
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL 10. NO 1 . JANUARY 1992 5

Finite-State Modulation Codes for Data Storage
Brian H. Marcus, Member, IEEE, Paul H. Siegel, Senior Member, IEEE, and Jack K. Wolf, Fellow, IEEE

Abstract-This paper provides a self-contained exposition of k
modulation code design methods based upon the state splitting
algorithm. The techniques are applied to the design of several
codes of interest in digital data recording.

7

I . 1NTRODUCTION 0 0 0 0 0 0 0
*-W. . w.. H

ODULATION codes in digital recording systems M serve a variety of important roles. In the most gen-
era1 terms, their purpose is to improve the performance of
the system by matching the characteristics of the recorded
signals to those of the channel. Key factors determining
the recording code constraints include: channel band-
width restrictions, the timing recovery method, the gain Fig. I . Run-length limited (d, k) constraint.

control method, the detection technique, and the elec-
tronic implementation approach.

For example, in magnetic recording systems using
peak-detection [11, the main objectives are to compress
the signal bandwidth; optimize the trade-off between in-
tersymbol interference, detection window size, and data
density; support data-driven timing and gain control; and
minimize implementation cost. A widely used family of
constraints are the (d , k) or run-length-limited (RLL) con-
straints, where the run of “0” symbols between consec-
utive “1” symbols must have length at least d and no
more than k [2], [3]. The reasons for the imposition of
such constraints are discussed in more detail in Section
VI-A. Many commercial systems today use a code with
constraints (d , k) = (2 , 7). An example of a string satis-
fying these constraints is

* * 0 0 1 0 ~ 1 0 0 1 ~ 1 0 0 * - * .
The set of all sequences satisfying these constraints is
conveniently described by reading the labels off of paths
through the diagram in Fig. 1. We will have much more
to say about such diagrams in the remaining sections of
the paper.

More recently, magnetic recording systems using sam-
pling detectors have appeared on the scene. These employ
a scheme, denoted PRML, based upon class-4, partial-
response signaling, with maximum-likelihood sequence
estimation, [4]-[7]. As discussed in more detail in Sec-
tion VII, it is desirable to use sequences which satisfy not
only a “global” k constraint, denoted G , but also a sep-

Manuscript received September 1990; revised August 15, 1991.
B. H. Marcus and P. H. Siegel are with the IBM Research Division,

J. K. Wolf is with the Center for Magnetic Recording Research, Uni-

IEEE Log Number 9104233.

Almaden Research Center, San Jose, CA 95120.

versity of California, San Diego, La Jolla, CA 92093.

arate “interleaved” k constraint on the even index and
odd index substrings, denoted 1. We will refer to these
constraints as (0, G / I) constraints. An example of a string
satisfying the (0, 4/4) constraints is

* * 001m1001oooo1001100 * * .
Another commonly encountered constraint requires that

the channel input waveforms have no spectral content at
a particular frequency f, typically zero frequency or the
Nyquist frequency (one-half the code symbol frequency).
The code is said to have a spectral null at f in the code
power density spectrum. Sequences with a spectral null at
f = 0, often called dc-free sequences, have been used in
many tape recording systems employing rotary-type re-
cording heads, such as the R-DAT digital audio tape sys-
tems. More recently, it has been shown that dc-free se-
quences are also of potential value in trellis-coded PRML
systems [8]. Sequences with spectral null at f = 0 are
generated by diagrams of the form shown in Fig. 2. (The
more “links” there are in the “sausage,” the less atten-
uation there will be in the low frequencies near the spec-
tral null.)

Once the system of constrained sequences, denoted S,
is specified, one needs a code that translates incoming in-
formation into the sequences that obey the constraints. We
will often refer to such a code as an S code. So, a (d , k)
code is a mapping that encodes arbitrary binary data into
the (d , k) run-length limited constraint.

The encoder typically takes the form of a synchronous
finite-state-machine, shown schematically in Fig. 3. A
rate p : q jn i te state encoder accepts an input block of p
user bits and generates a length q codeword depending on
the input block and the current internal state of the en-
coder. There are of course only finitely many states. This
structure is ideally suited to digital logic implementation
using combinatorial logic or look-up tables.

0733-8716/92$03.00 0 1992 IEEE

n,

6 IEEE JOURNAL ON

1 1 1 1 1 1 1 1 1
~ . c J ~ ~ ~ . . g ~

- 1 - 1 - 1 -1 - 1 - 1 - 1 - 1 - 1

Fig. 2 . Charge constraint.

p bits q bits
Encoder

Logic

(states)

Fig. 3 . Finite-state encoder.

As is customary, we sometimes use the term rate to
mean the ratio p / q , instead of the pair of block sizes p : q.
It will be clear from the notation which version of the term
“rate” we mean.

The encoders that we construct will automatically be
decodable. The weakest type of decoder that we consider
is a state-dependent decoder which accepts, as input,
codewords of length q and generates a block o f p user bits
depending on the internal state, the input codeword, as
well as finitely many upcoming codewords. Such a de-
coder will invert the encoder when applied to valid code
sequences, effectively retracing the state sequence fol-
lowed by the encoder in generating the code sequence.
However, when the code is used in the context of a noisy
channel, the state-dependent decoder may run into a se-
rious problem. The noise causes errors in the detection of
the code sequences, and the decoder must cope with er-
roneously detected sequences, including sequences that
are not even valid code strings. It is generally very im-
portant that the decoder confine the propagation of errors
at the decoder output resulting from such an error at the
decoder input. Unfortunately, an error at the input to a
state-dependent decoder can cause the decoder to lose
track of the encoder state sequence, with no guarantee of
recovery and with the possibility of unbounded error
propagation.

The decoder therefore needs to have additional prop-
erties. Specifically, any input symbol error should give
rise to a bounded number of output (decoded) bit errors.
We call an encoder, for which there is such a decoder,
noncatastrophic. This is a standard concept in the theory
of convolutional codes. In that setting, this definition con-
strains the time span in which the bounded number of er-
rors must occur. However, in general, it does not. Since,
in practice, it is preferable to have these output errors oc-
cur within a bounded time interval, we often seek a de-
coder that is defined by a sliding-block mapping. Such a
decoder (called a sliding-block decoder) makes a decision
on a given received word on the basis of the local context
of the word in the received sequence: the word itself, as
well as a fixed number m of preceding words and a fixed
number a of later words. The preceding symbols consti-
tute what is called the memory (m) of the decoder, and
the following symbols are called the anticipation (a) . Fig.
4 shows a schematic diagram of a sliding-block decoder.

SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . JANUARY 1992

q bits

A
I I I I I I

I I I I +
p bits

Fig. 4. Sliding-block decoder

This function can be realized as a shift register with com-
binatorial logic attached. It is easy to see that a single
error at the input to a sliding-block decoder can only affect
the decoding of words that fall in a “window” of length
at most m + a + I words.

The problem for the code designer is to construct a code
with these encodeddecoder attributes. In addition, it is
desirable that the code be eficient, where efficiency has a
very precise meaning, established by Shannon in his clas-
sic paper [9]. Shannon proved that the rate R = p / q of a
constrained code cannot exceed a quantity, now referred
to as the Shannon capacity C , that depends only upon the
constraint. He also gave a nonconstructive proof of the
existence of codes at rates less than, but arbitrarily close
to, the capacity. The measure of efficiency of a code is
the ratio R / C .

Progress was made in the 1950’s, 1960’s, and 1970’s
in finding techniques for generating practical, efficient
modulation codes. In his pioneering work, Franaszek
[lo]-[141 (see also Beal [15]) developed construction
methods that advanced the theory of code design and in-
vented specific codes that played important roles in the
digital data recording industry. In addition, Tang and Bahl
[16], Jacoby [17]-[19], Lempel and Cohn [20], Pate1 [21],
and others, made many important contributions. Never-
theless, there remained the following fundamental ques-
tions. For a given rate R, what block sizes p , q such that
R = p / q can be realized? When and how can encoders
with sliding-block decoders be found? If the Shannon ca-
pacity is a rational number of C = p / q , can a 100% ef-
ficient sliding-block code be designed?

In the 1980’s, many of these basic questions were an-
swered. The major breakthrough occurred with the intro-
duction by Adler, Coppersmith, and Hassner [22] of tech-
niques that originated from a mathematical discipline
called symbolic dynamics. This approach has brought to
recording code design a new level of mathematical rigor
and generality. In [22], as well as subsequent papers by
Marcus [23], and Karabed-Marcus [24], practical prop-
erties of encoder and decoder mappings were translated
into mathematical terms, families of sequences that play
a distinguished role in coding were precisely character-
ized, and definitive theorems about the existence of code

MARCUS et al.: FINITE-STATE MODULATION CODES 7

mappings were formulated and proved. Moreover, the
proofs of the theorems provided a set of code construction
techniques that have proven to be of practical value to
code designers. Reference [22] provides an algorithm-
the state splitting algorithm-for constructing efficient en-
coders with sliding-block decoders for the family of-finite
type constraints that includes, for example, all RLL (d ,
k) constraints and PRML (0, G/Z) constraints. Refer-
ences [23] and [24] develop additional techniques, and
they extend the sliding-block code existence results to the
larger family of almost9nite type systems, such as the
spectral-null constraints. They also show the existence of
noncatastrophic codes (which, we recall, are slightly
weaker than sliding-block codes in terms of error propa-
gation) for systems not included in the previous families.

As important as these recent papers are for practical
code design, however, the reader uninitiated in symbolic
dynamics may, at times, find them difficult to follow. The
aim of this paper is twofold. First, using only elementary
mathematical concepts, we hope to provide a self-con-
tained, yet rigorous exposition of the state splitting algo-
rithm in [22]. We also include a collection of “tricks of
the trade” that are of value to the coding practitioner, but
have not appeared together in readily accessible prior lit-
erature or textbooks [25], [26].

Second, we illustrate the application of these tools in
the construction of practical (d , k) codes for recording
channels using peak detection and (0, G/Z) codes for
channels using partial-response with maximum-likelihood
(PRML) detection.

We remark that there are several other recent exposi-
tions of the state splitting algorithm that the interested
reader might wish to consult; Blahut [27, ch. 81; Immink
[28, ch. 51; Khayrallah and Neuhoff [29]; and Swenson
and Cioffi [30].

The remainder of this paper is organized as follows. In
Section 11, we review the necessary background on finite
state transition diagrams, constrained systems, and Shan-
non capacity. In Section 111, we present, in detail, the
state splitting algorithm for constructing finite state en-
coders. In particular, Section 111-E summarizes the algo-
rithm in a step-by-step fashion. These encoders automat-
ically have state-dependent decoders. In Section IV, we
show that for the class of finite-type constrained systems,
the encoders constructed in Section 111 can be made to
have sliding-block decoders. In Section V, we consider
practical techniques for reducing the number of encoder
states as well as the size of the sliding-block decoder win-
dow. In Sections VI and VII, we apply the techniques to
run-length limited systems and PRML constraints. In Sec-
tion VIII, we discuss the class of almost-finite-type sys-
tems and state the general results which yield noncata-
strophic encoders.

11. BACKGROUND
The reader is no doubt familiar with the colloquial

expression: no pain, no gain. The whole point of this pa-
per is to share the gain, while minimizing the pain, when

Fig. 5. Typical FSTD.

it comes to constructing finite-state codes for recording
channels. However, there are some important concepts
and related terminology that we need in order to proceed
with the code construction algorithm, as well as to un-
derstand its strengths and limitations. The purpose of this
section is to present and illustrate in an intuitive manner
these few necessary mathematical notions.

First, we introduce a convenient diagrammatic method
used to represent the set of constrained sequences from
which code sequences will be drawn.

A -finite-state transition-diagram (FSTD) G is a di-
rected graph with a finite number of states (vertices) and
edges, and edge labels drawn from an alphabet containing
a finite number of symbols. Fig. 5 shows a “typical” ex-
ample of an FSTD.

There are a few features worth highlighting. Since the
graph is directed, each edge can be traversed in only one
direction, as indicated by the arrow. Self-loops, meaning
edges that start and end at the same state, are allowed.
Also there can be more than one edge connecting a given
state to another state. (In practice, however, distinct edges
that share the same starting and ending states will always
have distinct labels.) We will use the symbol V (G) to de-
note the set of states of G and the symbol E(G) to denote
the set of edges of G.

We will sometimes use the symbol G to denote just the
graph itself (without the labels), but the meaning should
always be clear from the context.

The FSTD can be used, as follows, to generate finite
symbol sequences, sometimes referred to as strings. We
pick a starting state in G, and then follow a path consist-
ing of a sequence of edges, always respecting the arrows
indicating the allowed direction. As each edge in the path
is traversed, we read off the corresponding label, thereby
producing a sequence of symbols. For example, in Fig 5,
the symbol sequence a b c c d can be generated by fol-
lowing a path along edges with state sequence I 1 2 3 1
3 . We will call a sequence of length n generated by G an
n-block.

The set of all finite sequences generated by an FSTD
will be called a constrained system or constraint, denoted
by S . We say that the FSTD represents the constrained
system S . Constrained systems are closely related to reg-
ular languages in automata theory and sofic systems in
symbolic dynamics.

As will become apparent in the next section, an FSTD
is the starting point for the code construction procedure.
It is therefore important to understand various basic prop-
erties of FSTD’s and their underlying graphs, as well as
certain relationships among FSTD’s.

For one thing, a constrained system should not be con-

1 m I .

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . JANUARY 1992

fused with any particular FSTD, because a given con-
strained system can be represented by many different
FSTD’s. For example, the RLL (0, 1) constrained system
can be represented by the FSTD’s in Fig. 6, which are
very different from one another.

For purposes of code construction, it is important to
consider FSTD’s that have special properties with respect
to their labelings. For example, an FSTD is called deter-
ministic if at each state the outgoing edges are labeled
distinctly. In other words, at each state, any label gener-
ated from that state uniquely determines an outgoing edge
from that state. The FSTD’s in Figs. 1, 2, and 6(a) and
(b) are deterministic while the FSTD’s in Fig. 6(c) and
(d) are not. The reader, familiar with constrained systems
in the literature, will notice that constrained systems are
usually represented by deterministic FSTD’s. It is well
known that any constrained system can be represented by
some deterministic FSTD [3 1, sec. 16-31.

We will in fact need to consider the following more
general version of the deterministic property. An FSTD
has local anticipation a if a is the smallest nonnegative
integer such that, for every state i , all of the paths of length
a + 1 that start at i and generate the same sequence begin
with the same edge. In other words, knowledge of the
initial state of a path and the first a + 1 symbols that it
generates is sufficient information to determine the initial
edge of the path. An FSTD hasjinite local anticipation if
it has local anticipation a for some nonnegative integer a.
An FSTD that does not have finite local anticipation will
be said to have injnite local anticipation.

The adjective ‘‘local’’ is used to emphasize depen-
dence on the knowledge of the initial state and also to
distinguish this kind of anticipation from a more global
kind of anticipation that will be introduced in Section IV.
We note that saying that an FSTD is deterministic is
equivalent to saying that it has local anticipation 0. The
FSTD in Fig. 6(c) is a representation of the RLL (0 , 1)
constrained system with local anticipation 1 but not 0.
Fig. 6(d) depicts an FSTD with infinite local anticipation.

There is also a notion ofjinite local memory obtained
by considering paths that end at a given state. Most of
what we say can be carried out with this concept rather
than finite local anticipation. But by tradition we prefer
anticipation over memory. (“It’s better to look to the
future than to dwell upon the past!”) We will need the
notion of finite local memory only in Section VIII.

We will be interested primarily in FSTD’s that always
permit you to “get there from here.” That is, there is
always a path in G from any specified starting state i to
any specified destination statej. An FSTD with this prop-
erty is called irreducible.

An FSTD is reducible if it is not irreducible. All of the
FSTD’s in Fig. 6 are irreducible, while Fig. 7(a) shows
a reducible FSTD for the system of unconstrained binary
sequences, RLL (0, 00). A special case of reducibility is
the property of being disconnected. An FSTD G is dis-
connected if the set of states V(G) can be broken into two
disjoint subsets, VI (G) and V2 (G), in such a way that no

1

(C) (d)

Fig. 6 . (a) FSTD for RLL (0, I) . (b) Another FSTD for RLL (0, I) . (c)
Yet another FSTD for RLL (0, I) . (d) One more FSTD for RLL (0, I) .

A

WO

(b)

Fig. 7. (a) Reducible FSTD for unconstrained binary sequences. (b) Irre-
ducible components.

edge e in E (G) begins at a state in V , (G) and ends at a
state in V 2 (G) , or vice-versa. An FSTD that is not dis-
connected is called connected. Fig. 7(a) shows that a re-
ducible FSTD can still be connected. (We also remark
that the expression strongly connected is sometimes used
to mean “irreducible.”) The graph in Fig. 7 (b) is dis-
connected.

It will be useful later to know that any reducible FSTD
can, in some sense, be broken down into “maximal” ir-
reducible pieces. To make this more precise we introduce
the concept of an irreducible component of an FSTD G.
An irreducible component of an FSTD G is an irreducible
FSTD that is contained in G and is not properly contained
in any bigger irreducible FSTD that is contained in G.
Fig. 7(b) shows the irreducible components of the FSTD
in Fig. 7(a). From the point of view of finite-state code
construction, we can concern ourselves primarily with ir-
reducible FSTD’s by using irreducible components.

As mentioned in the Introduction, a rate p : q finite-
state encoder will generate a sequence, composed of
length-q codewords (q-blocks), that belongs to the de-
sired, constrained system S. For a system S described by

I

I I I

MARCUS er a l . : FINITE-STATE MODULATION CODES 9

an FSTD G, it will be very useful to have an explicit de-
scription of the sequences in S, grouped into such non-
overlapping “chunks” of length q. We can obtain such a
description by defining another FSTD, called the qth
power o f G and denoted G q . The FSTD Gq has the exact
same set of states as G, but each edge in G q corresponds
to a path of length q in G, and the edge label is the q-
block generated by that path. The constrained system gen-
erated by Gq is denoted Sq. Its alphabet consists of the q-
blocks in S . If G has finite local anticipation, so does G4.

