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Abstract— The ML redundancy of a code is defined as the
smallest number of rows in its parity-check matrix such that a
message-passing decoder working in the corresponding Tanner
graph achieves maximum-likelihood (ML) performance on an
erasure channel. General upper bounds on ML redundancy are
obtained. In particular, it is shown that the ML redundancy of
a q-ary code is at most the number of minimal codewords in its
dual code, divided by q−1. Special upper bounds are derived for
codes whose dual code contains a covering design. For example,
the ML redundancy of a Simplex code of length n is shown to
be no greater than (n2 − 4n + 9)/6.

I. INTRODUCTION

In this paper, a code is a linear block code, which is a k-

dimensional linear subspace of F
n
q , where Fq is a Galois field

with q elements. Such a code is usually conveniently referred

to as a [n, k]q code. At times, we will also write [n, k, d]q to

signify that the code has minimum Hamming distance d. A

code is usually defined as the row space of a generator matrix,

G, or, equivalently, the kernel of a parity-check matrix2, H .

The dimension of the row space of H is the redundancy of

the code, denoted by r = n− k.

Let H be a parity-check matrix for code C. The iterative H-
decoder is the message-passing erasure decoder corresponding

to the Tanner graph defined by H . (We shall assume the

channel is an erasure channel throughout the paper.) An

iterative H-decoder works effectively by finding, at each

iteration, a parity-check equation that involves a single erasure,

solving for the erasure, and repeating the process until either

all erasures have been decoded, or no such equations can be

found (causing decoding failure). We are interested in the case

where H is chosen such that the iterative H-decoder fails only

if the same set of erasures cannot be uniquely decoded by even

the word maximum-likelihood (ML) decoder, and further in

the minimum number of rows in H for this to be possible.

Let [n] def= {1, 2, . . . , n}. The support of an n-dimensional

vector x, denoted by supp(x), is the set of coordinates where

x is not zero, i.e. supp(x) def= {i ∈ [n] : xi �= 0}. For an n-

column parity-check matrix H and S ⊆ [n], let H(S) denote

the submatrix of H consisting of the columns indexed by

S. For a given H , a stopping set is any set S ⊆ [n], such

that H(S) does not contain a row of weight one. An erasure

1This work was done while the first author was at the Center for Magnetic
Recording Research at the University of California, San Diego.

2For us, a parity-check matrix may consist of rows that are linearly
dependent, as long as its kernel defines the code.

pattern, a set of code coordinates that are erased, can be

corrected by the ML decoder if and only if it does not contain

the support of a codeword, in which case we say that the

erasure pattern is correctable. In comparison, for the iterative

H-decoder, an erasure pattern can be corrected if and only if it

does not contain a stopping set. Hence, the iterative H-decoder

is ML if and only if none of the correctable erasure patterns

contains a stopping set. Since any subset of a correctable

erasure pattern is still correctable, this is equivalent to the

condition that the set of correctable erasure patterns and the

set of stopping sets be disjoint. For the sake of discussion,

we say that a matrix M covers S if M(S) contains a row of

weight one. This definition applies to the special case where

M is a vector. Clearly, the iterative H-decoder achieves ML

performance if and only if all correctable erasure patterns are

covered by H .

We define the ML redundancy of code C, denoted by γ(C),
as the smallest number of rows in a parity-check matrix H
such that an iterative H-decoder for C exists that achieves

ML performance. In this paper, we will develop bounds on

γ(C) both in general and for certain classes of codes.

Let H∗ denote a matrix consisting of all codewords of C⊥

as rows. The following lemma is a known result [1], which

shows that γ(C) is well-defined, i.e. it is always possible to

achieve ML performance with an iterative decoder on the

erasure channel.

Lemma 1 The iterative H∗-decoder is ML.
Proof: If S ⊆ [n] is correctable, then for any parity-

check matrix H , the column vectors of H(S) are linearly

independent. Hence, the rows of H(S) contain a basis of

F
|S|
q . Therefore, all possible q-ary |S|-tuples appear as rows in

H∗(S) the same number of times. In particular, H∗(S) must

contain a row of weight one.

The next lemma shows that if a matrix H has all its rows

taken from C⊥ and covers all correctable erasure patterns for

C, then it must indeed be a parity-check matrix for C. Hence, to

verify that an iterative H-decoder achieves ML performance, it

suffices to verify that H covers all correctable erasure patterns.

