. For any sequence of
measured signals we denote by the linearized path
metric

In this letter, we will assume that the sequence of measured
signals satisfies for every .
Suppose that the pathis the survivor path of length with

. Let be the corresponding survivor
path metric. Denote the survivor path metric difference of
states and at time by

The following estimate was announced in [1].

A. Proposition

Let . At any time the difference metric at
time , , satisfies

where

(1)

Proof: The inequalities follow immediately from the
analysis of the VA dynamics on the depth-butterflies con-
necting states and states .

We will now develop a sequence of upper and lower
estimates for the exact upper bound on . The
estimates are applicable to any finite state trellis structure,
and represent an improvement with respect to the estimates
in [1]. First, we state an elementary lemma that will prove
to be useful in the derivation and analysis of the upper and
lower estimates.

B. Lemma

The estimate can be rewritten in the following
form:

Proof: It is clear that the first equation gives the same
result as (1). The order of the maximization operations can then
be interchanged without affecting the result, thereby giving the
second equation.

The new upper estimates for the exact bounds are given by
the following proposition.

C. Proposition

Suppose that . Then for any , any ,
the following inequality holds:

(2)

where

(3)

Proof: The maximum possible value of the metric differ-
ence , viewed as a function of the received vector

, is given by

(4)

By Lemma II-B, the maximum value of can be
rewritten as

(5)

We can consider shorter paths (of length, rather than )
and rewrite (5) as

(6)

where and are the metrics of the survivor paths
preceding and , respectively. Note that the elements of sets

and are subsequences of the sequences which
comprise and , respectively. By taking in
(6) over a smaller set we can only
increase (6), and thus

(7)

Since now and start from the same state, we have
. Therefore, the right side of (7) is equal to

.
1) Remark: This proof of the upper estimates provides an

alternative proof to Proposition II-A.
We now state the lower estimates for the exact upper bound.
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D. Proposition

Suppose is the exact upper bound for . Then the
following inequality holds for any .

(8)

Proof: The maximum possible value of the metric dif-
ference is given by

The proposition follows from an application of Lemma
II-B.

2) Remark: Note that the only difference between the
upper estimate (3) and the lower estimate (8) is that we impose
the restriction that and start from the same state. We
conjecture that the upper and lower estimates converge to the
exact upper bound on the survivor path metric difference.

III. CHARACTERIZATION OF EXTERNAL POINTS

For trellis structures having the property that for ,
there is a unique path sequence and a unique
path in , the estimate is achieved at
a vertex of the region . This class of trellises
includes those based upon deBruijn graphs which arise in
connection with binary-input partial-response systems. The
following result extends this characterization of the optimal
vector to trellis structures, such as that occurring
in the EMM-coded duobinary (PR1) case, where

.

A. Proposition

Suppose there exist paths from to . Then we have

where at least coordinates of have the absolute
value equal to . That is, up to coordinates may have
absolute value strictly less than.

Proof: Recall from Lemma II-B that

Thus it is enough to prove the result for a fixed path. Let
be all the paths from to . Note that

are linear functions of. Therefore, we have
to study the maximum of the minimum of linear functions:

(9)

Suppose the maximum occurs at a pointwhere

We would like to prove that in this case there exist
such that

(10)

and such that for some .

We start proving it with the following claim. Let us denote
.

Claim: The following system of linear equations

...

(11)

and of unknowns has at least two solutions.
Proof of the claim: Since each of the ’s is a linear

function, it can be written as

where we suppressed in the notations. Let be
the matrix comprised of coefficients :

We know that is a solution of the system (11).
Suppose that it is the only solution. In that case, matrixis
invertible. Let be the -vector given by

The point is an interior point of the hypercube
. Therefore, the point

(12)

is an interior point of the same hypercube for small
enough.

If we evaluate functions at the point (12) then we find
that

for every . This contradicts the assumption that the maximum
of (9) is achieved at . This contradiction
establishes the claim.

Proof of the Proposition (continued):The claim implies
that there exists a line such that

for

Let be the point of intersection of with the
boundary of the -dimensional hypercube . Then
(10) holds, which proves the proposition.

1) Example: In [1], it was pointed out that the maximum
value of the difference metric for the EMM-coded
duobinary (PR1) channel does not occur at a vertex of the
sample space . In fact, it follows from the character-
ization in [2] of the state-space of the difference metrics that
the exact bound is achieved by at
the point .
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Fig. 1. Trellis for EMM-coded partial response class-2 (PR2).

2) Example: The EMM-coded partial-response class-2
(PR2) channel [5] is described by a 5-state trellis shown
in Fig. 1. There are two paths of length 4 from state 3
to 4, corresponding to the state sequences
and . These generate the output sequences

and , respectively. There is only
one path from state 3 to 5, with state sequence ,
generating the output sequence . If the sample
range is taken to be , the maximum value of ,
namely , is achieved by the length-4 sample vector

.

IV. REDUCTION TO LINEAR PROGRAMMING

We now show how the upper and lower estimates (3) and
(8) can be computed using linear programming [7].

Linear Programming for Upper Estimate:

1) For all possible paths , solve:
Maximize subject to:
There exists such that

...

for all
for all .

2) Here are all possible paths from to .
The upper estimate is equal to .

Remark: This is a collection of LP problems in
dimensional space with linear constraints.
Finding the lower estimate (8) can be reduced to the problem
above by removing the restriction on. It is easy to see
that the complexity of the collection of LP problems grows
exponentially as increases. On the other hand, software
packages are available for solving LP problems with up to
hundreds of thousands of variables. For trellises with no
more than 10 states, the estimates are generally sufficient to
determine the minimum number of bits required to span the
range of path metric differences.