For example, Fig. 8 shows the third power G 3 of the
FSTD G in Fig. 6(a) that represents the RLL (0, 1) con-
straint.

There are times when the qth power of an FSTD G will
not be irreducible, even if G is. For example, Fig. 9 shows
an FSTD describing a system S of charge-constrained se-
quences (with a spectral null at zero frequency). Its sec-
ond power G 2 , shown in Fig. 10, has two irreducible
components.

Note that both FSTD’s in Figs. 6(a) and 9 are irredu-
cible. These two examples illustrate the general situation:
it can be shown that, if G is an irreducible FSTD, then
any power G4 is either irreducible, or it is disconnected
and decomposes into disjoint, irreducible components (see
Figs. 8 and 10). If G4 is irreducible for all powers q 2
1, then G is said to be aperiodic. If G q decomposes into
q disjoint components, each of which is aperiodic (and
therefore irreducible), then G is said to have period q . (In
particular, if G is aperiodic, it has period 1.) It can be
shown that if G has period p , then the number of disjoint
components in G q will be g c d (p , q) , the greatest common
divisor of p and q.

The period of G can also be defined as the greatest com-
mon divisor of the lengths of all cycles in G, where a
cycle is a path whose ending state is the same as its initial
state. For example, it is not difficult to check that the
charge constraint FSTD in Fig. 9 has period 2. The con-
cept of periodicity, although important in studying certain
aspects of constrained systems (see [39]), does not play a
role in the remainder of the paper. We refer the interested
reader to [29] or any text on graph theory.

We require one more crucial concept, namely the Shan-
non capacity or simply capacity of the constrained system
S , before we can launch into the coding constructions.
The Shannon capacity C measures the growth rate of the
number of strings of length n in S , meaning that the num-
ber of valid strings of length n, for large enough n, is well
approximated by the upper bound 2‘“. More precisely, if
we let N(n; S) denote the number of sequences of length

. n in S, the Shannon capacity, which we will often denote
Cap($), is defined by

log2 W (n ; S)) Cup(S) = lim
n - m n

Shannon [9] showed that this quantity provides an up-
per bound on the achievable rate of any finite-state code
into the system S . Moreover, given positive integers p , q

1 1 1

01 1

Fig. 8. FSTD for third power of FSTD in Fig. 6(a)

1 1

- 1 -1

Fig. 9. FSTD for a particular charge constraint

1 - 1 / \

-1 -1
Fig. 10. FSTD for second power of FSTD in Fig. 9.

(relatively prime) satisfying the inequality

P I 9 < CUP(S)

Shannon proved (nonconstructively) that there is an inte-
ger k and 2kp blocks in S of length kq.

The Shannon capacity Cup(S) is easily computed from
any FSTD G representing S , provided that G has finite
local anticipation, in particular, if G is deterministic. The
capacity is computed from a matrix, describing the inter-
connections in G, defined as follows. Suppose that the
number of states in V (G) is r . The adjacency matrix (or
state-transition matrix) A = A (G) = { a o } is the r-by-r
matrix where the entry U,, is the number of edges from
state i to s ta te j in G. The matrix therefore will have non-
negative, integer entries.

Given an FSTD G with finite local anticipation and ad-
jacency matrix A , the Shannon capacity turns out to be

Cap(S) = log, X(A) (1)

where h(A) is the largest real eigenvalue of A . (See Theo-
rem A3 in Appendix A.) The existence of a positive real
eigenvalue is guaranteed by the Perron-Frobenius theory
of nonnegative real matrices, but we need not worry about
such theoretical details right now. Any good linear alge-
bra software package will gladly find the eigenvalue X(A)
for you. The Perron-Frobenius theory is discussed briefly
in Appendix A.

As an example, for the RLL (0, 1) constraint repre-
sented by the deterministic FSTD in Fig. 6(a), the adja-

m- 1

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. IO. NO. 1, JANUARY 1992

cency matrix is

with largest eigenvalue

1 + & A = -
2

and capacity

C U ~ (S) = log2 (A) = 0.6942 * * * .
The adjacency matrix A (G q) of G 4 is easily seen to be

A(G)4, the qth power of the matrix A(G) . From linear
algebra, it follows that the Shannon capacity Cup(Sq) of
the constraint S 4 described by G 4 is q times the capacity
Cup(S) of the constraint S defined by G:

Cup(S4) = qCup(S).

We remarked earlier that, for the purposes of construct-
ing a code into the constrained system S, we could restrict
our attention to irreducible components of an FSTD rep-
resenting S . We do not pay any price in terms of achiev-
able code rate in doing so, because if the system S is rep-
resented by a reducible FSTD G , then there is an
irreducible component of G which represents a subsystem
of S whose capacity equals Cup(S) (see Theorems A2 and
A3 in Appendix A). The fact is, however, that most con-
straints of interest can be represented by an irreducible
(and, in fact, deterministic) FSTD G .

As mentioned above, it may happen that the power G 4
of an irreducible FSTD G decomposes into disjoint, ir-
reducible components. It can be shown that the adjacency
matrices of these irreducible components will all share the
same largest eigenvalue. In particular, if G has finite local
anticipation, then the constrained systems represented by
these irreducible pieces of G 4 all have the same Shannon
capacity qCup(S). For more information on properties of
constrained systems and FSTD’s, we again refer the
reader to [29].

111. FINITE-STATE CODE CONSTRUCTION
In this section, we provide a completely self-contained

exposition of the state splitting algorithm for constructing
finite-state codes. In Section IV, the result will be im-
proved to obtain finite-state codes with sliding-block de-
coders for a natural class of constrained systems.

Theorem 1 (Finite-State Coding Theorem): Let S be a
constrained system with Shannon capacity Cup(S) . Let p ,
q be positive integers satisfying the inequality.

P / 9 5 CUP(S)
Then, there exists a finite-state encoder with state-depen-
dent decoder that encodes binary data into the constraint
S at constant rate p : q .

The theorem, which can be derived as a weaker version
of the main theorem of [22], improves upon earlier coding
results in the following two important ways.

1) It proves the existence of finite-state codes that
achieve rate equal to the capacity Cup(S), when Cup(S)
is rational.

2) For any positive integers p, q satisfying the in-
equality, there is a code that operates at rate p : q. In par-
ticular, choosing p . q relatively prime, one can design an
encodeddecoder using the smallest possible codeword
length compatible with the chosen rate R = p / q .

The terminology and presentation we will use is in-
tended to allow the reader to properly formulate practical
coding problems, and to use the code construction tech-
niques to explore various code design options for the in-
tended application. The steps in the algorithm are sum-
marized in Section 111-E, and they can all be effectively
implemented as part of a computer software package (as
has been done by several researchers), providing a tool
kit for the serious code designer.

Although the design procedure based upon the proof of
Theorem 1 can be made completely systematic-in the
sense of having the computer automatically generate an
encoder and decoder for any valid code rate-the appli-
cation of the method to just about any nontrivial code de-
sign problem will benefit from the interactive involve-
ment of the code designers: there is still plenty of room
for the “artist” in coding. There are also several practical
tools-“tricks of the trade”-that can help the designer
make “good” choices during the construction process.
We will discuss these code simplification techniques in
Section V, and then demonstrate their effectiveness in the
examples described in Sections VI and VII.

It should be stressed, however, that despite these sig-
nificant advances in code construction methods, the gen-
eral problem of designing codes that achieve, for exam-
ple, the minimum number of encoder states, minimum
error propagation, or the less precise feature of minimum
hardware complexity, still lacks an explicit solution. This
remains an active research topic, as exemplified by recent
papers where lower bounds on the number of encoder
states [32] and bounds on the minimum sliding-block de-
coder window [33], [34] are derived.

A. State-Splitting
The proof of Theorem 1 relies upon a technique called

state splitting, which we now motivate and define.
Suppose that a given FSTD G represents the con-

strained system S from which our code sequences will be
drawn. If we select an achievable rate R = p/q I
Cup(S), and want to code at rate p : q, we first look at the
qth power of G , denoted G 4 , whose states, we recall, are
the same as G , but whose edges correspond to paths of
length q in G , and whose edge-labels are the correspond-
ing strings of length q in S . The simplest condition that
would permit us to use G 4 as a rate p : q finite-state en-
coder would be for G 4 to have outdegree at least 2p, that
is, at least 2p edges emanating from each state in G 4 .
Then, the encoder could generate, from each state and for
each data p-block, a q-block in S .

Actually, it would suffice for G 4 to have a sub-FSTD

7 ’ Tr I T ~

MARCUS et al . : FINITE-STATE MODULATION CODES 1 1

K with this property. This condition can be rephrased
nicely in terms of the adjacency matrix A4 for G 4 . (Recall
that A4 = A (G 4) = A(G)4.) The matrix formulation of
this condition is

Aqu L 2pu (2)
where the vector U is a “0-1” column vector, that is, a
vector with components either 0 or 1. The sub-FSTD K
determined by the states with corresponding components
in U equal to 1 will satisfy the condition that the outdegree
is at least 2p.

Let

R(i) iL A (K) , , , + * - + A (K) , , ,

where A(K),, , is the number of edges in K from state i to
statej. The quantity R (i) is often called the rowsum, and
it indicates the number of edges in K that emanate from
state i. When the rowsum R (i) equals or exceeds 2p, we
can select exactly 2p outgoing edges from state i, and as-
sign to each a distinct binary p-block. For this reason, we
call the condition (2), with a “0-1” vector U, the rowsum
condition. We say that K is an encoder graph or an en-
coder FSTD.

Example: Consider the constrained system represented
by the FSTD in Fig. 11; the symbols are binary 2-blocks
(after the slash). Each state has outdegree 2, and the as-
signment of data bits (in front of the slash) to labels de-
fines a rate l : 2 encoder from binary data into the con-
straint.

It is rare that the rowsum condition will be so easily
satisfied. To see what can go wrong, consider the FSTD
for the RLL (0, 1) constraint that, we recall, has capacity

For a rate 2 : 3 encoder, we look at G 3 (in Fig. 8) and
A(G) , where

[: :I. A(G3) = A(G)3 =

The rowsums are R(l) = 5 and R(2) = 3. F o r p = 2, or
2p = 4, state 1 satisfies the desired rowsum inequality

R(1) = 5 L 22 = 4

but state 2, with R(2) = 3, clearly fails. If we remove
state 2 (and all edges connected to it), state 1 loses 2
edges. Therefore, the rowsum in the matrix for this sub-
system also falls short. In other words, we are stuck!

Having reached this impasse, one approach would be
to look at higher powers of G , increasing the block length
of codewords and data words, as was done in [lo]-1121.
This approach has been successfully applied to generate
several RLL codes of practical significance, but for some
constrained systems and rates of practical interest, the
block length required becomes prohibitively large.

The approach we will follow, in contrast, does not in-
crease the block length, but instead uses graph construc-
tion techniques based on state splitting and eigenvectors,

o/oo

Fig. 11. Rate 1 : 2 encoder.

which have their roots in symbolic dynamics, where they
were introduced by Williams 1351 and Adler, Goodwyn,
and Weiss 1361. The application of state splitting ideas in
modulation coding was foreshadowed by Patel’s con-
struction of the zero-modulation (ZM) code [21]. See also
Franaszek [131, [141 for related ideas.

The state splitting algorithm we describe involves an
iterative application of a fundamental FSTD transforma-
tion that will allow us to create from G 4 a new FSTD
representing S 4 . The procedure culminates in an FSTD
representing S4 that satisfies the desired rowsum condi-
tion.

We now define the aforementioned fundamental trans-
formation, which we call a basic splitting. We describe
this for a general FSTD H and later apply it to the FSTD
H = G 4 .

Let i be a state in the FSTD H , and let E, be the set of
outgoing edges from state i . Let

E, = E f U Ef

be a partition of E, into two disjoint sets. This partition is
used to define a new FSTD H ’ that changes the local pic-
ture around state i . The set of states of H’, V (H ’) , con-
sists of all states j # i in H , as well as two new states
denoted i , and i,:

V (H ’) = { j E V (H) I j # i } U {il, i 2) .

The states i l and i2 are called descendant states of state i ,
and i is called the parent state of i l and i 2 . A state in V(H)
that is not split is the parent of the corresponding state in
V (H ’) .

The interconnections in H ‘ that do not involve states i l
and i2 are inherited from H . That is, if there is an edge e
from state j to state k in H , (with j , k # i) there is a
corresponding edge in H ’ . For edges involving state i , we
consider three cases.

Case 1: Let edge e in H start at a state j # i and ter-
minate in state i . This edge is replicated in H ’ to produce
two edges e l , f r o m j to i , , and e,, f r o m j to i 2 .

Case 2: Let edge e in H start at state i and terminate
in a statej # i , and suppose e belongs to the set E f in the
partition of E,. In H ’ there is a corresponding edge from
state ik to statej.

Case 3: Let edge e be a self-loop at state i in H , and
suppose that e belongs to E f . In H ‘ there will be two edges
from state ik corresponding to e , one to state i l , the other
to state i 2 .

As with states, we refer to descendant edges in H ’ and
parent edges in H . In all cases, the edge label of an edge
in H ’ is the edge label of its parent edge in H . The change
in the local picture at state i is shown in Fig. 12. In the
figure, we have partitioned the set of edges E, into subsets

1 m - I

I 8

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 10. NO. I . JANUARY I992

Fig. 12. Local picture of state splitting

E,‘ = { a , b } and E: = { c } , where we are representing
the edges by their labels. The state i splits into two states
i l and i2 according to the partition.

In general, a state splitting of state i may involve par-
titions into any number N of subsets. A generalized split-
ting begins with a partition of E, into N disjoint subsets

E, = E: U e * * U E r . (3)

From the partition, we derive a new FSTD H ’ . The set
of states V (H ’) consists of all s ta tes j # i in H , as well
as descendant states i , , * . * , i N . The interconnections are
defined in an analogous manner to those in the case of a
basic splitting. .As in that situation, outgoing edges from
state i in H are partitioned among its descendant states,
according to (3) , and incoming edges to state i in H are
replicated in H ’ to each of the N descendant states. We
leave it to the reader to check that this transformation can
be broken down into a sequence of basic state splittings.
We will make use of such generalized partitions in Sec-
tion IV.

The FSTD H ’ obtained from H by a state splitting
(basic or generalized) has several important characteris-
tics, enumerated in the following proposition.

Proposition 1 :
1) The system of sequences generated by paths in H ’

is exactly the same as the system generated by H .
2) If H represents the constrained system S with local

anticipation a, then H ’ is a representation of S with local
anticipation at most a + 1 .

3) If H is irreducible, so is H ’ .
These properties can be verified by examining Fig. 12.

For instance, property 2) is verified as follows. Given a
state i ’ in V(H ’), any sequence of a + 2 symbols that can
be generated starting from i ’ by a path e ’ in H ’ is also
generated by its parent path e (i.e., the path consisting of
the parent edges of e’) in H. Note that any such path e
must start from the parent state i of i ’. Since H has local
anticipation a , the first two edges of e are uniquely deter-
mined. By the definition of state splitting, this in turn
uniquely determines the first edge of e’ . Thus, H ’ has
local anticipation at most a + 1. For a more complete
proof, see [29], [30].

The fact that the local anticipation may increase under

state splitting is the reason that we need to consider
FSTD’s that may not be deterministic.

To close out the discussion of state splitting, we men-
tion a particular splitting that will be useful later-a com-
plete splitting. This refers to the splitting obtained from
the partition in which each set in the partition consists of
a single, distinct edge. The resulting FSTD, denoted H‘*’,
is called the edge graph of H , since it contains one state
for each edge in H . It is also referred to as the higher
2-block graph of H in [22]. Fig. 6(c) shows the edge graph
for the RLL (0, 1) FSTD in Fig. 6(a).

It is clear that, through state splitting, we can change
the local picture, in particular the outdegree, of states in
an FSTD H = G4 representing the constraint S 4 . The re-
markable fact is that, when Cap(S) ? p / q , there is a
sequence of state splittings that will generate a new FSTD
with outdegree at least 2p. The tool that we will use to
guide the evolution of this sequence of transformations is
an inequality of the form (2) , called an approximate ei-
genvector inequality, which we now discuss.

B. Approximate Eigenvectors
Earlier, we saw that a rate p : q encoder for S , repre-

sented by the FSTD G, could be derived from the FSTD
G4 if it contained a sub-FSTD K with outdegree at least
2p at each state. This condition was captured by the matrix
inequality (2)

A4u 1 2pu

where U is a “0-1” column vector.
What can we say when the capacity condition

P
4

Cap(S) L -

is satisfied, but G4 does not satisfy the outdegree condi-
tion represented by such an inequality? How should the
code designer proceed? The answer we will describe re-
lies upon finding a nonnegative. integer vector U , not nec-
essarily “0-1 ”, that satisfies the inequality (2).

As mentioned in Section 11, we may assume that G is
deterministic and thus

X(A) = 2cap‘s’ 2 2/ ’ / 7

or, equivalently,

X(A4) 1 2 p .

The Perron-Frobenius theory of nonnegative matrices (see
Theorem A4 in Appendix A) then ensures that we can find
a nonzero vector v = [U , , - , u ,] ~ with nonnegative
integer components, satisfying the inequality

A 9 v 2 2pv. (4)
(By a nonzero vector, we mean a vector with at least one
nonzero component.) The vector v is called an (A9, 2p)-
approximate eigenvector and the inequality is called an
approximate eigenvector inequality. This has a very sim-
ple meaning in terms of the graph G 4 . Think of the vector
v as assigning state weights: the weight of state i is vi.
Now assign weights (called edge weights) to the edges of

1 r r -n

MARCUS et al.: FINITE-STATE MODULATION CODES 13

the graph according to their terminal states:

w(e) = U,

where j is the terminal state of e . Then the vector in-
equality (4) can be written as the set of simultaneous sca-
lar inequalities, one for each state i ,

C w(e) 2 Y V , .

That is, the sum of the weights of the outgoing edges from
a given state i is at least 2p times the weight of the state i
itself.

Example: For the RLL (0, 1) constraint, with p = 2
and q = 3 , we saw earlier that the inequality (2) was not
satisfied by any nonzero “0-1” vector U. However, it is
easy to verify that we have the following inequality:

e € € ,

Therefore, the vector v = [2, 1 I T is an (A 3 , 4)-approxi-
mate eigenvector.