Lemma 2 If C ⊆ Null(H) and H covers all correctable
erasure patterns for C, then C = Null(H), where Null(H)
is the null space of H .

Proof: The redundancy of C being r implies that cor-

rectable erasure patterns of size r exist. Let S be such an

erasure pattern. Since S is covered by H , it is covered by some
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row of H , say h1. Let s1 denote the coordinate that supp(h1)
and S have in common. Then S \{s1} is a correctable erasure

pattern of size r − 1. And so it must be covered by some

other row of H , say h2. Repeating the above argument shows

that H contains an r × r lower triangular matrix, up to row

and column permutations. Hence, rank(H) = r, and since

C ⊆ Null(H), it follows that C = Null(H).
The following result can be obtained as an easy extension

of [2, Theorem 2].

Theorem 3 Let C be a binary code with redundancy r. Then

γ(C) ≤ 2r−1. (1)

Proof: Omitted.
The same result may be inferred from the work by Hollmann

and Tolhuizen [3], who considered general constructions of

parity-check collections for binary codes that correct all cor-

rectable erasure patterns up to a given size. The results in

[3] also showed that equality is achieved in (1) for binary

Hamming codes.

Theorem 4 ([3]) Let Hm denote the [2m−1, 2m−m−1, 3]2
Hamming code. Then

γ(Hm) = 2m−1.

Our work was motivated by the recent introduction [4] of

stopping redundancy by Schwartz and Vardy. The stopping
redundancy of a code C, denoted by ρ(C), is the smallest

number of rows in a parity-check matrix H , such that the

size of the smallest non-empty stopping set(s) (the stopping
distance) is equal to the minimum distance of C. Stopping

redundancy was further studied in [2],[5],[6],[7], and has been

extended in a number of interesting ways. In [7], a similar

definition was applied to trapping sets. In [8], the stopping
redundancy hierarchy was defined and studied. Recently, the

concept was extended to the binary symmetric channel (BSC),

where the pseudoweight redundancy was introduced [9].
The fundamental observation that underlies all aforemen-

tioned work is that the representation of a code has an impact

on its performance under iterative decoding. In particular,

by allowing a more complex representation, the performance

of iterative decoding is potentially improved. The definition

of stopping redundancy highlights a particular point in the

complexity-performance tradeoff. Stopping redundancy hier-

archy, on the other hand, aims at a possibly more modest

performance target. In this sense, ML redundancy can be

viewed as a variation of the concept of stopping redundancy

with a more ambitious performance goal. Unlike stopping

redundancy, whose definition is appropriate when the channel

erasure probability is small (approaches zero), ML redundancy

is relevant in general. ML redundancy is also important

because it provides a perspective for understanding the re-

lation/difference between ML and iterative decoding.
Work related to our study is also found in [10].
The rest of the paper is arranged as follows. Section II

concerns general upper bounds on ML redundancy. In Section

III, more specific results are given for codes whose dual code

(or rather, the supports of the codewords therein) contains

combinatorial designs. Section IV concludes the paper.

II. UPPER BOUNDS

First, note that Theorem 3 can be extended to q-ary codes

using ideas similar to those in [3].

Theorem 5 Let C be a q-ary code with redundancy r > 0.
Then

γ(C) ≤ qr−1.

Proof: Let H be an r×n parity-check matrix for C, where

n is the length of C. Let the row vectors of H be denoted by

h1, . . . ,hr. Define V
def=

{
h1+v : v ∈ span({h2, . . . ,hr})

}
.

Clearly, |V | = qr−1. We show that every correctable erasure

pattern is covered by some vector in V .

Let S ⊆ [n] be correctable. Then rank
(
H(S)

)
= |S|. Let

B ⊆ {h1, . . . ,hr} be such that B(S) def= {b(S) : b ∈ B}
form a basis of F

|S|
q . If h1 ∈ B, note that span

(
B(S)\h1(S)

)
has dimension |S| − 1, hence does not contain all weight-one

|S|-tuples. Therefore, there exists e ∈ F
|S|
q , such that wt(e) =

1 and e = αh1(S) + x(S), where α �= 0 and x ∈ span(B \
h1) ⊆ span({h2, . . . ,hr}). Since wt(α−1e) = 1, we see S
is covered by (h1 + α−1x) ∈ V . Finally, if h1 /∈ B, simply

note that V (S) = span
(
B(S)

)
= F

|S|
q .