TABLE I
UPPER AND LOWER ESTIMATES FOR EXACT

UPPER BOUNDS: SHORT PATH LENGTHS

TABLE II
UPPER ANDLOWERESTIMATES FOREXACT UPPERBOUNDS: LONG PATH LENGTHS

TABLE III
UPPERLOWER ESTIMATES FOR EXACT LOWER BOUNDS: SHORT PATH LENGTHS

TABLE IV
UPPER AND LOWER ESTIMATES FOR EXACT

LOWER BOUNDS: LONG PATH LENGTHS

DM(2,1) DM(2,3) DM(2,4) DM(2,5)
upper estimate,k = 10 - 34 26.3333 39
lower estimate,k = 2 - 33.3333 26.1111 38.3333

V. APPLICATIONS

We choose three examples to illustrate the improved linear
programming methods for computing estimates of the exact
bounds.

A. Bounds for EMM Partial Response Class-2 (PR2)

The first example is the EMM-constrained partial response
class-2 (PR2) optical recording channel, with trellis shown in
Fig. 1.

Let be the admissible range for the noisy, received
samples. Using the sequence of upper and lower estimates, we
can find bounds for difference metrics , ,

, which are within 2% from the exact
upper and lower bounds.

First we compute upper and lower estimates for the upper
bound for moderately short lengths of paths and
(see Table I).

We see that while we have an optimal upper bound for
, other metrics require longer paths. Table II gives

the tighter upper and lower estimates that are within 2% from
the exact.

Now, we turn to the lower bounds. To find them, we
find the upper bounds for , , ,

(see Tables III and IV).
Thus, we conclude that

,

where the bounds are within 2% from optimal.
In order to find the bound on the difference between the

largest and the smallest metric difference, one has to compute
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Fig. 2. Trellis for EPR4 withd = 1 constraint.

bounds for for all possible states and . It turns
out that the largest difference metric is whose
maximum possible value is bracketed between the lower
estimate 65.333 and the upper estimate 66. In other words,
66 is the bound within 2% from optimal. For comparison, the
method in [4] gives 288 as a bound.

B. Bounds for Constrained EPR4 Channel

The second example is the extended partial-response class-4
(EPR4) channel with the precoded constraint [6]. The
detector trellis is given in Fig. 2.

The correspondence between states and channel memory is
given by: 1 = 011, 2 = 111, 3 = 110, 4 = 100, 5 = 000, 6 = 001.

We assume that the range of noisy, received samples is [-8,
8]. In the case of constrained EPR4, it was possible to
find the exact bound using the paths of length for both
upper and lower estimates.

The exact bounds for the metric differences are given by

C. Bounds for Constrained EPR4 Channel

The third example is the constrained, doubly-
extended partial-response class-4 (EPR4) channel. (See also
[6] and [7].)

The detector trellis is given in Fig. 3 and the channel
memory is given by: 1 = 0111, 2 = 1111, 3 = 1110, 4 =
1100, 5 = 1001, 6 = 0011, 7 = 0110, 8 = 1000, 9 = 0000,
10 = 0001.

We assume that the range of noisy, received samples is
[–12, 12].

Fig. 3. Trellis for E2PR4 channel withd = 1 constraint.

Here are the bounds for metric differences which are within
1% from optimal.

Computing these bounds required estimates with the path
length equal to 11.

VI. COMPUTER SIMULATIONS

Given the results presented in the previous sections, a
natural question arises whether the bounds given above can
be found through computer simulation of the Viterbi detector.
In this section, we describe the results of one such simulation.
For the EPR4 channel with constraint, the upper bound
for was found to be 456. Moreover, the lower
and upper estimates for this bound are only 1% apart, and
thus 456 is an estimate with 1% accuracy. Besides finding the
upper bound, the linear programming approach presented in
this letter gives us a sequence of 13 received samples

which will drive the metric differences in the Viterbi detector
from all zeros to .

The Viterbi detector was then simulated for the same
channel. Received samples were taken to be uniformly dis-
tributed in the interval [–12, 12]. A uniform distribution of
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samples, rather than that which would be observed on the
AWGN channel, was chosen in order to boost the frequency
of occurrence of extreme values of the metric differences.

The Viterbi detector path metric differences were all initial-
ized to zero. The results of the detector simulation are shown
below. The left column contains the number of received sam-
ples passed through the Viterbi detector during the simulation
and the right column contains the largest value of the metric
difference observed during the simulation.

random received samples: largest observed

The results show that simulation with uniformly distributed
received samples gives a bound 13% lower than the estimate
upper bound, even after 100 million samples. When the
more accurate AWGN model of the physical channel is used,
simulations generally require even a larger number of samples
to reveal comparably large difference metric values.

In practice, register overflows caused by underestimating the
maximum magnitude of difference metrics may produce long
bursts of detector errors that seriously degrade overall system
performance. The empirical results confirm that, depending
upon system error-rate specifications, there may be risks in
substituting approximate bounds deduced from simulation for
analytically derived bounds such as those presented in this
letter.

VII. CONCLUSIONS

This letter presents an improved linear programming method
for determining upper and lower estimates of the exact bounds
on Viterbi detector path metric differences. These tighter
estimates can be used to reduce the number of bits of precision
needed to represent these metric differences in circuit imple-
mentations. The method reproduces the exact bounds found by

earlier methods for the binary-input dicode and class-2 partial-
response channels. In addition, it provides for the first time
either exact bounds, or tight enough estimates to determine
the minimum required number of bits of resolution, for several
channels of practical interest in digital recording.
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