We remark that, in practice, we can always assume that
the components of an approximate eigenvector are in fact
strictly positive, as follows. If v has components equal to
0, simply delete the states in Gy with weight 0 as well as
their incident edges, producing a sub-FSTD K . The vec-
tor w , obtained by restricting the approximate eigenvector
v to K , will be an (A(K) , 2P)-approximate eigenvector. In
this way, we can delete irrelevant states and thereby re-
duce bookkeeping.

In the next sections we will show how an approximate
eigenvector v specifies a sequence of no more than E, (uI-
- 1) state splitnings starting with H = GY and leading to
a new FSTD H with outdegree at least 2p, and no more
than E, U , states. This FSTD can then be used to define a
finite state encoder. First, however, we describe a simple
algorithm, introduced by Franaszek [131 and based on in-
teger programming, to compute approximate eigenvec-
tors.

We describe Franaszek’s algorithm in the setting of a
general nonnegative integer matrix T = (t ,) and positive
integer n. We will then apply this to T = Ay and n = 2p .
A (T , n)-approximate eigenvector will mean a nonnega-
tive integer vector v (not all 0’s) that satisfies

Tu 2 nu. (5)

If there is a (TI n)-approximate eigenvector with maxi-
mum component no larger than a specified integer L , the
algorithm will identify one.

Approximate Eigenvector (AE) Algorithm
1) Set k = 0.
2) Set U(’) = (L, L ,
3) For each coordinate i , define

* , L) .

4) If U (’ + ’) # v (~) , increase k and go to step 3) .

This algorithm always produces a nonnegative integer
5) If U (’ + ’) = U(‘) , set v = U(‘) .

vector U . If v = 0, this means that L was chosen too
small, and no approximate eigenvector with components
at most L exists. The algorithm should then be repeated
after increasing L. One approach commonly followed is
to start with L = 1, and increment it by 1 until an ap-
proximate eigenvector is found. This will in fact find an
approximate eigenvector with smallest (among all possi-
ble approximate eigenvectors) maximal component. If the
latter is what is really desired, it is more efficient, on the
average, to apply the algorithm with L = 1, 2, 4 , 8,
. . . , until an approximate eigenvector is found-say with
L = 2‘. Then perform a binary search on the numbers in
between 2l-I and 2‘.

It is important to mention, and not difficult to prove
[22 , Appendix], that the vector v produced by this algo-
rithm is the “largest” approximate eigenvector that is
componentwise less than or equal to the starting vector.
In other words, if the vector U is an approximate eigen-
vector satisfying U I U(’) , then U 5 U . This fact, which
follows easily from step 3) in the algorithm, will be used
in Appendix B, where we discuss the construction of op-
timal block codes. These statements remain true if the ini-
tial vector, U(’) , is a nonnegative vector.

C. Basic v-Consistent Splitting
Let H be an FSTD, T = A (H) and n be a positive in-

teger. Given a (T , n)-approximate eigenvector U , we de-
fine the concept of a basic v-consistent splitting.

Recall that E, denotes the set of edges outgoing from
state i . A basic v-consistent partition of E, is a partition

E, = E f U E;

with the property that

l l ~ f l l A C w(e) I y l n
e € € :

and

where y I and y2 are integers satisfying

y , I 1 and y2 I 1

YI + Y2 = U , .

Note that the conditions on llEIII and llE;ll are inequali-
ties. However, in the next subsection, we will obtain par-
titions so that the condition on 11 E,! I(is actually an equal-
ity.

The splitting determined by this partition is called a
basic v-consistent state splitting of state i , and we denote
the resulting FSTD and adjacency matrix by H ’ and T ’ .
It is straightforward to check that the vector v ’, indexed
by the states of HI, defined by

and

U, i f j # i

U,’ = yI i f j = il r y 2 if j = i2

is a (T ’ , n)-approximate eigenvector.

m I

. I

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO, I . JANUARY 1992

We summarize in Proposition 2 the important features
of basic v-consistent state splittings, which the reader may
enjoy verifying.

Proposition 2: Let the FSTD H ’ be obtained from the
FSTD H by a basic v-consistent state splitting.

1) The FSTD H ’ has one more state than H .
2) C k U k = C k U ; (and U , in v is replaced in U ’ by two

strictly smaller positive integer components that sum to
U ,) .

Example: Fig. 13 shows the result of a basic v-con-
sistent splitting for the third power (shown in Fig. 8) of
the RLL (0, 1) FSTD. Here, v = [2, I] ’. State 0 is split
into two descendant states, Ol and 02, according to the
partition E: = (011, 110, 010) and Ef = (101, l l l } .
(Note that, strictly speaking, the elements of these sets
are edges, but in this example we can denote them by their
labels without any ambiguity .) The induced approximate
eigenvector for the split graph is U ’ = [1, 1, l]*, and the
resulting FSTD is therefore an encoder graph.

Remark: It is worth noting that in [22], the transition
matrix T was required to have entries that were either 0
or 1. In terms of the FSTD H , this translates into the re-
quirement that, for states i andj , there be at most one edge
in H from i t o j . For any FSTD H , one can obtain another
FSTD, representing the same constraint and having this
property, by applying the edge graph construction, men-
tioned earlier. In general, we have found that practical
code design is greatly simplified by extending the state
splitting technique so that it can be applied to all FSTD’s
with nonnegative, integer adjacency matrices, as we have
done above.

D. Constructing the Encoder
We have seen that for the RLL (0, 1) system, we could

generate an encoder graph, suitable for encoding at rate
2 : 3, by a basic v-consistent state splitting. Can we do
this in general? That is, can we always find a sequence of
basic v-consistent splittings leading to a graph with ad-
jacency matrix T having a “0-1” (T , n)-approximate ei-
genvector? As indicated earlier, the answer is yes, as we
now show.

The proof that we can find basic v-consistent splittings
is due to [37] in the case of rational capacity, and it is
extended to the general case in [22]. The key result we
need is stated in Proposition 3.

Proposition 3: Let T be the adjacency matrix of an ir-
reducible FSTD H , and assume that the all-1’s vector is
not a (T , n)-approximate eigenvector. Let v be a positive
(T , n)-approximate eigenvector. Then, there is a basic v-
consistent splitting of H .

Before giving the proof of the proposition, we describe
how we will make use of it in an iterative fashion to con-
struct an encoder FSTD assuming Cup (s) ? plq.

Let Gq denote the FSTD describing Sq, and assume that
there is no “0-1” (Aq, 2P)-approximate eigenvector. Let
x be an (A4, 2P)-approximate eigenvector. If x contains
any components equal to 0, we can restrict our attention
to the FSTD K determined by the nonzero components.

U 1 1
Fig. 13. Example of basic v-consistent state splitting.

The vector w obtained by restricting x to the states in K
will be an (A (K) , 2P)-approximate eigenvector.

If K is irreducible, then we will be in a position to apply
the proposition. However, it might happen that K is re-
ducible. In that case, the following argument, which may
be skipped on a first reading, shows that we can restrict
to an irreducible component H where the proposition is
then applicable. We look at the irreducible components of
K , and find one, say H , that acts like a “sink,” meaning
that any edge that originates in H also terminates in H .
Such an irreducible “sink” component can always be
found in the following manner. Pick an irreducible com-
ponent and check if it is a sink. If so, stop. If not, there
must be a path leading to another irreducible component.
If it is a sink, great. If not, continue the procedure. The
process must eventually terminate at a sink component H ;
otherwise, the original decomposition into irreducible
components would be contradicted, as the reader can ver-
ify.

Since H i s an irreducible component of K , and, by as-
sumption, there is no “0-1” (A (G 4) , 2P)-approximate ei-
genvector, it follows that the all-1’s vector is not an
(A (H) , 2P)-approximate eigenvector. Moreover, since H
is a sink component, it follows that the restriction v of w
to H is an (A (H) , 2P)-approximate eigenvector with pos-
itive components. The proposition can now be applied
with n = 2p to carry out a v-consistent splitting of H ,
generating an irreducible FSTD H ’ .

Since v-consistent splittings decompose components of
v into strictly smaller positive integers, iteration of this
state splitting procedure would Yltimately produc: an
FSTD fi whose adjacency matrix T has a? all-1’s (T , n)-
approximate eigenvector, implying that H has outdegree
at least ~ 2 ~ . The number of iterations required to achieve
this is no more than & (U , - l), since a state i with com-
ponent U , will be split into at most U , descendant states,
and this can take no more than (U , - 1) splitting opera-
tions. For the same reason, the number of states in the
encoder graph would be at most E, U , .

We now proceed with the proof of Proposition 3. The
proof requires only elementary concepts, which is why we
give full details here. The reader can certainly skip the
proof on a first reading, and remain in a position to un-
derstand and apply the code construction techniques.
However, we want to emphasize here a corollary of the
proof that is very important in practice: Under the con-

I ‘

15 MARCUS et a l . : FINITE-STATE MODULATION CODES

ditions of the proposition, one can alwaysJind a splittable
state among those states with maximum approximate ei-
genvector component.

In the latter case, we set

E! = {e& = ml + 1, * - , m2}

Proof of Proposition 3: Let U,,, # 1 be the maxi-
mum of the components of v . We will show that there is
a state i with the following properties:

1) vi = umax;
2) tlJ # 0 for some s ta tej with uJ < umax.
We then show that any such state i has a basic v-con-

sistent splitting.
Assume that no such state exists. Then, the outgoing

edges E, for every state i with component U,,, must ter-
minate only at states with the component U,,,. Since the
FSTD H i s assumed to be irreducible, this implies that the
approximate eigenvector u is a constant vector, with all
of its components equal to U,,,,,. If we divide both sides
of the approximate eigenvector inequality by umax, we see
that this condition implies that the all- 1 's vector is also an
approximate eigenvector. However, this contradicts our
assumption about T.

Given the state i satisfying properties 1) and 2), we now
construct a v-consistent splitting. First, we claim that the
number of edges in E,, denoted / E , (, is at least n. To see
this, observe that the approximate eigenvector in-
equality asserts

t,kuk I nu,.
k

Thus, by property 1) above

(E j (U m a x I C tlkuk L nu, = nUmax.

Dividing by umaX gives the desired conclusion \E,/ L n
(actually, with the help of property 2) above one can see
that \E,\ 2 n + 1, but this is not really needed now).

assume that e l terminates in statej, so w (e l) < U,,,. Con-
sider the partial accumulated weights

Let M = /E, / 2 n. Write E, = (e l , . * , e,>, and

m

W, = C w(ek) , m = 1, , M
k = 1

and their residues modulo n

R, = W, (mod n) , m = 1, . . - , M.
The pigeon-hole principle-which states that if one dis-
tributes n pigeons into n pigeon holes, then either every
hole has a pigeon, or some hole contains two or more
pigeons-implies that the n residues satisfy one of the fol-
lowing conditions:

1) R, = 0 (mod n) ,
2) Rm, = Rm2 (mod n), for some 1 I ml < m2 I

In the former case, we define a partition of Ei by setting

for some 1 5 m I n ;

n .

E: = {e& = 1, - * , m>

and

E: = Ei - E,! .

and

E ; = E, - E f .

In either case, the sum of weights of the edges in E,' is
divisible by n ,

C , w(e> = rn.
e E E ,

We claim that

1 5 r < umax.

Clearly 1 I r since E,' is nonempty. To see that r < U,,,

observe that in the first case, E,! contains at most n edges
and includes e l for which w (e l) < U,,,; and in the second
situation, E,! has strictly less than n edges, each contrib-
uting at most U,,, to the sum.

Now, we can assert that

C w(e) = C w(e) - e c E , C, w(e)
C € E f eeE,

2 u,n - m

= (U , - r)n.

Letting y1 = r and y 2 = u, - r , we conclude that the
partition

E, = E,' U E;

defines a (nontrivial) basic v-consistent splitting.
Q.E.D.

Thus, by an iterative state splitting procePure, the
FSTD GY can be transformed into an FSTD H that de-
scribes a constraint contained in Sy and !as outdegree at
least 2p at each state. Given this FSTD H , we can easily
construct a rate p : q encoder. We first select, for each state
i , exactly 2p edges, discarding any excess beyond this
amount. The selection can be completely arbitrary, al-
though in practice, as we indicate in the following sec-
tions, judicious selection can simplify the final encoder/
decoder implementation.

At each state, we then assign to each of the 2p edges a
unique binary p-block, called an input tag, to distinguish
it from the labeling already on the graph. This assignment
can be completely arbitrary but, again, a careful assign-
ment can yield benefits in the form of reduced complexity
in the implementation, as we will see in Section V-B. We
loosely refer to this procedure as the data-to-codeword
assignment.

The encoding procedure is as follows.
1) Choose an initial encoder state io.
2) If the current state is i , and the data word is the

p-block b , find the edge e in E, which has the input tag b .
The codeword generated is the q-block labeling the edge
e . The next encoder state is the state j at which the edge
e terminates.

3) Repeat step 2) as long as data words are provided.

m I

. ,,

16 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . .JANUARY 1992

Applying this procedure to the RLL (0, I) encoder
graph in Fig. 13 we obtain the encoder graph shown in
Fig. 14. The labels are of the form s / t , where s denotes
the input tag, and t denotes the codeword.

If we initialize to state 01, the data string
00 10 10 11 encodes to the RLL (0 , 1) string

011 110 101 111.

E. The State-Splitting Algorithm
We now summarize the steps in the encoder construc-

tion procedure.
1) Find a deterministic FSTD G (or, more generally,

an FSTD with finite local anticipation) which represents
the given constrained system S (most constrained systems
have a natural deterministic representation that is used to
describe them in the first place).

2) Find the adjacency matrix A = A(G) of G.
3) Compute the capacity Cap(S) as log, of the largest

4) Select a desired code rate p : q satisfying
eigenvalue X(A) of A .

P
4

Cap(S) I -

(one usually wants to keep p , q relatively small for com-
plexity reasons).

5) Construct Gq.
6) Using the approximate eigenvector algorithm, find

an (Aq, 2p)-approximate eigenvector U .

7) Eliminate all states i with U , = 0, and restrict to an
irreducible sink component H if necessary.

8) Find a basic v-consistent partition for some state in
H.

9) Find the basic v-consistent state splitting corre-
sponding to this partition, creating FSTD H ’ and approx-
imate eigenvector U ’ .

10) Iterate steps 8) and 9) until you obtain a graph H
with minimum outdegre? at least 2p.

11) At each state of H , delete all but 2p outgoing edges
and tag these edges with the binary p-blocks, one for each
edge.

12) Congratulate yourself with a nice banana “split.”
We remark that “generalized v-consistent state split-

tings” (splitting a state into many states) and “rounds of
splitting” (splitting several states simultaneously), that
will be discussed in Section IV, can be used to shorten
the code construction procedure. Also, there is a variable
length state splitting approach that produces codes of fixed
rate p : q , and in many cases this also shortens the code
construction procedure. See [38] and [39].

F. State-Dependent Decoders
Having shown how to construct an encoder, it is now

time to consider the other half of the code-the decoder.
In this section, we show that our encoders always have
state-dependent decoders. In order to see this, first recall
that we started the code construction procedure with a de-

U1 1 / 1 1 1

Fig. 14. Encoder graph with input tags.

terministic FSTD G or one that at least has finite local
anticipation. Recall that this latter property is preserved
under taking powers. Thus, Gq will also have finite local
anticipation (the anticipation would be measured in num-
bers of q-blocks). Recall from Proposition 1 that state
splitting also preserves finite local anticipation, although
it, may increase the anticipation. Thus, the encoder FSTD
H, obtained from state splitting, will have local antici-
pation a for some a .

Now, we can decode as follows.
1) Use the initial state io of the encoder as the initial

state of the decoder.
2) If the current state is i, the current codeword to be

decoded together with the a upcoming codewords consti-
tute a sequence of length a + 1 (measured in q-blocks)
that is generated by a path that starts at i ; by definition of
local anticipation, the initial edge e of such a path is
uniquely determined; the data word generated is the input
tag of e ; the next decoder state is the terminal state of e .

3) Repeat step 2) as long as codewords are provided.
Having now completely described the construction of

the encoder and decoder, we have completed the proof of
Theorem 1.

As an example, we decode the RLL (0, 1) code string
generated above using the encoder in Fig. 14. Starting at
state 01, the edge determined by the codeword 01 1, with
upcoming codeword 110 is the edge from state O l to state
O l with code label 01 1, so the decoder will generate the
input tag 00. Proceeding, the codeword 110 (with up-
coming word 101) determines the edge from state O1 to
state 1 with label 110 and input tag 10. The reader can
decode the next codeword 101 in a similar manner, and
that is as far as we can go without knowing more upcom-
ing codewords.

IV. SYSTEMS OF FINITE TYPE AND SLIDING BLOCK
DECODERS

As mentioned in the Introduction, the kind of state-de-
pendent decoding discussed in the last section introduces
the possibility of catastrophic error propagation when the
code is used in a noisy environment. Consider the simple
(and, admittedly, artificial) example in Fig. 15.

If we set the initial state to be state 1 and encode the
sequence 0000000 , we obtain the constrained se-
quence aaaaaaa * . * . If the first symbol a is corrupted

i r - r I ‘

MARCUS r r u l FINITE-STATE MODULATION CODES
17

o j c

Fig. 15, Encoder susceptible to catastrophic decoder failure

into the symbol b, then the received sequence will be
baaaaaa * , which is decoded to the sequence 11 11 11 1
. . . . Thus, one error caused the decoder to make an un-
bounded number of errors because the decoder lost track
of the correct state.

Thus, it is desirable that the encoder be decodable in a
somewhat state-independent manner. We now show that
this is always possible for a natural class of constrained
systems that includes RLL (d, k) constraints and PRML
(0, G/Z) constraints.