Many techniques for bounding stopping redundancy can be

applied to ML redundancy with little modification. We give

just one such example in the following theorem, which is based

on an idea from [5].

Theorem 6 Let C be an [n, k]q code. Let r = n−k. Then for
all 0 ≤ p ≤ 1,

γ(C) ≤ pqr +
r∑

i=1

(
n

i

)
(1− p)i(q−1)qr−i

.

Proof: For some prescribed real value p, 0 ≤ p ≤ 1,

select each codeword in C⊥ with probability p, and let matrix

H consist of all selected codewords as rows (with arbitrary

ordering). At this point, the expected number of rows in H is

p · |C⊥| = pqr.

Not all correctable erasure patterns may be covered by H .

Particularly, for any given X ∈ [n]i, i = 1, . . . , r, that is

correctable, the probability that X is not covered by H is

(1− p)i(q−1)qr−i

.

This is because X being correctable implies that C⊥(X) (as a

multiset) contains all q-ary i-tuples the same number of times.

To cover all correctable erasure patterns, as a second step, for

each X ∈ [n]i, i = 1, . . . , r, that is correctable but not yet

covered by H , append to H a codeword from C⊥ that covers

X , until no such X can be found. At this point, the expected

number of rows in H is at most

pqr +
r∑

i=1

∑
X∈[n]i

Xcorrectable

(1− p)i(q−1)qr−i

≤ pqr +
r∑

i=1

(
n

i

)
(1− p)i(q−1)qr−i

.
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Therefore, there exists at least one realization of H with at

most the above number of rows.

We now take a different approach based on minimal code-

words [11],[12]. A nonzero codeword is minimal if its support

does not contain the support of another codeword of smaller

weight.3 The set of minimal codewords of code C is denoted

by M(C). Certain properties [13],[12] of minimal codewords

that are useful to us are summarized in the following lemma.

Lemma 7 Let C be an [n, k]q code. Then
1) For all v ∈ C \ {0}, there exist c1, . . . , cm ∈ M(C),

such that v =
∑m

i=1 ci and supp(ci) ⊆ supp(v), i =
1, . . . ,m.

2) For all c ∈M(C), we have wt(c) ≤ n− k + 1.
We make a key observation that to achieve ML performance,

it suffices to select parity checks from M(C⊥), which leads

to the following upper bound on ML redundancy.

Theorem 8 If C is a q-ary code, then

γ(C) ≤ 1
q − 1

∣∣M(C⊥)
∣∣.

Proof: Let HM denote the matrix consisting of all

codewords of M(C⊥) as rows. If S ⊆ [n] is correctable, then

by Lemma 1, it is covered by some c ∈ C⊥. If c ∈ M(C⊥),
then HM covers S. If c /∈ M(C⊥), then by Lemma 7, c
can be written as a sum of codewords from M(C⊥), whose

supports are contained in supp(c). Thus, one of these minimal

codewords must cover S. Finally, note that just one codeword

is needed from M(C⊥) for each support set.

It is often hard to find the number of minimal codewords

in C⊥. Lemma 7 tells us that it suffices to consider codewords

of weights k + 1 or less, leading to the following corollary.

Note that the same result was also shown in [10, Theorem 3],

albeit through a very different argument.

Corollary 9 If C is an [n, k]q code, then

γ(C) ≤ 1
q − 1

k+1∑
i=1

Bi,

where Bi is the number of weight-i codewords in C⊥.
Let us consider a few examples.

Example 1 Let Hm denote the binary Hamming code with

redundancy m, and Sm denote its dual code, the [2m −
1,m, 2m−1]2 Simplex code. Since all nonzero codewords of

Sm have the same weight, all of them are minimal. Theorem 8

tells us that γ(Hm) ≤ 2m − 1, which is trivially true and is

about twice the true value of γ(Hm) as given in Theorem 4.

On the other hand, it is known [12] that the number of

minimal codewords in Hm of weight w is

Mw =
{

1
w!

∏w−2
i=0 (2m − 2i) if 3 ≤ w ≤ m + 1,

0 otherwise.

So by Theorem 8, γ(Sm) ≤ ∣∣M(Hm)
∣∣ = O

(
2m2

/m
)
, which

is much stronger than the upper bound of 22m−m−2, as given

by Theorem 3. �

3Some authors require in addition that the first nonzero coordinate of
minimal codewords be one.