Recall that a sliding-block decoder, as described in the
Introduction, may require some “look-back” and/or
“look-ahead’’ when decoding a codeword, but otherwise
requires no state information. More precisely, a finite state
encoder with rate p : q has a sliding-block decoder if for
some nonnegative integers m and a , there is a mappingf
from (m + a + 1)-blocks in (the alphabet of
q-blocks) to (0, l } p (the alphabet of binary p-blocks)

f: ((a(s))q)” + a + ’ + (0, 13p
such that, if y = yo, yl , * - , is any sequence of q-blocks
generated by the encoder from the input sequence of
p-blocks x = ~ 0 , XI, * * * , then, f o r i 2 m,

xi =.f(yl-m, * . . > Y l 9 . - - 9 Yl+,).
See Fig. 4 in the Introduction.

We now define a class of constrained systems for which
we can construct encoders with sliding-block decoders at
rates up to capacity. First we need to introduce some ideas
that provide a way to talk precisely about these systems.

An FSTD that represents a constrained system S is said
to have memory m and anticipation a if, given any se-
quencex = x-”, * * 3 xo, * * , x, in S , the set of paths
e = e-”, - , eo, * , e, that generate x all agree in
the edge eo. We say that an FSTD hasjni te memory and
anticipation if it has memory m and anticipation a for
some m and a . Note the difference between this concept
and the concept of finite local anticipation: we have re-
placed knowledge of an initial state with knowledge of
some finite memory. Actually, finite memory and antici-
pation is a stronger condition, as shown in the following
proposition.

Proposition 4: If an FSTD has finite memory and an-
ticipation, then it has finite local anticipation.

Proofi The FSTD has memory m and anticipation a
for some m and a . Let i be a state of the FSTD, and let y
= eo, . * * , e,, y ’ = e& * , e: be paths of length a +
1 which start at i and generate the same sequence. We
need to show that eo = eh. Well, let 7 be any path of
length m which ends at state i. Then, the concatenated
paths 11 y and 7 y ’ both generate the same sequence. Since

the FSTD has memory m and anticipation a , eo = e6 as
desired. Q.E.D.

We will see that if a constrained system S is represented
by an FSTD with finite memory and anticipation, then we
can construct a finite-state encoder with a sliding-block
decoder at any rate p : q such that p / q I Cap(S). It is,
therefore, important to identify the constrained systems
that have such a representation.

A constrained system S isjnite-type if it can be repre-
sented by an FSTD with finite memory and anticipation.
As an example, the RLL (d, k) constraint is finite-type.
The FSTD in Fig. 1 (in the Introduction) has memory k
and anticipation 0, i.e., for any given sequence s of length
at least k + 1 all paths that generate s end with the same
edge.

In fact, it can be shown that any finite-type constrained
system can be represented by an FSTD that has memory
m and anticipation 0 (for some m). This follows from the
characterization 1) below (see also the discussion in Sec-
tion VIII). For this reason, finite-type constrained sys-
tems are sometimes called “finite memory” constrained
systems. Another sense in which these systems have finite
memory is the characterization 3) below. Constrained
systems which are not finite-type are sometimes called
“infinite memory” systems.

It is important to recognize that there are “bad” rep-
resentations of finite-type constraints, meaning FSTD’s
that do not have finite memory and anticipation. For. ex-
ample, the FSTD in Fig. 6(d) represents the RLL (0, 1)
constraint, but does not have finite memory and antici-
pation, as can be seen by considering the paths that gen-
erate substrings consisting of all 1’s.

Given the existence of bad FSTD’s one might begin to
worry about potential problems in determining whether or
not a constraint is finite-type. In Section VIII, we will see
that there is a distinguished representation Gs of any con-
strained system S such that S is finite type if and only if
Gs itself has finite memory and anticipation. For now, we
simply point out that there are several intrinsic character-
izations of finite-type constraints that are very useful in
making this determination. (see also [29].)

1) There is an integer L and a list 6: of words of length
L with the property that a sequence x satisfies the specified
constraint if and only if each substring of length L in x
belongs to the list d:.

For example, for the RLL (0, 1) constraint, we may
take L = 2 and d: = (11, 01, lo}.

2) There is a finite list 5 of forbidden strings; meaning
that a sequence x satisfies the constraint if and only if it
contains no substrings in the list 5 . Note that the forbid-
den strings need not have the same length.

For example, for RLL (0, l) , we may take 5 = (003.
3) Let @. be the symbol alphabet. There is an integer N

such that, for any symbol a E a, there is a list of strings
of length no more than N , denoted S(a), with the property
that, if w is any constrained sequence, then the concate-
nation wa is a sequence allowed by the constraint if and
only if w ends in a string U E S(a).

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL IO. NO I . JANUARY 1992

For RLL (0, I) , we may take N = 1, S(0) = { l} , and

Not every constraint of practical interest is finite-type.
For example, the system of charge-constrained sequences
described by Fig. 9 is not. This can be seen easily by
considering condition 3) above: the symbol 1 can be ap-
pended to the string

- 1 1 - 1 1 - 1 1 - * * -1 1

S(1) = (0 , l} .

but not to the string

1 1 - 1 1 - 1 1 - 1 1 . e . - 1 1 .

Now, we improve Theorem 1 for finite-type con-
strained systems.

7'heorem 2: Let S be a finite-type constrained system
with Shannon capacity Cap(S). Let p , q be positive in-
tegers satisfying the inequality

p / q 5 Cap(S).

Then, there exists a finite-state encoder, with a sliding-
block decoder, that encodes binary data into the constraint
S at constant rate p : q.

Proof: The proof of the theorem is obtained by ap-
plying the finite-state code construction procedure of Sec-
tion I11 to any FSTD with finite memory and anticipation
that represents S (in particular, such an FSTD has finite
local anticipation by Proposition 4 and thus the formula
(1) of Section I1 holds). Just as taking higher powers pre-
serves finite local anticipation, it also preserves finite
memory and anticipation. And the reader can verify that
just as state splitting preserves finite local anticipation, it
also preserves finite memory and anticipation, although
the anticipation, but not the memory, may increase.

Thus, the encoder FSTD fi constructed in Section 111,
has finite memory (&) and anticipation (6) . Now, we can
decode a q-block b as follows: observe the & previous
q-blocks and the Ci upcoming q-blocks to determine the
unique edge that produced b; then read off the input tag
on this edge. This defines a sliding-block decoder with
memory & and anticipation 8 , and this completes the proof
of Theorem 2. Q.E.D.

When the code is used in conjunction with a noisy
channel, such as a magnetic recording channel, the extent
of error propagation is controlled by the size of the de-
coder window & + B + l . How large is this window?
Well, suppose that we start the code construction proce-
dure with some FSTD G and GY has memory m and an-
ticipation a (measured in q-blocks).

If x is the number of state splittinp used to construct
the encoder, then the encoder FSTD H has memory m and
anticipation no more than a + x (measured in q-blocks).
It follows that we can design a sliding-block decoder with
decoding window length W satisfying the bound

W s m + a + x + l

(again, measured in q-blocks). Recall from Section I11 that
an upper bound on the number of state splittings required

is

x 5 c (U , - 1)

w 5 m + a + c (U , - 1) + 1.

I

so

I

For the RLL (0, 1) encoder in Fig. 14, where m = 1,
a = 0, (refer to Fig. 8) and ul = 2, v2 = 1, this expres-
sion gives an upper bound on the window length of 3
(codewords).

The guarantee of a sliding-block decoder when S is fi-
nite-type and the explicit bound on the decoder window
length represent key strengths of the state splitting algo-
rithm. In practice, however, this bound on the window
length often is larger-sometimes much larger- than the
shortest possible. As an example, by examining Fig. 14,
one can see that the RLL (0 , 1) encoder has a sliding-
block decoder with reduced window length W = 2, as
shown in Table I [2]. (For example, according to the ta-
ble, the codeword 010 decodes to l l ; the codeword 01 l
decodes to 01 if it is followed by 101 or 11 1, and it de-
codes to 00 if it is followed by 010, 01 l , or 110.)

We next develop the concept of a round of splitting and
use it to derive a refined bound on W .

The main transformation in the construction of the fi-
nite-state encoder was the basic v-consistent state split-
ting. In that operation, the state i was split into two de-
scendant states. In practice, however, one can combine a
sequence of several basic state splittings of state i and its
descendants (through several generations) into a single
generalized state splitting, as defined in Section 111-A,
based upon a particular generalized partition of the out-
going edges E,, as we now describe.

Given a graph H with adjacency matrix T, a positive
integer n, a (T , n)-approximate eigenvector v , and a state
i, a generalized v-consistent partition of E, is a partition

El = E] U E ; U U E r

with the property that

wherey,, fork = 1, * , N , are integers

fork = 1, * * * , N yk 2 1,

and
N

yk = V I .
k = I

The state splitting based upon this partition is called a
generalized v-consistent state splitting of state i. We leave
it to the reader to check that this operation can be broken
down into a sequence of basic v-consistent state split-
tings.

One can also combine into one transformation several
generalized v-consistent splittings of different states into
a round of splittings, provided that the splitting of each

1 r I

MARCUS et a1 FINITE-STATE MODULATION CODES 19
-

- - - - . - - - - - - . . .

TABLE I
SLIDING-BLOCK DECODER FOR RLL (0, 1) CODE

Current Decoded
Codeword Next Codeword Data

010
01 1
01 1
101
101
110
111
111

-
{101,111)

{ O l O , 011, 1101
(101, 111)

(010,011, I l O]

(101, 111)
(010,011, 110)

-

I 1
01
00
10
00
10
11
01

state is independent of the splittings of each of the other
states, in a sense which we now make more precise. Sup-
pose that states i and j in H both have a nontrivial gen-
eralized u-consistent partition of their respective outgoing
edges E, and EJ. Without loss of generality, we first split,
say, state i according to its partition, creating an FSTD
H ‘ with approximate eigenvector u’. The memory re-
mains m and the anticipation increases by at most one to
a + 1. The partition of E, in H induces in a natural way a
u’-consistent partition of the outgoing edges fromj in H ’;
in particular, for any edge e f r o m j to i in H , the descen-
dant edges in H ’ all lie in one subset of the induced par-
tition of E,. It follows from this that if we now split state
j according to this induced partition, the memory of the
presentation by the new FSTD H ” again remains m and
the anticipation is still at most a + 1. We get the same
result if we split statej before we split state i. So, we can
view this as a simultaneous splitting of states i andj . It is
not difficult to extend this argument to more than two
states in H . A sequence of such independent splittings
constitutes what we call a round of splittings.

Fig. 16 gives an example of a round of splitting in
which two states, 1 and 2, are independently split in the
pictured FSTD G. An (A (G) , 2)-approximate eigenvector
is u = [2, 2, 1IT. A u-consistent splitting for each of states
1 and 2 can be carried out as follows. State.1 splits ac-
cording to the partition E t = { c } and E: = {a, b } . (We
denote edges by their labels, since there is no ambiguity
in doing so in this example.) Note that the subset E: has
“excess” weight. State 2 splits, independently, accord-
ing to the partition E: = { e , f } and E ; = { d } . It is eas-
ily checked that the anticipation has increased by only 1,
from 0 to 1.

Assume that the construction of the encoder requires r
rounds of splittings. Clearly,

r I x .

We can now refine our bound on the sliding-block de-
coder window length, namely

W r m + a + r + 1.

For the RLL (0, 1) example, in which only 1 basic split-
ting (and, therefore, only 1 round) was needed to con-
struct the encoder graph, this bound does not improve
upon the previous bound W I 3.

Fig. 16. Independent splittings.

In other cases, however, the refined bound can lead to
substantial reduction in the upper bound on W . To illus-
trate the potential improvement this bound can provide,
we look at the rate 2 /3 RLL (1, 7) code with a four-state
encoder, described in Section VI. The FSTD G3 has
memory m = 3 and anticipation a = 0. For the code con-
struction, we used the approximate eigenvector

u = [2 , 3 , 3 , 3 , 2 , 2 , 2 , 1] .

The number of basic splittings required is x = 10, imply-
ing the bound

W I m + a + x + 1 = 14.

The actual splitting breaks down into only two rounds,
implying

W i m + a + 3 = 6

a substantial reduction.
For both the RLL (0, 1) and RLL (1, 7) codes, how-

ever, the refined bounds are not tight. Recall that the RLL
(0, 1) encoder that was constructed has a sliding-block
decoder with window length W = 2. The sliding-block
decoder for the RLL (1, 7) code mentioned above can be
realized with window length W = 3. In the next section,
specifically Section V-B, we discuss the methods that were
used to achieve these even smaller decoder window
lengths.

V. ENCODER/DECODER SIMPLIFICATION TECHNIQUES

A. State Merging

In practice, it is often desirable to design an encoder
FSTD with the smallest possible number of states. For a
given FSTD, with a (T , n)-approximate eigenvector U, we
have shown that state splitting can produce an M-state en-
coder FSTD, where

M I c vi.
I

Often, however, one can reduce this number substantially
by means of state merging.

Specifically, let i a n d j be states in an encoder FSTD,
with outdegree n (so any edges in excess of n have been
deleted). Suppose that their edge sets E; = {e, , - * , e,,}

20 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . JANUARY 1992

and E, = { fl , * * , f,} can be arranged so that, for each
k = 1, e . . , n, ek and& have the same terminating state
and label. Then, it is not difficult to see that we can com-
bine states i a n d j to derive a new encoder FSTD with one
less state. Note that this procedure is precisely the inverse
of a state splitting determined by partitioning incoming
edges.

As an example, we again consider the RLL (0, 1) con-
straint. In the encoder FSTD underlying the encoder in
Fig. 14, i.e., ignoring input tags, we can see that states
O2 and 1 can be merged, according to the merging crite-
rion just discussed. The resulting two-state FSTD is
shown in Fig. 17.

The sequence of state splittings affects the possible state
mergings available in the final FSTD, and, to some ex-
tent, it is messy having to deal with the large number of
states that may arise. It would be nice if we could identify
potential state mergings during the state splitting process,
using that information to guide the choice of v-consistent
partitions and splittings, and suggesting ways of reducing
the number of states along the way.

Although there is not yet a definitive solution to this
problem, there are techniques and heuristics that have
proved to be very effective in the construction of codes
for recording channels using peak detection as well as
channels using partial-response signaling with maximum-
likelihood detection (PRML). We now describe some of
these techniques which were introduced in [2 5] , [2 6] . We
will illustrate their application in Sections VI and VII.

The key idea is that of ordering the states in an FSTD
to reflect the inclusion relations among the corresponding
sets of sequences generated from each state. Consider an
arbitrary FSTD. A partial ordering < can be imposed on
the states of the FSTD by consideration of follower sets.
For a state i we define the follower set F (i) to be the set
of all words of all lengths generated from i . Given two
states i and j , we specify that i < j if F (i) G F (j) , where,
as usual, C denotes set inclusion. This partial ordering
of sets was used by Freiman and Wyner [40] in the con-
struction of optimal block codes, about which we will
have more to say shortly.

We generalize the merging operation illustrated above
in terms of the partial ordering. Let G be an FSTD and
let i , j be two states. Assume i < j ; that is, the follower
sets F (i) and F (j) satisfy F (i) G F (j) . The (i, j) merger
of G is the FSTD H obtained from G by the following:

1) eliminating all edges in E,, the edges emanating from
state j ;

2) redirecting into state i all remaining edges coming
into s ta te j ;

3) eliminating the statej.
Fig. 18 shows a schematic representation of an (i, j) -

merger.
The following proposition shows how we can reduce

the final number of encoder states by merging.
Proposition 5: Let G be an FSTD, with a (T , n)-ap-

proximate eigenvector U, and let i and j be states in G
satisfying:

110

Fig. 17. Merging of RLL (0, 1) encoder graph.

Before
merging

Affer
merging

Fig. 18. (i , j)-merger.

a) i < j [that is, F (i) E F (j)] , and

Let H denote the (i , j)-merger of G. Then:
1) the set of sequences generated by H is a subset of

2) the vector w with wk = v k for all vertices k of H is

b) U ; = U,.

the sequences generated by G; and

an (A (H) , n)-approximate eigenvector.
Proofi

, sk be a sequence generated by H .
Let e = e l , * * , ek be a path in H that generates s. If e
does not pass through the merged state i, then there is
clearly a path 8 in G corresponding to e that generates the
sequence s. Similarly, if e does pass through the state i in
H , but does not contain any edge derived from an edge in
G ending in state j , one can immediately find a corre-
sponding path 8 in G. Otherwise, let el be the last edge of
e that terminates at state i in H and comes from an edge
PI in G that ends in statej. By hypothesis a), F (i) G F (j) ,
so there is a path + * , i?k in G emanating from state

, el- I contains j and generating s,+ I , * , sk. If e l , * * *

Z k is ;1 path in G generating s. If it does, let e, be the last

is a path in G that begins at state i and generates s, +

. - * , sk. By hypothesis a), there is another path fu +

, fk in G emanating from j that also generates s, +

. . . , sk. Continuing in this manner, we eventually pro-
duce a path in G that generates the entire sequence s.

1. Let s = s,, *

no redirected edges, then e l , * , e l - 1 , 4, Z l f l , * ,
n , .

such edgr.. Then e, + . 9 % I , el, e / + l , * * , &k

MARCUS et al.: FINITE-STATE MODULATION CODES 21

2) Let T and U be the state-transition matrices for G
and H, respectively. Let r be a state in H. By hypothesis
b)

(Uw), = (Tu), 2 nu, = nw,

so w is a (U, n)-approximate eigenvector, as desired
Q.E.D.

In a set with partial ordering, there is the possibility of
having minimal elements. Recall that the approximate ei-
genvector u assigns a value U , , called the weight ofi , to
each state i. In this context, we now introduce the concept
of weight minimal states.

A state i is weight minimal with respect to the partial
ordering by follower sets if, for any other statej, the con-
ditions j < i and vJ = U , imply that j and i are the same
state. Proposition 5 shows that, by means of preliminary
state merging, code construction by state splitting can be
accomplished using only the weight minimal states.

The partial ordering on weight minimal states in the
approximate eigenvector component groups also suggests
possible state splittings and state mergings that can sim-
plify the final encoder FSTD. Proposition 6 describes a
situation in which the “suggestions” from the ordering
are guaranteed to be implementable.

Proposition 6: Suppose that the FSTD G has capacity
exactly log2 (n), so that Tu = nu, for some nonnegative
integer eigenvector W . Let i a n d j be states in G satisfying
i < j and U , I uJ. Finally, assume that, if any edges e E
E, a n d f e El have the same label, they terminate in the
same state.

Then, s ta te j can be split into two states, one of which
can be merged with state i. The sum of the components
of the induced eigenvector w is reduced by U , relative to
the sum of components in u. Therefore, the upper bound
on the final number of encoder states is also reduced by
U , .

Proofi We construct a u-consistent partition EJ =
EJ’ U EJ’ as follows. Let E: be the set of edges emanating
from statej that have labels that can also be generated by
edges in E,. Let EJ’ be the complementary subset E,? =
EJ - E:. The hypotheses imply that

llE;Il = nu,

and

Setting y1 = U , and y2 = vJ - U , , we see that the partition
defines a basic v-consistent splitting of state j , with de-
scendent states j , and j,, and corresponding eigenvector
components y1 and y 2 . Moreover, from the definition of
the partition, it is clear that state i can be merged with
state j , , and the sum of the components of the resulting
eigenvector is reduced by exactly U , . This completes the
proof. Q.E.D.

We also remark that there are examples that show that
this combined splitting/merging cannot always be carried
out for an arbitrary choice of approximate eigenvector

when the capacity of G is not log, (n). However, the ex-
amples in Sections VI and VI1 (as well as the RLL (0, 1)
encoder graph that we have c0nstructed)demonstrate that,
in many cases, the splitting/merging operations suggested
by the partial ordering of the weight minimal states can
be implemented, even when the capacity condition in
Proposition 6 does not hold. Thus, the merging principle
is a valuable heuristic in code design.

The state merging operation is really a special case of
a more general method in which states are merged pro-
vided that the intersection of their follower sets satisfies
certain conditions. The intersection of follower sets also
plays an important role in the construction of optimal
block codes described by Freiman and Wyner [40]. Their
construction can be interpreted nicely in terms of the ideas
we have just introduced, as we now describe.

Let G be an FSTD with memory m and anticipation 0,
representing a finite-type constraint S . (As mentioned ear-
lier, in Section VI11 we will discuss the special FSTD
called the Shannon cover that is deterministic and, for a
finite-type constraint S , provides a representation with
memory m and anticipation 0.)

A block code for length q is a list of q-blocks in S that
are freely concatenable; that is, any concatenation of
blocks in the code generates a string in S . A block code
is optimal if there is no other block code for length q with
more codewords in it.

We assume that q is at least as large as the memory m
of G. This means that any q-block in S uniquely deter-
mines the final state of any path that generates it. For any
subset of states 7 in V(G) , let $(7) denote the block code
for length q obtained by taking the intersection of the lists
of q-blocks that are generated by the states in 7 and that
end in some state in 7. To construct an optimal block code
for length q we now proceed as follows.

Suppose we wish to determine if there is a block code
with at least 2p words. We first see if there is a “0-1”
(A4, 2P)-approximate eigenvector, by applying the AE al-
gorithm with L = l . If not, then there is no block code
for length q with 2p or more codewords, so we need to
reduce p and try again. (This follows from the fact that
such a code can be used to define a “0-1” approximate
eigenvector: set the components corresponding to the fi-
nal states of the codewords equal to 1, and set all others

If, however, we find such an approximate eigenvector
u (which, incidentally, will be the largest “0-1 ” approx-
imate eigenvector), we look at the set of states 7 whose
corresponding components in U are 1. We then consider
the set of states that are minimal with respect to the partial
ordering, restricted to 7, and we call these states ~ -min i -
mal states. We then find the common intersection of the
lists of q-blocks that are generated by the 7-minimal states
and that end in some state in T . The resulting (possibly
empty) collection of words, which is precisely $(7), is a
candidate for an optimal block code.

Continuing, we select a minimal state. We set to 0
the component in u corresponding to the minimal state,

to 0.)

22 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO, NO. I . JANUARY 1992

giving a vector U’. Using the modified vector as a starting
point, we apply the approximate eigenvector algorithm,
and compute a new “0-1” approximate eigenvector w . If
the algorithm generates a vector w of all-O’s, we restore
the vector U and repeat the procedure with a different
.r-minimal state, if there is one. If the vector w is not all-
0’s we look at the set of states p whose corresponding
components in w are 1. We then find $(p) , by taking the
intersection of the lists of q-blocks that are generated from
the p-minimal states and that end in some state in p .

This process is applied recursively. Each time this pro-
cess is applied, we either get the all-0’s vector or a proper
subset of states. Thus, eventually the procedure must ter-
minate. If there is a block code for length q with at least
2p words, then this process will identify an optimal one.
The proof of this statement is given in Appendix B. In the
application sections, we use this procedure to construct
several optimal block codes of practical interest.

B. Sliding Block Decoder Window
Once the data-to-codeword assignment on the encoder

FSTD is selected and the encoding finite-state machine is
completely specified, the decoder mapping is effectively
fixed.

If the decoder mapping can, in fact, be represented in
sliding-block form, one can, in principle, calculate the
minimum decoder window length required to correctly
decode valid code sequences. This length may depend on
the specific choice of input tags, however, as can be seen
from the example in Fig. 19(a) and (b), based upon the
rate 1 /2 , RLL (1, 3) code described in the next section.
In Fig. 19(a), the decoder window is 1 codeword, but in
Fig. 19(b), the minimum decoder window is 2 codewords
(1 codeword look-back).

The general question we wish to answer is: assuming
that a sliding-block decoder is possible, what choice(s) of
data-to-codeword assignment will minimize the decoder
window length W ?

If the encoder FSTD has finite memory (A) and antic-
ipation (&), as is the case when the encoder results from
the application of the state splitting algorithm to a finite-
type constraint, then the encoder finite-state machine pro-
duced by any data-to-codeword assignment has a sliding-
block decoder with window length W satisfying the bound

W l h + C i + l .

This bound is essentially the same as the bound

W ~ m + a + r + l

derived in Section IV for an encoder FSTD obtained by
the application of r rounds of state splitting to an initial
FSTD with memory m and anticipation a.

It is quite possible, however, that these upper bounds
will not be tight and the window size can be reduced. A
nice illustration of decoder window reduction, relative to
these bounds, can be found in the construction of the rate
1 /2 , (2, 7) code in [22]. In that case, the nominal mem-

o/oo

1 /oo
(b)

Fig. 19. (a) One choice of input tags. (b) Another choice of input tags.

ory of the encoder FSTD (arising from the (2, 7) con-
straint memory) was A = 4 codewords and the anticipa-
tion (corresponding to the three rounds of state splitting
used to construct the encoder FSTD) was Ci = 3 code-
words. However, a data-to-codeword assignment was
demonstrated that eliminates all look-back, reducing the
sliding-block decoder window to only 4 codewords, far
less than the 8 codewords suggested by the bounds men-
tioned above. This reduction in decoder window length
was achieved by making consistent assignments of input
tags to edges that have the same labels, but that are not
completely distinguished by the possible contents of the
reduced decoder window.

For the RLL (0, 1) code, it is precisely this type of
consistent input tag assignment that enabled the reduction
of the sliding-block decoder window length to W = 2,
eliminating the need for 1 codeword look-back that would
be expected from the memory h = 1 of the encoder graph
derived from Fig. 13. This can be verified by referring to
the RLL (0, 1) encoder shown in Fig. 14. There, we can
see that the edges with label 101 (respectively, 11 l) , em-
anating from states 1 and O2 and ending in state 01, have
the same input tag, namely 00 (respectively, 01). Simi-
larly, the edges with label 101 (respectively, l l l) , run-
ning from states 1 and O2 to state 02, are assigned the same
input tag, 10 (respectively, 11).

We now elaborate upon this idea of “consistent” as-
signment and describe an iterative, albeit brute-force, ap-
proach to defining a data-to-codeword assignment that al-
lows the minimum possible decoder window to be
achieved. The approach is built upon the following pro-
cedure, which, for a specified m’ and a ‘ , determines if a
decoder with look-back m‘ and look-ahead a’ is feasible
for any data-to-codeword assignment.

Select targets for the look-back m‘ and look-ahead a’
for the decoder. For each edge e in the encoder FSTD,
one can list the codewords generated by paths e-,,,,, ,
e - , , e , e l , * . - , eo,. Denote this list by L(e; m’, a’).
Clearly, in order for a sliding-block decoder with look-
back m’ and look-ahead a’ to exist, any two edges e and
fmust be assigned the same input tag whenever the cor-
responding lists are not disjoint

L(e; m’, a’) fl L(f; m’, a’) # 4.

I T m I

MARCUS et d.: FINITE-STATE MODULATION CODES 23

a

\ I

I\

9

Fig. 20. Encoder FSTD requiring decoder window of length at least 2

Of course, there is another requirement the assignment
must satisfy: the set of data words assigned to the 2p edges
at each state must comprise the entire list of binary
p-blocks. If inconsistencies arise in the labeling and this
condition cannot be met, then the proposed decoder win-
dow parameters m’ and a’ are not achievable.

The execution of this procedure, although conceptually
very straightforward, has been shown to be equivalent to
a graph-coloring problem that is NP-complete [41]. From
a practical standpoint, this means that the optimization of
the decoder window length, through iterative application
of the procedure for varying values of m‘ and a ’ , may
require either some good hunches or a good computer pro-
gram, or both.

It is also worth pointing out that these techniques are
not restricted to encoder FSTD’s describing finite-type
constraints. They have been successfully applied in the
design of sliding-block decoders for codes into con-
strained systems that are not finite-memory. See, for ex-
ample, the discussion in [42] of a 100% efficient sliding-
block code for the charge-constrained, run-length limited
constraint with parameters (d , k ; c) = (1, 3; 3), also men-
tioned in Section VIII.

In Fig. 20, we show an FSTD for which it is impossible
to assign 1 bit input tags in such a way that the sliding-
block decoder will have window length equal to one code-
word (that is, no look-back or look-ahead). Using the pro-
cedure just outlined, the reader may enjoy verifying this
fact, as well as finding an input tag assignment that allows
a decoder window of length 2 codewords.

To conclude this section, we remark that, ideally, the
objective of the code designer is to simultaneously opti-
mize the number of states in the encoder FSTD and the
length of the decoder window, resulting in lowest com-
plexity and error propagation. As mentioned earlier, this
problem of optimal code design is extremely difficult, in
general, although progress continues to be made. It should
be stressed, however, that an encoder FSTD that has the
minimal number of states may not necessarily be the same
as an encoder FSTD that, with the appropriate input tag
assignment, minimizes the sliding-block decoder win-
dow.

VI. APPLICATIONS TO RLL CODES
In this section, we apply the state splitting algorithm to

construct several RLL codes. We first provide an over-

view of the recording channel. Another discussion of RLL
codes in the context of digital data recording can be found
in [2].

A . Background on Peak Detection Recording Channels
Digital magnetic recording systems are communica-

tions channels. They have input signals and output sig-
nals, the output signal being a transformed and noisy ver-
sion of the input signal. To quote from a paper by
Berlekamp [43] “Communication links transmit infor-
mation from here to there. Computer memories transmit
information from now to then.”

For all practical digital magnetic recording systems,
saturation recording is utilized whereby the magnetic me-
dium is magnetized in one of two (opposite) directions.
The input signal (i.e., the write current) is then simply a
two-level signal that takes on the values + A and - A . The
positions of the transitions in this input signal (from + A
to - A or vice versa) carry the digital information. Here
we assume that the input waveform is such that transitions
can only occur at integer multiples of a fixed time duration
Tb called a channel bit period.

At the densities of present day systems, a linear model
[44], [45J gives a reasonably accurate description of the
input-output signal characteristics of the channel. That is,
if a single positive-going transition (from - A to + A)
which occurs at time t = 0 produces the output 2Ag(t) ,
then, in the absence of noise and assuming a two-level
input, the channel acts as a linear channel with impulse
response h(t) = g’(t) , where the prime denotes differen-
tiation with respect to time. The most commonly assumed
form for g (t) is the so-called Lorentzian isolated step re-
sponse given as g(t) = 1 /(1 + (2 t /~)*) . The constant 7
is the pulse width of the isolated transition response when
its amplitude is decreased by a factor of 50% from its
peak value.

The design of the modulation, coding, and signal pro-
cessing in magnetic recording products has been driven
by the detector chosen to detect the transitions in the input
waveform. This detector, called a peak detector [11, has
the advantage of being extremely simple. However, by its
very nature, it can only perform reliably at low densities.

The peak detector works as follows. It looks for peaks
in the output waveform whose magnitude exceeds some
predetermined threshold. Each such peak is thought to be
due to a transition in the input waveform. A device called
a phase lock loop (PLL) is used to derive timing. That is,
the PLL produces a clock of period Th seconds by which
to identify channel bit cells. Then, if an output pulse is
located in a bit cell, that bit cell is said to contain a tran-
sition. The PLL, in turn, is driven by the peak detector
and the clock generated by the PLL is adjusted so that,
on average, the peaks occur in the centers of the bit cells.

If one assumes a linear channel and examines the wave-
form produced by the linear superposition of two Lorent-
zian pulses (of opposite sign) separated by aPW5O sec-
onds, one finds that this waveform will contain two peaks

. ,

24 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. IO. NO. 1, JANUARY 1992

separated by pPW50 seconds where

P = J3. a2 - 1 + 2 (a4 + a2 + 1)

If CY is much greater than 1, 6 is approximately equal to
CY, but as CY approaches zero, p approaches the fixed value
h / 3 = 0.5774. Peaks will be centered in their bit cell
only at low densities (values of a in excess of 1) .

To make the system work better at moderate informa-
tion densities (say a = 0.5), several techniques are used.
One such technique is to use a linear equalizer at the out-
put of the channel which modifies the transition response
of the system before the peak detector. This equalizer is
often called a pulse slimmer [46] since its purpose is to
create a channel whose isolated transition response is a
thinner pulse than that produced by the unequalized chan-
nel. Many different equalization techniques are utilized
but, in all of them, the benefits derived from slimming the
pulses must be weighed against the possible penalty in
signal-to-noise ratio arising from the effect of the equal-
izer on the noise.

Another technique for allowing a peak detector to per-
form reliably at moderate densities makes use of run-
length limited constraints. These constrained sequences
result in a two-level input waveform for which the mini-
mum and maximum time interval between transitions are
fixed. In particular, for a given choice of the parameters
d and k , the input waveform is constrained so that the
minimum time between transitions is (d + 1)Tb and the
maximum time between transitions is (k + 1)Tb. For no
constraint on the input waveform, d is zero and k is infi-
nite.

The reason for choosing the parameter k to be finite is
to ensure the proper operation of the PLL timing recovery
circuit. Since the maximum time interval between input
transitions is constrained, so also is the maximum time
interval between peaks in the output waveform. There-
fore, the PLL can only proceed for so long without an
output peak occurring to correct its estimate of the timing.

The reason for choosing the parameter d to be greater
than zero is less obvious (and thus more interesting). As-
sume that T,,, is the smallest time interval that can be
allowed between neighboring transitions in the two-level
input waveform. If d is equal to zero, then we must choose
Tb = T,,,. For this choice of Tb, the maximum informa-
tion rate that can be supported by the two-level input
waveform would be (Tb)-l = (T,,,,-' bits/second. Now
assume that d is chosen as an integer strictly greater than
zero. Since the minimum time interval between transi-
tions is now (d + 1)Tb, T,,, can be chosen equal to (d +
1)Tb and the constrained binary digits occur at a rate of
(Tb1-l = (d + l)(T,,,,,)-' binary digits/seconds. For a
fixed value of T,,,, this corresponds to an increase in sym-
bol rate by a factor of (d + 1) . Unfortunately, this in-
crease is not in the true information rate but in the con-
strained binary symbol rate since more than one
constrained binary digit is required to represent one in-

formation bit. Let R be the rate of a given finite-state
(d , k) code. Then the true information rate for this system
using the (d , k) code is R(Tb)-' = R(d + l) ~ T , , , , , , - ~
bits/second. The product R(d + l) , called the density
ratio [21] of the code, represents the increase (if R(d +
1) > 1) or decrease (if R(d + 1) < 1) in true information
rate using a (d, k) code as compared to an unconstrained
or uncoded system. We are particularly interested in sys-
tems where the density ratio is strictly greater than 1 for
then we are storing information at a higher rate than the
highest possible rate of the transitions in the two-level
input waveform.

We assume that every Tb seconds there is either a tran-
sition or nontransition in the input waveform. We repre-
sent this sequence of transitions and nontransitions by a
sequence of ones and zeros, respectively. The constraint
on the minimum and maximum time interval between
transitions described above then translates to the follow-
ing constraint on the binary sequence: successive ones in
the binary stream are separated by at least d zeros and at
most k zeros. A deterministic FSTD representing the (d ,
k) constraint, for k finite was shown in the Introduction
(Fig. 1). In the literature, the (d , k) constraint is often
referred to as the maxentropic (d , k) code.

The Shannon capacity of the (d , k) constraint, denoted
C(d, k) , is given as

C(d, k) = log2 X

where h is the largest real root of the equation

+ 1 = 0 . 2 + 2 - X k + l - X k + l - d

(The polynomial on the left-hand side of the equation is
(x - 1) times the characteristic polynomial of the adja-
cency matrix of the standard (d , k) FSTD.) Furthermore,
it can be shown that for k infinite, C(d, 03) = C(d - 1,

The state splitting algorithm described in Sections 111
and IV can be utilized to find finite-state encoders with
sliding-block decoders at any rate p : q where p / q 5 C(d,
4 .

Some common (d , k) code parameters and practical
rates p / q are listed in Table 11.

In the remainder of this section we will use the methods
described in the previous sections to derive several codes
that have played important roles in magnetic recording: a
rate 4/5, (0, 2) block code; a rate 8 / 9 , (0, 3) block code;
a rate 1/2, (1 , 3) code; and two distinct rate 2 / 3 , (1 , 7)
codes.