Example 2 Let G24 denote the [24, 12, 8]2 self-dual Golay

code. It is known [12] that M(G24) = {c ∈ G24 \ {0} :
wt(c) ≤ 12}. By Theorem 8 and the well-known weight

distribution of G24 [14], we have γ(G24) ≤ 3335. Note that

Theorem 3 and Theorem 6 both perform better in this case,

yielding γ(G24) ≤ 2048 and γ(G24) ≤ 2435, respectively. A

greedy search shows that in fact γ(G24) ≤ 370. �
Example 3 For MDS codes, minimal codewords and

minimum-weight codewords are the same, because all

nonzero codewords with weight not exceeding r + 1 are

minimum-weight. Also, ML redundancy and stopping

redundancy become equivalent, since no correctable erasure

pattern is of size larger than r = d− 1.

Let C be an [n, k]q MDS code. Then C⊥ is an [n, n − k]q
MDS code. By Theorem 8, we have γ(C) ≤ (

n
k+1

)
. Stronger

upper and lower bounds on ρ(C) = γ(C) of MDS codes can

be found in [4],[2],[5],[15]. �
Example 4 Let C be a random code whose (n−k)×n parity-

check matrix consists of independent and equiprobable entries

drawn from Fq. The following result was shown in [12].

Theorem 10 ([12]) Let k = Rn, where R ∈ (0, 1) is fixed.
Then

lim
n→∞

1
n

logqE
[|M(C)|] =

{
Hq(1−R)− (1−R) if R>1/q
R if R≤1/q

where Hq(·) is the base-q entropy function.
Theorem 10 was proved by noting that the average number

of minimal codewords of weight w is at least a constant

fraction (> 0.288) of the average total number of weight-w
codewords, for all w ≤ n−k+1. This shows that Corollary 9

in general should give a bound that is not much larger than

that given by Theorem 8.

To compare E
[|M(C)|] with the total number of codewords,

note that E
[|C|] = qk − q−r + 1. Therefore, if R ≤ 1/q,

almost all codewords in C are minimal; if R > 1/q, the

number of minimal codewords as a fraction of |C| decreases

to 0 exponentially fast as n → ∞. Accordingly, Theorem 8

is likely to give us a non-trivial bound if R < (q − 1)/q.

This observation is corroborated by our earlier examples of

Hamming, Simplex, and Golay codes. �

III. CODES WITH DESIGNS

We first show that the ML redundancy of Sm is small —

at most quadratic in the length of the code. This is contrasted

with the very large number of available parity checks. It is also

much lower than the O
(
2m2

/m
)

bound given by Theorem 8.

Interestingly, the stopping redundancy of Sm is also very

small. Indeed, it can be shown [6] that the stopping redundancy

of Sm is equal to its redundancy, 2m −m− 1.

Theorem 11 For all m,

γ(Sm) ≤ n2 − n

6
,

where n = 2m − 1 is the block length of Sm.
Proof: It is well known [14] that the number of weight-

3 codewords in Hm is 1
3

(
n
2

)
= (n2 − n)/6. We will show
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that any correctable erasure pattern for Sm is covered by a

weight-3 codeword of Hm. Let S be a correctable erasure

pattern. Then there exists c ∈ Hm, such that wt
(
c(S)

)
= 1. If

wt(c) = 3, then we are done. Otherwise, note that the supports

of weight-3 codewords in Hm form a (2, 3, n) Steiner system

[14]. Hence, we can find a weight-3 codeword, x1 ∈ Hm,

that matches c at its nonzero position within S and at least

one other nonzero bit. If wt
(
x1(S)

)
= 1, then we are done.

Otherwise, let c1 = c − x1, and note that wt
(
c1(S)

)
= 1

and wt(c1) < wt(c). Now we can repeat the above procedure

and find weight-3 codewords x2,x3, . . . ∈ Hm, until some

xi is found that covers S. This must happen since with each

unsuccessful step the weight of the codeword that covers S
(i.e. ci = ci−1 − xi) is reduced by at least one.

The above bound can be slightly improved by noting that

a subset of the weight-3 codewords of Hm suffices as parity

checks, giving the following result.