B. Block Codes for (0, 2) and (0, 3) Constraints
We begin the design of specific codes with the first two

entries in this table, rate 4 / 5 (0, 2) and rate 8 / 9 (0, 3).
These codes were introduced in IBM 3420 and 3480 tape
drives, and became industry standards [28, pp. 120-1221.
Both of the codes are block codes; that is, codes for which
a single codebook serves as the encoder and decoder, so
there is, in effect, only one state. We will use the methods
of Section 111, which reduce to the methods of Freiman

2d - 1) [47].

i r T m - - I

MARCUS er a / . : FINITE-STATE MODULATION CODES 25

TABLE I1
PARAMETERS OF SOME COMMON CODES

0 2 0.8792 4 5 0.8
0 3 0.9468 8 9 0.8889
1 3 0.5515 1 2 0.5
1 7 0.6793 2 3 0.6667
2 7 0.5174 1 2 0.5

and Wyner [40], to derive optimal block codes that con-
tain the two block codes of interest.

The codebook for the rate 4 / 5 (0,2) code (the so-called
GCR code) is given in Table 111.

To verify that the channel sequences satisfy the (0, 2)
constraint, note that no codeword by itself violates the (0,
2) constraint nor does the concatenation of any two code-
words.

The methods described earlier can be applied to gen-
erate this code, as follows. We begin with the natural
FSTD for the (d, k) = (0, 2)'constraint as shown in Fig.
21.

The follower sets satisfy the inclusion relations

F(2) E F(1) E F(0)

so the partial ordering of states is given by

2 < 1 < 0 .

The adjacency matrix for this FSTD is

A = r 1 0 O l 1

L1 0 01
We are interested in a rate 4 / 5 code so we calculate As
to be

r i 3 7 41
A 5 = 11 6 3 .

L 7 4 2 1
It is easy to see that the vector

U = [l , 1, 0IT

is the (A 5 , 24)-approximate eigenvector found by the AE
algorithm when we set L = 1. Using the terminology of
Section V-A, state 1 is 7-minimal, where 7 = (0, l} .
There are exactly 17 words of length 5 generated from
state 1, ending in state 0 or state 1. This list contains the
16 codewords in the GCR code in Table 111, as well as
the word 11111.

We can now apply the procedure described in Section
V-A to prove that this list of 17 words is an optimal block
code for length 5. Recalling that state 1 is (0, 1}-mini-
mal, we set to 0 the corresponding component, and apply
the AE algorithm. The resulting vector is all-0's. It fol-
lows that the list of 17 words is optimal (and unique).
Note also that the list is invariant under reversal of the
symbol order in each word.

TABLE I11

CODE

User Bits Code Bits

ENCODIN~DECODING TABLE FOR (0, 2)

0000
000 1
0010
001 1
0100
0101
01 10
0111
1000
1001
1010
101 1
1100
1101
1110
1111

11001
1101 1
10010
1001 1
11101
10101
101 10
101 11
11010
01001
01010
0101 1
11110
01101
01 110
01111

Fig. 21. FSTD for (d, k) = (0 , 2) constraint.

The selection of 16 words for a rate 4 : 5 block code,
and the mapping between the user bits and the codewords
are arbitrary. However, the codewords and the mapping
can be chosen for various system-related reasons; for ex-
ample, to minimize the hardware for implementing this
codebook.

The construction of an optimal block code with length
9 for the (d, k) = (0, 3) constraint proceeds in a similar
fashion, so we will only sketch the code design. An op-
timal block code contains 293 words, so a rate 8 / 9 (0, 3)
code is supported.

An FSTD for the (d, k) = (0, 3) constraint is shown in
Fig. 22.

The adjacency matrix for this graph is

The 9th power of this adjacency matrix is

p 0 8 108 56 2 9 1

193 100 52 27

. 164 85 44 23
A 9 = I

Ll08 56 29 15A

The two (A9, 28)-approximate eigenvectors U = [1, 1, 1,
0IT and U = [l , 1, 0, 0IT both describe sets of states in
which there is a single minimal state generating 293

n m I

~

26 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. IO, NO. I . JANUARY 1992

1 0 0 0

1
Fig. 22 . FSTD for (d , k) = (0, 3) constraint

words. The two lists constitute the two optimal block
codes with length 9, and we note that if the symbol order
is reversed in the words in one list, the words in the other
list are generated.

Remark: The (d, k) = (0, 2) and (d, k) = (0, 3) codes.
illustrate a more general result about (0, k) codes 1401.
Fork = 21, there is a unique optimal block code for length
q, where q 2 k. The code consists of the q-blocks gen-
erated from state 1 and terminating in states (0, 1, . . . ,
1 } . The code is reversal-symmetric.

For k = 21 + 1, there are two optimal block codes for
length q , where q 2 k . The first code contains the
q-blocks generated from state 1 + 1 and terminating in
states (0, 1, * * , 1 + 1) . The second contains the
q-blocks generated from state 1 and terminating in states
(0, 1, - , 1 }. Reversing the symbol order in the code-
words of one of these codes yields the codewords of the
other.

C. (d, k) = (I , 3)
In this section we derive a rate 1 /2 (1, 3) code, known

variously as Miller code, modified frequency modulation
(MFM) code, and delay modulation [28, p. 691. It has
found wide use in the data storage industry.

We begin with the finite-state transition diagram
(FSTD) G for (1, 3) constrained binary sequences shown
id Fig. 23.

The capacity of this constraint is C = 0.5515. We de-
sire a code of rate R = 1/2. The second power of the
FSTD of Fig. 23 is shown in Fig. 24.

Note that state 3 in this graph is deficient in that it has
only one edge emanating from it. However, U = [1, 1, 1,
0IT is an (P I (G) ~ , 2)-approximate eigenvector found using
the AE algorithm with L = 1. The sub-FSTD H deter-
mined by this vector, shown in Fig. 25, satisfies the
rowsum condition needed to support a rate 1 : 2 code.

Moreover, since states 1 and 2 have identical follower
sets, we construct the (1, 2)-merger according to Section
V-A, as shown in Fig. 26.

Finally, we obtain a rate 1 : 2 encoder, shown in Fig.
27, where, as before, the edge labels are of the form s / t
where s is the (1 bit) input tag and r is the pair of (1, 3)-
constrained binary symbols produced by the encoder.

From the encoder, one can see that this code has an
interesting and uncommon property: it is a systematic
code. That is, each time an information bit is encoded by
the encoder, this bit appears as the second code symbol
produced by the encoder. The rule by which the encoder

0 0 0

Fig. 23 . FSTD for (d , k) = (1 , 3) constraint.

W

Fig. 24. Second power of FSTD in Fig. 23.

O l n

Fig. 25. RLL (1 , 3) encoder graph.

Fig. 26 . Merger of RLL (1 , 3) encoder graph.

Fig. 27 . RLL (1 , 3) encoder.

produces the first code symbol can be described easily in
words: the first symbol is a 0, except when it appears be-
tween two information bits which are O's, in which case
it is a 1.

We remark that the two optimal two-block codes for the
(1, 3) constraint, namely (01 } and { lo}, contain only one
word each. Therefore, there is no rate 1 : 2, (1, 3) block
code.

D. (d, k) = (1, 7)
Rate 2 /3 (1, 7) codes are used today in many digital

recording devices. Several codes with these parameters

21 MARCUS et a l . : FINITE-STATE MODULATION CODES

have been derived (see, for example, [19], [48], [49]).
The finite-state encoders for two of the more popular
codes, developed independently by Jacoby [1 81, [191 and
Adler et al. [48], respectively, were shown in [2] to have
identical, underlying five-state encoder FSTD’s. The only
difference between the codes was the choice of data-to-
codeword assignments.

The construction in [18] does not use state splitting
methods. Rather, the encoding makes use of a basic 2 : 3
encoding table, with a substitution table for violations of
the d = 1 constraint, as anticipated by means of one word
look-ahead. The construction in 1481 uses state splitting
applied to a five-state sub-FSTD of the third power of the
edge graph of the usual eight-state (1, 7) FSTD. This five-
state FSTD represents a constrained system that has ca-
pacity exactly 2, and was found by somewhat ad hoc
methods by examining concatenations of binary 3-tuples
that do not violate the d = 1 or k = 7 constraints. The
state merging methods described in Section V-A can be
immediately applied to reduce the five-state FSTD to a
three-state FSTD (which is not an encoder FSTD) shown
in Fig. 28, that describes exactly the same constrained
system.

Recently, state splitting was used to design a different
rate 2/3, (1, 7) code with a four-state encoder FSTD 1491,
the minimum number of encoder states possible 1321. The
construction applied the state splitting algorithm to the
three-state FSTD shown in Fig. 29.

The sequences described by this FSTD can be inter-
preted as a “phase-shifted’’ version of the sequences pro-
duced by the FSTD in Fig. 28, as discussed in Howell
[50]. More precisely, if the sequences from Fig. 28 are
written with the time index

(-) 001

100”

Fig. 28. A three-state FSTD for (1. 7) code sequences.

01 0

Fig. 29. A “phase-shifted” version of FSTD in Fig. 28.

then the sequences from Fig. 29 are 100

Fig. 30. Third power of the RLL (1, 7) FSTD.

XO * xlx2x3 ’ xqXgx6 . . ‘

The main purpose of this subsection is to show that both
of these codes can be constructed “from scratch,” so to

The first (A(G3) , 4)-approximate eigenvector found by
the AE algorithm, with L = 3, is

speak,’ using the techniques discussed in Sections 111-V.
No inmired observations or a Driori knowledge of Dre-
vious rate 2 : 3 codes is necessary. What is interesting is
that we obtain the two codes by using two distinct ap-
proximate eigenvectors produced by the AE algorithm,
when the maximum component limits are set to L = 3 and

The weight-minimal states are 0, 3, 6, and 7. Applying
Proposition 5, we can apply mergings and reduce the
FSTD G 3 to a four-state FSTD, shown in Fig. 31, with
induced approximate eigenvector

L = 5 .
The construction of the four-state encoder FSTD pro-

ceeds as follows. The third power of the RLL (1 , 7) FSTD
is shown in Fig. 30.

In the partial ordering based upon follower sets, we find
that

7 < 6 < 5 < 4 < 3 < 2 < 1

while 0 is not comparable to any of the other states; that
is, there is no inclusion relationship involving F(0) and
any of the other follower sets.

w = 12, 3, 2, l]?

This FSTD is reducible, however, since state 7 has no
incoming edges. We, therefore, reduce to an irreducible
component that is a “sink” component (there is only one,
here, derived from states 0, 3, and 6). The resulting FSTD
is precisely the three-state diagram in Fig. 29 from which
the four-state encoder FSTD can now be derived, as de-
scribed in [49]. The derivation requires two rounds of
splitting. The sliding-block decoder window requires three
words: the current word and two words of look-ahead

nr I

28 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 10, NO. I , JANUARY 1992

100
Fig. 31. A merger of the FSTD in Fig. 30

(from the two rounds of splitting). The data-to-codeword
assignment was chosen to eliminate the need for any look-
back in the decoder. Consequently, the propagation of er-
rors can be no more than 6 user bits, but one can check
that, in fact, it never exceeds 5 bits, again thanks to the
judicious choice of data-to-codeword assignment.

The derivation of the five-state encoder FSTD is quite
similar. As mentioned above, we use the first (A(G3) , 4)-
approximate eigenvector found by the AE algorithm, with
L = 5 , namely

v = [3, 5, 5, 4, 4, 4, 3, 2IT.

The weight-minimal states are now 0, 2, 5, 6, and 7. Ap-
plying Proposition 5 , we reduce the FSTD G 3 to a five-
state FSTD, shown in Fig. 32, with induced approximate
eigenvector

w = [3, 5, 4, 3, 2IT.

We find that this FSTD is also reducible. We, there
fore, find an irreducible component that is a “sink” com-
ponent (again, there is only one, derived from states 0, 2,
and 5). The resulting FSTD is precisely the three-state
diagram in Fig. 28 from which the five-state encoder
FSTD can now be derived, as described in [48].

E. (d, k , s) = (2, 18, 2)
The previous sections demonstrated how the state split-

ting algorithm and related code design methods can be
used to derive a variety of RLL codes, including several
codes originally found by interesting, but sometimes ad
hoc techniques.

The usefulness of the state splitting approach becomes
clearest, however, when one attempts to design codes for
more complicated constrained systems. As an example,
we mention the multiple-spaced RLL constraint with pa-
rameters (d, k , s) = (2, 18, 2). The parameter s indicates
that the run-lengths of 0’s must be of the form d + is,
where i is a nonnegative integer. For d = s = 2, this
implies that the 1’s are separated by an even number of
0’s. These constraints were originally investigated by

Oo0 100 U Xo
Fig. 32. A different merger of the FSTD in Fig. 30.

0 0 0 0 - 0 0 0 0 0 o - - o 0 0 0 o - - o 0 - 0

I I . - i1 l1 l1 l1 1: I 1 l1 .- 7‘
Fig. 33. (d , k , s) = (2, 18, 2) FSTD.

Funk [51]. In the context of magnetic recording, he
showed that multiple-spaced RLL codes with s = 2 might
have some practical value. More recently, and indepen-
dently, (d , k , 2) constraints were shown to play a natural
role in magnetooptic recording systems using a resonant-
bias coil direct-overwrite technique [52] , [53].

Weigandt [54] applied state splitting techniques to de-
sign a rate 2 / 5 (2, 18, 2) code. It is not unfair to say that
the design of such a code would have been close to im-
possible without the use of state splitting, as well as a
computer software package to help with the bookkeeping.
Details of the encoder and decoder can be found in [54].
Our aim in this subsection is simply to give the reader an
indication of the scope of the design problem and the mea-
sure of success achieved using state splitting.

An FSTD G for the (d, k , s) = (2, 18, 2) constraint is
shown in Fig. 33.

The Shannon capacity of this system is C = 0.40403
. . . . In order to design a rate 2 : 5 code, the AE algo-
rithm was used to find an (A(G5), 4)-approximate eigen-
vector:

U = [7 , 9 , 1 2 , 9 , 1 2 , 9 , 1 2 , 9 , 1 1 , 8 , 1 1 , 8 , 1 1 , 7 ,

10, 6, 8, 4, 5IT

A sequence of state splittings requiring only four rounds
of splitting was found. The resulting encoder FSTD had
25 states. (Note that the approximate eigenvector estab-
lished an upper bound of 168 states!) The sliding-block
decoder window spanned only four codewords, after a ju-
dicious selection of a data-to-codeword assignment.

VII. APPLICATIONS TO PRML (0, G/Z) CODES
A . Code Constraints for Partial Response Channels

Partial-response signaling with maximum-likelihood
sequence estimation (which we will denote by PRML) is

MARCUS et al . : FINITE-STATE MODULATION CODES 29

a technique, using amplitude detection, which has been
investigated for high-density magnetic recording of digi-
tal data. The technique combines partial-response class
IV signaling with maximum likelihood detection in the
form of a Viterbi decoder. For more details, see, for ex-
ample, [4]-[7]. There is a need for constrained codes in
this context: to improve timing and gain control, as well
as to limit the path memory limitations on samples with
value “0” in the channel output signal. When Interleaved
NRZI recording [INREI] [4], [25], [26] is used, con-
straints on the runs of samples with value “0” in the
channel output sequence correspond directly to similar
constraints on the runs of symbols “0” at the channel
input [55]. In the PRML context, these constraints are
described naturally by two parameters G and Z, where G
is the maximum number of adjacent symbols “0” al-
lowed in the code string, and Z is the maximum number
of adjacent symbols “0” allowed in both the even and
odd substrings which interleave to make up the code-
string. The G constraint helps to improve timing and gain
control. The Z constraint is used to limit the path memory
of the Viterbi decoder: decoding is accomplished by dein-
terleaving the received string and applying two Viterbi
decoders based on 1 - D trellises-one for the substring
determined by even coordinates and the other for the sub-
string determined by odd coordinates. To help distinguish
the PRML (0, G/Z) constraints from the (d, k) RLL con-
straints, we will use the notation (0, G/Z). The first pa-
rameter can be thought of as a d constraint which, for our
purposes, is always set to d = 0. The G and Z parameters
resemble the k constraint in RLL codes, governing max-
imum run-lengths of 0’s.

We can represent (0 , G/Z) constraints by diagrams
based on states which reflect the three relevant quantities,
the number g of symbols “0” since the last symbol “1”
in the global string and the numbers a and b which denote
the number of symbols “0” since the last symbol “1” in
the two interleaved substrings. Note that g is a function
of a and b, denoted g(a, b)

t: + i f a L < b b .
g(a, b) =

We label the states with 2-tuples (a , b) , where a is the
number of symbols “0” in the interleaved substring con-
taining the next to last bit, and b is the number in the
substring containing the last bit. In the (a , b) notation, the
set of states V for a (0, G/Z) constraint is given by

V = { (a , b): 0 I a, b I Z and g(a, b) I G }

and the transitions between states are given by the rules

“0 ” : (a , b) -+ (b , a + l) , provided (b , a + 1) E V

“1”: (a , b) + (b , 0) .

The reader may verify that this FSTD has finite memory
and anticipation, and, therefore, the PRML (0, G/Z) con-
straints are finite-type.

The partial ordering of states for the (0, G/Z) con-

straints is expressed in a particularly simple, geometric
way when the (a , b) nomenclature based on substring runs
is used. Let s, = (a , , b ,) and s2 = (a2, b2) . Then, sl <
s2 if either

a, L a2 and b, L b2

or

b, L b2 and g(al , bJ = G.

The ordering is interpreted geometrically by placing the
states on the integer lattice in the plane. Each state (a , b)
with g(a, b) < G is placed at the grid point with coordi-
nates (a , b) , while states with g(a, b) = G are placed at
grid point (I, 6) . The ordering can then be described in
words by the simple rule

s, < s2 if s2 is below and to the left of s,.

From the appropriate adjacency matrix T, we can de-
termine the feasible rates for (0, G/Z) codes. For exam-
ple, for the (0, G/Z) = (0, 3/3) case, we first compute
the capacity C of the constraint by finding the largest ei-
genvalue X of T: C = logz X = 0.9157 * - . This value
of Cindicates that a code is possible at rate 8 / 9 = 0.8888

. The rate 8 / 9 is a good choice of rate because it is
close to the Shannon capacity, and it is well adapted to
standard byte-oriented data processing. We also note that
(0, G/Z) = (0, 3/3) has the smallest G and Z values for
which coding at rate 8 / 9 is possible. (We may assume G
I 21 and, by computation, observe that (0, G/Z) = (0,
2/00) and (0, G/Z) = (0 ,4 /2) have capacity C = 0.8791
a - * < 8/9.)

With this selection of code rate, the next step is to take
the 9th power of T , and find a (T9, 28)-approximate ei-
genvector n. For example, for the (0, G/Z) = (0, 3/3)
parameters, one such approximate eigenvector is

*

n = [3 , 2 , 2 , i , 3 , 2 , i , o , 2 , 2 , 0 , 1] 7

with components corresponding to the states in lexico-
graphic order. The upper bound of final states is the sum
of the components, or 19. The lattice of states for (0, G/Z)
= (0, 3/3) is shown in Fig. 34, along with the approxi-
mate eigenvector components and weight minimal states
(circled). States with weight 0 are ignored in the code
construction process. Note that states (1, 2) and (1, 3) are
shifted from their normal grid positions to the far right
edge because the global run achieves the maximum value

Table IV gives the Shannon capacity of selected (0,
G/Z) constraints. The techniques described in Sections
111-V were used to construct rate 8 /9 , finite-state (0,
G/Z) codes with sliding-block decoders for each of these
constraints. A summary of the resulting code parameters
is included in Table IV. As an example of the effective-
ness of these techniques, the (0, G/Z) = (0, 3/3) code
was reduced in a systematic way to a four-state encoder,
far less complex than the original upper bound of 19.

We remark that the techniques described here were ap-
plied to the design of a rate 8 : 9, modified (0, G/Z) code

g = 3.

30 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. IO, NO. I , JANUARY 1992

(0,l) 2 (1,l) 2 (2 4 0 2 (3 8 1

Fig. 34. Lattice of states for (0 , G / I) = (0, 3/3) . (Approximate eigen-
vector shown, with weight minimal states circled.)

TABLE IV
COMPENDIUM OF (0 , G/Z) CODES

o e e e e

Fig. 35. Lattice of states for (0 , G / I) = (0, 4/4) .

(092)
Encoder Decoder

(0 , G / I) Capacity Rate Efficiency (%) States Look-ahead (bits) (291)
(0, 4/4) 0.961366 8 / 9 92.4 1 0
(0, 4/3) 0.939505 8 / 9 94.6 3 0
(0, 3/6) 0.944539 8 /9 94.1 1 0
(0, 3 /5) 0.941533 8 / 9 94.4 2 0
(0, 3/4) 0.934253 8 / 9 95.1 3 8
(0, 3 /3) 0.915723 8 / 9 97.0 4 7

for the PRML channel incorporated into a recent IBM disk
drive. We now discuss the design of some of the codes
listed in Tab1e.W. Details about the other codes can be
found in [25].

B. (0, G/Z) = (0, 3/6)’and (0, 4 / 4)
Consider first the constraint (0, G/Z) = (0, 4/4). The

states form a lattice structure as shown in Fig. 35, where
state labels have been omitted where they agree with grid
coordinates, starting with (0, 0) at the lower left.

The three states in position (4, 2) are, from left to right,
(2, 2), (3, 2), and (4, 2). All have global run length g of
maximum value 4 and so have been moved to the far right
and lumped together in one state. The capacity of this
constraint is 0.961366, and it is again reasonable to at-
tempt to construct a code with rate 8 /9 . For the adjacency
matrix T , the AE algorithm indicates that there is a (T9,
28)-approximate eigenvector with components all equal to
0 or 1, indicating that a code at rate 8 / 9 can be con-
structed without state splitting. We use the approximate
eigenvector v = [l , 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0IT with components corresponding to states in
lexicographic order. Eliminating those states correspond-
ing to 0 components we are left with the irreducible FSTD
based upon the seven states shown in Fig. 36.

There are two minimal states, (0, 2) and (2, l) , in Fig.
35. This reduction leaves only two states, which we con-
tinue to label (0, 2) and (2, l) , but the merging of non-
minimal states with minimal states here involves some
choices. We can merge (0, 0) and (0, 1) with either (0,
2) or (2, 1). We arbitrarily choose the latter. In some
cases, the choice can be made to simplify the relationship
between codewords and next state functions in the en-
coder [25].

The resulting adjacency matrix for the two-state FSTD,

(090) (190) (290)
Fig. 36. Reduced lattice for 9th power of (0, G / I) = (0, 4 /4)

and its rowsums, are given by
(0, 2) (2, 1) Total

(0, 2) 27 298 325
(2, 1) 28 269 297.

The number of codewords in the intersection of the la-
bels of the outgoing edges are shown in the Venn diagram
in Fig. 37.

A two-state code could now be constructed by selecting
a list of 256 codewords from each row. (In fact, the astute
reader will notice that, as a result of the merging, a block
code can be derived quite simply by choosing 256 code-
words from the 269 codewords that start and end at the
state (2, 1) in the merged FSTD.) To design a block de-
coder, one first finds the codewords in the common inter-
section of the two states. The assignment of 8-bit input
patterns to codewords should then be made consistently;
that is, if a codeword in the intersection is included in
both lists of 256 words, it should correspond to the same
8-bit input tag. In this case, we find that the lists for the
merged states (0, 2) and (2, 1) have a common intersec-
tion which contains more than 256 codewords, as indi-
cated by the intersections shown in Fig. 37. Specifically,
there are 279 codewords of length 9 emanating from both
states (0, 2) and (2, 1). These codewords can be freely
concatenated without violating the constraints so a block
code (that is, code with one state) for (0, G/Z) = (0,
4/4) at rate 8 / 9 can be based on any subset of these 279
words of size 256. Moreover, applying the technique de-
scribed in Section V-A, one can verify that these 279 form
the unique optimal block code of length 9 for this con-
straint.

These 279 codewords were first found by J. Eggenber-
ger [55] by eliminating all 9-bit blocks that have more
than four consecutive symbols “0” anywhere in the
block, more than two consecutive symbols “0” at the be-
ginning or end, or more than two consecutive symbols
“0” at the beginning or end in even or odd substrings.

n i I

MARCUS ef U / . : FINITE-STATE MODULATION CODES 3 1

Fig. 37. Intersection diagram for (0. G / I) = (0 , 4/4)

We remark here that, in a similar fashion, one can use
these minimal state techniques to rederive the two optimal
block codes of length 9 for the (0, G/Z) = (0, 3/6) con-
straint. These codes, originally discovered by J. Eggen-
berger, consist of 272 words.

The ordered states in the original (0, G/Z) = (0, 3/6)
diagram are shown in Fig. 38. The first code was derived
from the approximate eigenvector U = [l , 1 , 1 , 1 , 0, 0,
O , l , O , O , O , O , O , O , l , O , l , O , O , O , O , O , O , O] T . T h e
states with component 1 in the approximate eigenvector
are enclosed in the box, and the minimal states which had
a common intersection of 272 words are circled.

The minimal state techniques also generate the approx-
imate eigenvector U = [l , 1 , 1 , 1, 0, 0, 0, 1 , 1 , 1 , 1, 0,
0, 0, 1, 0, 1, 0, 0 , 0 , 0, 0, 0, 01’. This alternative ap-
proximate eigenvector leads to the 272 words which con-
stitute the second optimal block code. The words in this
list are precisely the reverse binary representations of
those in the first one. This symmetry was first pointed out
by Eggenberger, who gave a simple description of these
codes, similar in nature to that of the (0 /4 , 4) code.
Namely, the first code consists of all 9-bit blocks that have
no more than three consecutive 0’s anywhere in the block,
no more than two consecutive 0’s at the beginning of the
block, no more than one symbol 0 at the end of the block,
and no more than three consecutive 0’s anywhere in the
even or odd substrings. The second optimal block code is
described similarly, the only difference being that the
blocks have no more than one consecutive 0 at the begin-
ning, and no more than two consecutive 0’s at the end.

0 . .
Fig. 38. Lattice of states for (U, G / I) = (0, 3/6) .

. e

e .

Fig. 39. Lattice and minimal states for (0, G / I) = (0, 3/5)

Fig. 40. Intersection diagram for (0 , C / I) = (0, 3,’s).

The code is very “close” to a block code; the two stages
agree on 250 codewords. Moreover, the codewords which
differ do so only on their second and fifth bits. For state

approximate eigenvector for the 9th power of the adja-
cency matrix, with n = 256, which has only 0 and 1 com-
ponents. The set of states 7 with component 1 are en-
closed in the box, with the two 7-minimal states circled.

The common intersection is 251 codewords, as seen in
the intersection diagram in Fig. 40, and one can check
that this is optimal for length 9.

A two state code can be constructed by merging non-
minimal states (0, 0), (1 , 0), and (2, 0) with minimal state
(3, 0), and merging state (0, 1) with minimal state (0, 2).
This amalgamation then makes the next state function de-
pend only on the last bit of the codeword, namely final bit
“1” implies next state is (3, 0) and “0” implies (0, 2).

D. (0, G/Z) = (0, 3 /3)
The minimal-state reduction in the (0, G/Z] = (0, 3/3)

case leaves the states which are circled in Fig. 41 (ex-
tracted, for convenience, from the lattice diagram in Fig.
34).

The weight minimal states in the group with approxi-
mate eigenvector component 1 are (0, 3) and the right-
shifted (1, 2). For component value 2, the minimal states
are (0, 2) and (2, 1) . Finally, for value 3, the only mini-
mal state is (1, 0). The new upper bound on the number
of states after splitting is 9 , versus the original 19.

The ordering on the weight minimal states provides in-

1 - T l l - I

32 IEEE JOURNAL ON SELECTED AREAS I N COMMUNICATIONS. VOL. IO, NO. I , JANUARY 1992

02

e 2 . 2 02 .1

0 3 0 3 e 2 e 0
Fig. 41. Weight minimal states for (0, G / I) = (0, 3 / 3) .

sight into how the states should be split so as to further
simplify the code structure. In the sense of the ordering,
state (0, 2) with component value 2 exceeds states (0, 3)
and right-shifted (1, 2), both with value 1 . Similarly, state
(1 , 0) of value 3 exceeds state (2, 1) of value 2, which in
turn also exceeds right-shifted (1, 2) of value 1. These
relationships suggest splitting (0, 2) into two states which
could then be merged with (0 , 3) and right-shifted (1, 2),
respectively. Likewise, state (2, 1) could split into two
states, one of which could merge with right-shifted (1, 2).
These two states would themselves merge with two of the
three states into which we split (1, 0). Ideally, then, the
code would reduce to only four states, represented by the
three states split from (1 , 0) and the one state from (0, 3).
This plan for splitting states was in fact carried out, re-
sulting in a surprisingly simple four-state encoder for the
(0, G/Z) = (0, 3/3) constraint at rate 8 / 9 . Details of a
four-state encoder for (0, G/Z) = (0, 3/3) can be found
in [25], [26].

VIII. ALMOST-FINITE-TYPE SYSTEMS AND

NONCATASTROPHIC ENCODERS
Recall from Section IV that the charge-constrained sys-

tems are not finite-type systems. However, they do be-
long to the more general class of almost-finite-type sys-
tems, which we now describe. The almost-finite-type sys-
tems can be thought of as “locally finite-type.” Recall
the notions of finite local anticipation and finite local
memory that were first introduced in Section 11. A con-
strained system is almost-jinite-type if it can be repre-
sented by an FSTD that has both finite local anticipation
and finite local memory. From Proposition 4, we know
that finite memory and anticipation implies finite local an-
ticipation, and the same proof shows that it also implies
finite local memory. Thus, every constrained system
which is finite-type is also almost-finite-type, and so the
almost-finite-type systems do indeed include the finite-
type systems. From Fig. 2 (in the Introduction) we see
that the charge-constrained systems are represented by
FSTD’s with local anticipation 0 and local memory 0;
thus, these systems are almost-finite-type, but not finite-
type. Most every constrained system that has been used
in practical applications is almost-finite-type.

As with finite-type systems, we have the problem that
a given constrained system may have some representation

that satisfies the finite local memory and finite local an-
ticipation conditions and another representation that does
not. Unfortunately, in contrast to finite-type systems, the
intrinsic condition that defines almost-finite-type is very
hard to state (see 1571). So, at this point it is most con-
venient to introduce a distinguished representation called
the Shannon cover. We give only a brief discussion of the
Shannon cover, and we refer the reader to [29] for more
details.

The Shannon cover G, is the minimal (in terms of num-
ber of states) deterministic representation of S. It turns out
that for constrained systems that can be represented by an
irreducible FSTD (e.g., run-length limited and charge
constrained systems), the Shannon cover is unique. In
fact, the Shannon cover can be constructed from any ir-
reducible deterministic representation G in the following
well-known way. If two states i, j in G have the same
follower set, merge them, i.e., form the (i , j)-merger as
described in Section V-A. It is easy to see that the merger
is still deterministic, and a modification of the proof of
Proposition 5 shows that the merger represents the same
constrained system S. Continue this procedure until the
follower sets of all states are distinct, i.e., continue until
you reach an FSTD that has the property that for every
pair of states, i, j , there is a sequence that can be gener-
ated from i but not f r o m j or vice versa. This procedure
must terminate since there are only finitely many states to
begin with. The result of this procedure turns out to be
the Shannon cover Gs. In particular (see [58]) the Shan-
non cover is characterized by the following properties:

1) G, is deterministic;
2) the follower sets of the states of Gs are distinct.
There is an algorithm [31, sect. 10-31 to determine

whether or not the follower sets of an FSTD are distinct,
but usually a casual glance at the FSTD is sufficient to
decide. Also, there is an algorithm [31, sect. 16-31 to con-
struct a deterministic representation of any constrained
system from any given representation, so that we can start
the procedure for finding the Shannon cover (and so that
we can also start the code construction procedure). But as
mentioned earlier, typically most constrained systems are
represented deterministically in the first place.

As an example, the FSTD in Fig. 6(b) is a deterministic
representation of the RLL (0, 1) constrained system, but
it is not the Shannon cover because states 1 and 3 have
the same follower set. And indeed the FSTD in Fig. 6(a)
is the Shannon cover of the RLL (0, 1) constrained system
because it is deterministic and 0 is the label of an outgoing
edge from state 1, but not from state 2 . Note that if we
merge states 1 and 3 in the FSTD of Fig. 6(b), we get the
Shannon cover in Fig. 6(a). The reader can verify from
the characterization above that the Shannon cover of a run-
length limited constraint is the usual FSTD depicted in
Fig. 1 of the Introduction and that Fig. 2 displays the
Shannon cover for the charge-constrained systems.

Now, we mention one of the main uses of the Shannon
cover. It can be used to tell if a given constrained system
is finite-type or almost-finite-type or neither.

MARCUS et al.: FINITE-STATE MODULATION CODES 33

Proposition 7: A constrained system representable by
an irreducible FSTD is finite-type (respectively, almost-
finite-type) if and only if its Shannon cover has finite
memory and anticipation (respectively, has both finite 10-
cal anticipation and finite local memory) [58 , theorem
4(iv)], [59, corollary 111, [60].

From this, one can see that the constrained system rep-
resented by the FSTD in Fig. 42 is not almost-finite-type.
Specifically, one can easily verify that the FSTD in the
figure is the Shannon cover of the constraint. However, it
does not have finite local memory, as can be confirmed
by looking at the paths that generate strings of the form
* . aaaab.

As a consequence of this proposition, we also get a fact
that was claimed in Section IV: since the Shannon cover
is deterministic, every finite-type constrained system has
a representation (the Shannon cover) with memory m and
anticipation 0 (for some m).

Finally, we state a result that generalizes both Theo-
rems 1 and 2. This result appears in [24], but the ground-
work was laid by [22].

77zeorem 3: Let S be a constrained system with Shan-
non capacity Cap(S). Let p , q be positive integers satis-
fying the inequality

p / q 5 C a p W .
Then, there exists a noncatastrophic finite-state encoder
that encodes binary data into the constraint S at constant
rate p : q. Moreover, if S is almost-finite-type (in partic-
ular, if S is finite-type), then the encoder has a sliding-
block decoder.

Thus, for almost-finite-type constrained systems, which
include the charge-constrained systems, the decoder can
be made sliding-block, ensuring that decoder error prop-
agation is limited in both number and time extent by a
fixed constant. For general constrained systems, the error
propagation is guaranteed only to be limited in number.
Indeed, [24] describes an example of a constrained system
with rational capacity, for which a finite-state encoder
with sliding-block decoder cannot be constructed at rate
equal to capacity (of course, by Theorem 3, such a con-
strained system cannot be almost-finite-type). However,
it is shown in [23] (see also [29]) that if one replaces the
assumption

P / 9 5 Cap(S)

p / q < C M S) ,

by

then the encoders can always be constructed to have slid-
ing-block decoders. But even in this case, it may be that
there are noncatastrophic encoders for some constraint
which are much simpler than any encoder with the same
rate that has a sliding-block decoder.

The proof of Theorem 3 for the finite-type case was
given in Sections I11 and IV, and it effectively provides a
practical algorithm for the construction of efficient, finite-
state codes with sliding-block decoders.

Fig. 42. A system which is not almost-finite-type

The proof for the almost-finite-type case is substan-
tially deeper mathematically, and therefore more compli-
cated. Although it does not exactly provide a practical
code construction algorithm, the proof makes use of some
very powerful techniques that can be brought to bear in
particular applications. A nontrivial example of a code
with 'reasonable' complexity for a particular combined
run-length limited/charge-constrained system called the
(d, k ; c) = (1 , 3; 3) constraint, is described by Karabed
and Siege1 [42]. Several of the new ideas in the general-
ization to almost-finite-type systems have also played a
role in the recent design of coded-modulation schemes
based upon spectral null constraints (see, for example,
181).

In general, from the complexity point of view, there is
still a great deal of work left to be done in understanding
how to construct finite-" encoders with sliding-block
decoders for charge constraints and more generally, for
spectral null constraints.

IX. CONCLUSIONS
A self-contained treatment of modulation code design

methods based upon the state splitting algorithm has been
presented. The methods were applied to the construction
of recording codes for digital data storage.

APPENDIX A
PERRON-FROBENIUS THEORY

The Perron-Frobenius Theory is a rich collection of re-
sults concerning the eigenvalues, eigenvectors, and gen-
eral structure of nonnegative matrices. Here we state only
the most relevant parts of the theory as it applies to
FSTD's, and we derive some consequences that are used
in the text of this paper. We refer the reader to one of the
many excellent texts [61], [62] on this subject for further
information.