Theorem 12 For all m,

γ(Sm) ≤ n2 − 4n + 9
6

,

where n = 2m − 1 is the block length of Sm.
Proof: Let Am denote the set of weight-3 codewords

of Hm. For j = 1, . . . , n, define Am,j
def= {x ∈ Am : j ∈

supp(x)}. Let A′
m,j

def= Am \
(Am,j \ {am,j}

)
, where am,j

is an arbitrary element in Am,j . We show that any correctable

erasure pattern is covered by a vector in A′
m,j for all j.

Basically, we are saying that among all weight-3 codewords

of Hm whose supports contain the j-th coordinate, we may

discard all but one of them, and still cover all correct erasure

patterns. Let S ⊆ [n] be a correctable erasure pattern. Then

there exists c ∈ Hm, such that wt
(
c(S)

)
= 1. Observe that

if j /∈ supp(c), then the recursive procedure in the previous

proof can be followed through without using any vectors in

Am,j . This is because at each step, we have multiple choices

for xi by varying the choice of the position outside of S, and

only one of the resulting 3-sets possibly contains j.

We now show that either S is trivially covered, or we can

find c ∈ Hm such that wt
(
c(S)

)
= 1 and j /∈ supp(c), so the

above observation suffices to complete the proof. We need the

following fact, which can be seen from the proof of Lemma 1:

∀s ∈ S, ∃c ∈ Hm, s.t. supp
(
c(S)

)
= {s}. (2)

Now, consider two cases. If j ∈ S, then by (2), unless S = {j}
(in which case S is covered by am,j), we can always choose

c ∈ Hm such that wt
(
c(S)

)
= 1 and j /∈ supp(c). If j /∈ S,

let’s further assume that wt
(
am,j(S)

) �= 1 (or S is covered

by am,j). Thus, wt
(
am,j(S)

)
= 0 or 2. If wt

(
am,j(S)

)
= 0,

choose v ∈ Hm such that wt
(
v(S)

)
= 1. If wt

(
am,j(S)

)
=

2, by (2) we can choose v ∈ Hm such that wt
(
v(S)

)
= 1 and

supp
(
v(S)

) ⊂ supp(am,j). Now note that in either case, v
and v + am,j both cover S, but only one of them has j in its

support. The one whose support does not contain j can then

be chosen as c.

Finally, since {supp(x) : x ∈ Am} is a (2, 3, n) Steiner

system, |Am,j | = (n − 1)/2 for all j. Therefore, |A′
m,j | =

|Am| − |Am,j | + 1 = n(n − 1)/6 − (n − 1)/2 + 1 = (n2 −
4n + 9)/6.

The above bound is reasonably good, though not always

sharp. For example, Theorem 12 shows that γ(S3) ≤ 5 and

γ(S4) ≤ 29, while it can be verified through searching that

γ(S3) = 5 and γ(S4) ≤ 21.
Next, consider Reed-Muller (RM) codes. Let R(l,m) de-

note the l-th order RM code with parameter m. The first

order RM code, R(1,m), is closely related to the Simplex

code Sm. Whereas Sm is the dual code of the Hamming code

Hm, R(1,m) is the dual code of the corresponding extended

Hamming code, which we denote by Hext
m . Using ideas similar

to those used to prove Theorem 11 and Theorem 12, we obtain

the following bound on the ML redundancy of R(1,m).
Theorem 13 For all m,

γ
(R(1,m)

) ≤ 1
4

(
n

3

)
− n

2
+ 2.

where n = 2m is the block length of R(1,m).
Proof (Sketch): Let Bm denote the set of weight-4 code-

words ofHext
m . It is well known [14] that {supp(x) : x ∈ Bm}

is a (3, 4, n) Steiner system. For each D ∈ [n]2, define

Bm,D
def= {x ∈ Bm : D ⊂ supp(x)}, and let B′

m,D
def=

Bm \
(Bm,D \ {bm,D}

)
, where bm,D is an arbitrary element

in Bm,D.
Arguing as in the proofs of Theorem 11 and Theorem 12,

one can show that any correctable erasure pattern is covered

by a vector in B′
m,D for all D. Finally, note that |B′

m,D| =
|Bm| − |Bm,D|+ 1 = 1

4

(
n
3

)− n−2
2 + 1.

The essence of Theorems 11–13 can be generalized to any

length-n linear code whose dual code contains an (n, t + 1, t)
covering design (by which we mean precisely that the supports

of weight-(t + 1) codewords in the dual code form an (n, t +
1, t) covering design) for some t.

Theorem 14 Let C be a linear code of length n over Fq. If
for some t ≥ q, C⊥ contains an (n, t + 1, t) covering design,
then

γ(C) ≤
(

n

t

)
+

1
q − 1

t∑
i=1

Bi. (3)

In particular, if C⊥ contains a (t, t+1, n) Steiner system, then

γ(C) ≤ 1
t + 1

(
n

t

)
+

1
q − 1

t∑
i=1

Bi, (4)

where Bi is the number of weight-i codewords in C⊥.
Proof: Choose a subset of weight-(t+1) codewords from

C⊥ as parity checks, such that their supports form an (n, t +
1, t) covering design. This subset can be chosen to contain less

than
(
n
t

)
vectors (or, precisely 1

t+1

(
n
t

)
vectors, if C⊥ contains a

(t, t+1, n) Steiner system). Choose also a subset of codewords

from C⊥ whose weights are less than (t+1) (if there are any),

such that exactly one codeword is chosen for each support set.

The total number of vectors we have chosen from C⊥ is no

greater than
(
n
t

)
+ 1

q−1

∑t
i=1 Bi (or, 1

t+1

(
n
t

)
+ 1

q−1

∑t
i=1 Bi,

if C⊥ contains a (t, t + 1, n) Steiner system). Let this set of

vectors (as parity checks) be denoted by A. We show that any

correctable erasure pattern for C is covered by a vector in A.
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If S is correctable, then there exists v ∈ C⊥ such that

wt
(
v(S)

)
= 1. Let c = αv where α ∈ Fq, α �= 0 is a

constant of our choice. If there exists α such that c ∈ A,

then we are done. Otherwise, we have |supp(c)| ≥ t + 1 and

|supp(c) \ S| ≥ t. Let X be any t-subset of
(
supp(c) \ S

)
.

Since C⊥ contains an (n, t+1, t) covering design, there exists

x1 ∈ A such that wt(x1) = t + 1 and supp(x1) ⊃ X . If

wt(x1(S)) = 1, then we are done. Otherwise, note that by

choosing α we can ensure that c matches x1 at no less than


t/(q − 1)� positions. Let c1 = α1(c − x1), where α1 ∈ Fq,

α1 �= 0 can be chosen freely. Note that wt(c1(S)) = 1. And

since t ≥ q, we also have

wt(c1) ≤ wt(c)− 
t/(q − 1)�+ 1 < wt(c).

Now the above procedure can be repeated to find weight-

(t + 1) codewords x2,x3, . . . ∈ A, and stopped if some xi

is found that covers S. Since at each unsuccessful step the

weight of the parity-check vector that covers S (i.e. ci =
αi(ci−1 − xi)) is reduced by at least one, the process must

terminate in a finite number of steps, at the end of which we

will either have found some xi ∈ A that covers S, or we will

be left with some 0 �= ci = αi(ci−1 − xi) that covers S and

has weight no greater than t. In the latter case, note that by

construction, there exists αi such that ci ∈ A.

The recursive procedure used in the above proof is slightly

different from the one used in the proof of Theorem 11, but

the two are similar in principle.

If the minimum distance of C⊥ is t + 1, then the second

term in (3) (and similarly in (4)) goes away, as in the case of

Simplex and first order Reed-Muller codes.

As examples, let G11 and G12 denote the ternary and

extended ternary Golay codes, respectively. It is well known

[14] that the supports of weight-6 codewords in G12 and those

of weight-5 codewords in G11 form (5, 6, 12) and (4, 5, 11)
Steiner systems, respectively. Furthermore, note that G12 is

self-dual. By (4), we immediately have γ(G⊥
11) ≤ 66 and

γ(G12) ≤ 132.

IV. CONCLUDING REMARKS

We have defined and studied ML redundancy in the setting

of erasure channels. A reasonable question to ask is how ML

redundancy can be extended to other channels, such as the

BSC or the AWGN channel. For such cases, it may be fruitful

to consider how the choice of parity-check matrix affects the

distribution of pseudo-codewords [16] (effectively assuming

a linear programming decoder [17], whose performance is

closely related to that of iterative decoding). One should be

cautious, though, as there exist codes for which non-codeword

pseudo-codewords persist even when all parity checks are

deployed [17],[18]. For those codes, precise ML performance

may never be matched using a linear programming decoder.

Nevertheless, it could still be interesting to consider, for

example, the smallest number of parity checks such that the

volume of the fundamental polytope is minimized.

The recursive procedure used in proving Theorems 11 –

14 is reminiscent of the zero-neighbors algorithm [19]. It will

be interesting to see if such intuition can be extended to the

general case, so that instead of using all minimal codewords

in the dual code (except those with duplicate supports), a

(possibly much) smaller subset may suffice.

ACKNOWLEDGMENT

This work was supported in part by the Center for Magnetic

Recording Research at UCSD, and by NSF Grant No. CCR-

0514859.

REFERENCES

[1] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes over the binary erasure channel,” IEEE Trans. Inform. Theory,
vol. 50, no. 3, pp. 439–454, Mar. 2004.

[2] J. Han and P. H. Siegel, “Improved upper bounds on stopping redun-
dancy,” IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 90–104, Jan.
2007.

[3] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “On parity check
collections for iterative erasure decoding that correct all correctable
erasure patterns of a given size,” IEEE Trans. Inform. Theory, vol. 53,
no. 2, pp. 823–828, Feb. 2007.

[4] M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp.
922–932, Mar. 2006.

[5] J. Han, P. H. Siegel, and R. M. Roth, “Bounds on single-exclusion
numbers and stopping redundancy of MDS codes,” in Proc. IEEE
International Symposium on Information Theory, Nice, France, June
2007, pp. 2941–2945.

[6] T. Etzion, “On the stopping redundancy of Reed-Muller codes,” IEEE
Trans. Inform. Theory, vol. 52, no. 11, pp. 4867–4879, Nov. 2006.

[7] O. Milenkovic, E. Soljanin, and P. Whiting, “Stopping and trapping sets
in generalized covering arrays,” in Proc. 40th Annual Conference on
Information Sciences and Systems (CISS), Princeton, NJ, Mar. 2006,
pp. 259–264.

[8] T. Hehn, S. Laendner, O. Milenkovic, and J. B. Huber, “The stopping
redundancy hierarchy of cyclic codes,” in Proc. 44-th Annual Allerton
Conference on Communication, Control and Computing, Monticello, IL,
Sept. 2006, pp. 1271–1280.

[9] C. A. Kelley and D. Sridhara, “On the pseudocodeword weight and
parity-check matrix redundancy of linear codes,” in Proc. IEEE Infor-
mation Theory Workshop, Lake Tahoe, California, Sept. 2007, pp. 1–6.

[10] J. H. Weber and K. A. S. Abdel-Ghaffar, “Results on parity-check
matrices with optimal stopping and/or dead-end set enumerators,” IEEE
Trans. Inform. Theory, vol. 54, no. 3, pp. 1368–1374, Mar. 2008.

[11] T.-Y. Hwang, “Decoding linear block codes for minimizing word error
rate,” IEEE Trans. Inform. Theory, vol. IT-25, pp. 733–737, Nov. 1979.

[12] A. Ashikhmin and A. Barg, “Minimal vectors in linear codes,” IEEE
Trans. Inform. Theory, vol. 44, no. 5, pp. 2010–2017, Sept. 1998.

[13] J. L. Massey, “Minimal codewords and secret sharing,” in Proc. 6th
Joint Swedish-Russian Workshop on Information Theory, Rölle, Sweden,
1993, pp. 246–249.

[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1978.

[15] J. Han, P. H. Siegel, and R. M. Roth, “Single exclusion number and
stopping redundancy of MDS codes,” submitted to IEEE Trans. Inform.
Theory, 2007. [Online]. Available: http://arxiv.org/abs/0712.2857

[16] R. Koetter and P. Vontobel, “Graph covers and iterative decoding of
finite-length codes,” in Proc. 3rd International Symposium on Turbo
Codes and Related Topics, Brest, France, Sept. 2003, pp. 75–82.

[17] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear pro-
gramming to decode binary linear codes,” IEEE Trans. Inform. Theory,
vol. 51, no. 3, pp. 954–972, Mar. 2005.

[18] F. Barahona and M. Grötschel, “On the cycle polytope of a binary
matroid,” J. Combin. Theory Ser. B, vol. 40, pp. 40–62, 1986.

[19] L. B. Levitin and C. R. P. Hartmann, “A new approach to the general
minimum distance decoding problem: The zero-neighbors algorithm,”
IEEE Trans. Inform. Theory, vol. 31, no. 3, pp. 378–384, May 1985.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

284