Recall- that for an FSTD G, X(A(G)) denotes the largest
real eigenvalue of A (G) .

r m 1-

* L

34 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. IO. NO. I . JANUARY 1992

Theorems A1 and A2 are both parts of the classical Per-

Theorem A I : Let G be an irreducible FSTD. Then:
1) h(A(G)) > 0 and A(G) has a positive (i.e., all com-

ponents are positive) eigenvector associated with the ei-
genvalue h(A(G)).

2) The multiplicity of X(A(G)) as an eigenvalue of
A(G) is 1; i.e., X(A(G)) appears as a root of the charac-
teristic polynomial of A(G) with multiplicity 1 . In partic-
ular, all eigenvectors associated with the eigenvalue
X(A(G)) are scalar multiples of one another.

ron-Frobenius Theory.

3) X(A(G)) L Ip(for all eigenvalues p of A(G).

Theorem A2: Let G be an FSTD. Then G has an irre-
Proof: See [61, p. 531.

ducible component H such that X (A (H)) = X(A(G)).
Proof: See [6 1, p. 691.

Using these results we can now verify the capacity for-
mula (1) given in Section 11.

Theorem A3: Let G be an FSTD which represents a
constrained system S . If G has finite local anticipation (in
particular, if G is deterministic), then

CUP(S) = log2 (X(A(G))).
Proof: Let P(n; G) be the number of paths of length

n in G. The proof is broken into two parts. We first show

n + w n

and then we show

log2 (W; G)) - - lim log2 "; S)) = lim
n - m n n+cs n

(7)
(recall that N(n; S) is the number of sequences of length
n in S) . The desired result is obtained by combining (6)
and (7).

Equation (6) can be obtained by applying the theory of
difference equations; namely P(n; G) is the sum of the
components of a solution to a system of linear difference
equations.

As an alternative proof of equation (6) in the irreducible
case, we make use of the positive eigenvector x associated
with the eigenvalue h(A(G)). Let xmax, x,,, denote the
maximal, minimal components of x. So 0 < x,,, I xmax.
Then for each state i

xmin C V(GY), 5 C (~ (~) ") l j x j = x(A(G))~x,. (8)

Thus,

t xi
P(n; G) = C (A(G)")Q I X (A(G))" -. (9)

Replacing xmin by xmax and reversing the direction of the

rJ Xmin

inequalities, we get

C xi
P(n; G) = C (A(G)")Q 2 X(A(G))" -. (10)

ij Xmax

Thus, by (9) and (lo), the ratio of P(n; G) to (X(A(G)))"
is bounded above and below by positive constants. So,
these two quantities grow at the same rate, i.e., (6) holds.
This result can be extended to the reducible case by mak-
ing use of the Jordan canonical form of the matrix A(G)
[63]. See also [29].

To verify (7), first observe that since each sequence
generated by G is produced by at least one path in G of
the same length

P(n, G) 2 N(n; S). (1 1)

Now, we claim that there is some number M such that any
sequence can be generated by at most M paths. This is a
consequence of the assumption that G has finite local an-
ticipation (= a) : M is the product of the number of states
of G and the maximal number of paths of length a that
can generate the same sequence starting at the same state.
Thus

MN(n; S) 2 P(n; G). (12)

Now, (11) and (12) yield (7). Q.E.D.
Note that the proof of Theorem A3 shows that the ca-

pacity formula given by (1) holds more generally: namely,
when the number of paths that generate the same sequence
is bounded above, independent of the sequence.

The next result is used in Section I11 of this paper. It
shows that approximate eigenvectors exist when we need
them, and thus that if, in the approximate eigenvector al-
gorithm, one sets L sufficiently large, then the algorithm
will indeed find an approximate eigenvector.

Theorem A4: Let G be an FSTD and n a positive in-
teger with X(A(G)) ? n. Then there is an (A(G), n)-ap-
proximate eigenvector, i .e., a nonnegative integer vector
v f 0 such that

AV 1 nu.

Proof: We first prove this under the assumption that
G is irreducible. By Theorem A1 (part l) , A(G) has a
positive eigenvector x associated with X(A(G)) . There are
the following two cases.

Case 1: h(A(G)) > n.
In this case, we can change the entries of x slightly to

obtain a new vector x', with positive rational entries, that
satisfies the inequality A(G)x' 2 nx'.

Now, let v be the vector obtained from x ' by clearing
denominators, i.e., by multiplying x ' by any common
multiple of the denominators of its entries. The vector U
has positive integer entries, and it satisfies the approxi-
mate eigenvector inequality since x ' does. Thus, v is an
(A(G), n)-approximate eigenvector.

Cuse2: A(A(G)) = n.
By Theorem A1 (part l) , there is a nontrivial solution

to the homogeneous linear system of equations

(A - nZ)x = 0.
Since the coefficients of this linear system are rational
numbers, we can apply Gaussian elimination to obtain a
solution to the system with rational entries. Clearing de-

m

MARCUS et al . : FINITE-STATE MODULATION CODES 35

nominators, we obtain a solution v with integer entries.
But combining parts 1 and 2 of Theorem A l , we see that
every solution to the system is a multiple of a positive
vector. Thus, either v or - U is a positive integer eigen-
vector associated with eigenvalue A(A(G)) = n; in partic-
ular, it is an (A (G) , n)-approximate eigenvector. This
completes the proof in case G is irreducible.

If G is reducible, then there is, by Theorem A2, an
irreducible component H of G with A (A (H)) = X(A(G))
1 n. Thus, by what we have just proven, there is an
(A (H) , n)-approximate eigenvector U . Now, the vector U

is indexed by the states of H . We extend v to a vector
indexed by the states of G by simply setting to zero the
entries corresponding to those states of G that are not
states of H . This new vector is an (A (G) , n)-approximate
eigenvector. Q.E.D.

APPENDIX B
OPTIMAL BLOCK CODES

To prove that the procedure outlined at the end of Sec-
tion V-A produces an optimal block code for length q, we
briefly review the results of Freiman and Wyner [40]. The
design method they develop relies upon the partial order-
ing of follower sets by inclusion. The code construction
is simplified by the introduction of the concept of a com-
plete set of states, as we now describe.

Let 7 denote a subset of states of G, 7 G V(G) . We say
that 7 is complete with respect to the partial ordering of
follower sets if, whenever a state i belongs to 7 and i <
j , thenj belongs to 7.

We assume that the FSTD G has memory m and antic-
ipation 0, and choose a block length q ? m. We can also
assume that no two states in G have identical follower
sets; otherwise, we can merge them. Recall that 247) de-
notes the block code for length q obtained by taking the
intersection of the lists of q-blocks that are generated by
the states in 7, and that end in some state in 7 . A main
result in [40] is that an optimal block code will be 2 4 7)

for some complete set of states 7.
Suppose that the optimal block code for length q has M

? 2p codewords, and is generated by the complete set 7.
For convenience, we will say that a “0-1” vector is com-
plete if the set of states 7 corresponding to the components
with value 1 is complete. We will show that the procedure
described at the end of Section V-A generates every com-
plete “0-1 ” (A4, 2P)-approximate eigenvector. By [40],
we conclude that we will find an optimal block code for
length q.

So, let v and w be distinct “0-1” (A4, 2P)-approximate
eigenvectors satisfying w 5 U , and assume w is complete.
For any state k in the set 7 determined by U , let vLkl be the
vector obtained from v by setting uk = 0

U , if i # k

0 if i = k .
U?’ =

We now prove that w I v t k l , for some k that is mini-
mal. The desired result then follows easily.

Since w # v , we know that w 5 vLkJ, for some state k
in 7. If k is minimal, we are done. So, suppose it is not.
Then, there must be a s ta te j # k in 7, implying U, = 1,
such tha t j < k . If wJ = 1, we contradict the assumption
that w is complete. So w, = 0, and w I U ’ ,] . If j is
7-minimal, we are done. If not, we iterate this argument
until we run into a 7-minimal state (since no two states
have the same follower set, we are indeed bound to run
into a 7-minimal state).

It is interesting to note that there is a sort of “con-
verse” result. Namely, each approximate eigenvector ob-
tained during the procedure is in fact complete. To prove
this, we will make frequent use of a fact mentioned in
Section 111-B: the approximate eigenvector algorithm gen-
erates the largest approximate eigenvector dominated by
the initial vector U (’) .

It is easy to see that the largest “0-1” approximate ei-
genvector v is complete. If it were not, we could find
states s and t such that, U , = 1, U , = 0, and s < t . If we
flip position t to U , = 1, the corresponding vector w will
certainly satisfy the approximate eigenvector inequality
(2). The vector w is strictly larger than U . However, the
vector v is larger than any other approximate eigenvector,
a contradiction. Therefore, v must be complete.

Now, let v be an approximate eigenvector generated
during the course of the procedure. By induction, we may
assume that it is complete. Let k be a 7-minimal state in
the set 7 defined by v , and let w denote the vector that
differs only in position k, wk = 0. Apply the approximate
eigenvector algorithm to get the vector z.

If z is not complete, then there is a pair of states i < j
with z, = 1 and z, = 0. Setting z, = 1 gives a vector x
that is strictly larger than z and that also must satisfy the
approximate eigenvector inequality. We will show that
this leads to a contradiction.

First, we claim that j # k . If j = k , then we would
have i < k . By 7-minimality of k , and the assumption that
no two states have the same follower set, we would con-
clude that i = k , so z , = z k . But by construction, zk = 0,
and by definition of i, I, = 1. It follows that, indeed, j #
k .

Since v dominates z, and v is complete, we know that
U, = 1. This implies, in turn, that w, = 1, since w differs
from v only in position k , and we have seen that k # j .
However, this means that x I w. Combining this relation
with z 5 x and z # x leads to a contradiction, since z is
the largest approximate eigenvector smaller than w, by its
definition. Therefore, z must in fact be complete, proving
the claim.

To summarize, the procedure finds, for a given p , the
length-q block codes generated by the complete sets that
support a finite-state code at rate p : q. If an optimal code
has M 1 2p words, the procedure will find one.

ACKNOWLEDGMENT
The authors gratefully acknowledge useful discussions

with A. Khayrallah, D. Neuhoff, R. Roth, and N. Swen-

111 - I

I I1

36

son. They also thank J . Fitzpatrick and T. Weigandt for
carefully reading and commenting upon an earlier version
of this manuscript.

REFERENCES
[I] P. Siegel, “Applications of a peak detection channel model,” IEEE

Trans. Magnet., vol. MAG-18, no. 6 , pp. 1250-1252, Nov. 1984.
[2] -, “Recording codes for digital magnetic storage,” IEEE Trans.

Magnet., vol. MAG-21, no. 5, pp. 1344-1349, Sept. 1985.
[3] K. A. Schouhamer Immink, “Runlength-limited sequences,” Proc.

IEEE, vol. 78, no. 11, pp. 1745-1759, Nov. 1990.
[4] H. Kobayashi and D. T. Tang, “Application of partial-response

channel coding to magnetic recording systems,” IEM J. Res. De-
velop., vol. 14, pp. 368-374, 1970.

[5] F. Dolivo, D. Maiwald, and G. Ungerboeck, “Partial-response class-
IV signaling with Viterbi decoding versus conventional modified fre-
quency modulation in magnetic recording,” IBM Res., Zurich Res.
Lab., IBM Res. Rep. RZ 973-33865, Switzerland, Aug. 1979.

[6] R. Wood and D. Petersen, “Viterbi detection of class IV partial re-
sponse on a magnetic recording channel,” IEEE Trans. Commun.,
vol. COM-34, no, 5, pp. 454-461, May 1986.

[7] F. Dolivo, “Signal processing for high density digital magnetic re-
cording,” in Proc. COMPEURO 89, Hamburg, Germany, May 1989.

[8] R. Karabed and P. Siegel, “Matched spectral-null codes for partial-
response channels,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pt.
11, pp. 818-855, May 1991.

[9] C. Shannon, “A mathematical theory of communication,” Bell Sysf.
Tech. J . , vol. 27, pp. 379-423, 623-656, Oct. 1948.

[IO] P. Franaszek, “Sequence-state coding for digital transmission,” Eel1
Syst. Tech. J . , pp. 113-157, 1968.

[I l l -, “On synchronous variable length coding for discrete noiseless
channels,” Inform. Contr., vol. 15, pp. 155-164, 1969.

[121 -, “Sequence-state methods for run-length-limited coding,” IEM
J . Res. Develop., vol. 14, pp. 375-383, July 1970.

[13] -, “A general method for channel coding,” IEM J. Res. Develop.,

[I41 -, “Construction of bounded delay codes for discrete noiseless
channels,” IEM J. Res. Develop., vol. 26, pp. 506-514, 1982.

[I51 M.-P. Beal, “The method of poles: a coding method for constrained
channels,” IEEE Trans. Inform. Theory, vol. 36, no. 4, pp. 763-
772, July 1990.

[I61 D. Tang and L. Bahl, “Block codes for a class of constrained noise-
less channels,” Inform. Contr., vol. 17, pp. 436-461, 1970; and pp.
462-474, 1973.

[17] G. Jacoby, “A new look-ahead code for increased data density,”
IEEE Trans. Magnet., vol. MAG-13, no. 5, pp. 1202-1204, Sept.
1977.

[I81 G. Jacoby and R. Kost, “Binary two-thirds rate code with full word
look-ahead,” IEEE Trans. Magnet., vol. MAG-20, no. 5, pp. 709-
714, Sept. 1984.

[I91 M. Cohn, G. Jacoby, and A. Bates, 111, “Data encoding method and
system employing two-thirds code rate with full word look-ahead,’’
U.S. Patent 4,337,458, 1982.

[20] A. Lempel and M. Cohn, “Lookahead coding for input restricted
channels,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 933-937,
Nov. 1982.

[21] A. Patel, “Zero modulation encoding in magnetic recording,” IEM
J. Res. Develop., vol. 19, no. 4 , pp. 366-378, July 1975.

[22] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding-
block codes,” IEEE Trans. Inform. Theory, vol. IT-29, no. I , pp.
5-22, Jan. 1983.

[23] B. Marcus, “Sofic systems and encoding data,” IEEE Trans. Inform.
Theory, vol. IT-31, no- 3, pp. 366-377, May 1985.

(241 R. Karabed and B. Marcus, “Sliding-block coding for input-re-
stricted channels,” IEEE Trans. Inform. Theory., vol. 34, no. 1, pp.
2-26, Jan. 1988.

[25] B. Marcus and P. Siegel, “Constrained codes for PRML,” IBM Res.
Rep. RJ 4371, July 1984.

[26] -, “Constrained codes for partial response channels,” in Proc.
Eeijing Int. Workshop Inform. Theory, July 1988, pp. DI1.l-D11.4.

[27] R. E. Blahut, Digital Transmission of Information. Reading, MA:
Addison-Wesley, 1990.

[28] K. A. Schouhamer Immink, Coding Techniques for Digital Re-
corders. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[29] A. Khayrallah and D. Neuhoff, “Subshift models and finite-state codes

vol. 24, pp. 638-691, 1980.

for input-constrained noiseless channels: A tutorial,” preprint (based
upon Ph.D. dissertation by A. Khayrallah, Univ. Mich., 1989).

[30] N. Swenson and J . Cioffi, “A simplified design approach for run-
length limited sliding block codes,” preprint (based upon Ph.D. dis-
sertation by N. Swenson, Stanford Univ., 1991).

[31] Z. Kohavi, Switching and Finite Automara Theory. New York:
McGraw-Hill, 1970.

(321 B. Marcus and R. Roth, “Bounds on the number of states in encoder
graphs for input-constrained channels,” IEEE Trans. Inform. Theory,
vol. 37, no. 3, pt. 11, pp. 742-758, May 1991.

[33] J . Ashley, “A linear bound for sliding-block decoder window size,”
IEEE Trans. Inform. Theory, vol. 34, no. 3, pp. 389-399, May 1988.

[34] H. Kamabe, “Minimum scope for sliding-block decoder mappings,”
IEEE Trans. Inform. Theory, vol. 35, no. 6, pp. 1335-1340, Nov.
1989.

[35] R. Williams, “Classification of shifts of finite type,” Ann. Math.,
vol. 98, pp. 120-153, 1973; and “Errata,” Ann. Math., vol. 99, pp.
380-381, 1974.

[36] R. Adler, L. Goodwyn, and B. Weiss, “Equivalence of topological
Markov shifts,” Israel J. Math., vol. 27, pp. 49-63, 1977.

(371 B. Marcus, “Factors and extensions of full shifts,” Monatshefrefur
Math., vol. 88, pp, 239-247, 1979.

[38] R. Adler, J . Friedman, B. Kitchens, and B. Marcus, “State splitting
for variable-length graphs,” IEEE Trans. Inform. Theory, vol. IT-
32, no. 1, pp. 108-113, Jan. 1986.

[39] C. Heegard, B. Marcus, and P. Siegel, “Variable length state split-
ting with applications to average runlength constrained (ARC) codes,”
IEEE Trans. Inform. Theory, vol. 37, no. 3, pt. 11, pp. 759-777, May
1991.

[40] C. Freiman and A. Wyner, “Optimum block codes for noiseless input
restricted channels,” Inform. Contr., vol. 7, pp. 398-415, 1964.

[41] P. Siegel, “On the complexity of limiting error propagation in slid-
ing-block codes,” unpublished memorandum.

[42] R. Karabed and P. Siegel, “A 100% efficient sliding-block code for
the charge-constrained, runlength limited channel with parameters (d ,
k; c) = (1, 3 ; 3);’ presented at the IEEE Int. Symp. Inform. Theory,
Budapest, June 1991; also in IBM Res. Rep. RJ 7092, Dec. 1990.

1431 E. Berlekamp, “The technology of error-correcting codes,” Proc.
IEEE. vol. 68, no. 5, pp. 564-593, May 1980.

[44] J . Mallinson and C. Steele, “Theory of linear superposition in tape
recording,” IEEE Trans. Magnet., vol. MAG-5, pp. 886-890, Dec.
1969.

[45] K. A. Schouhamer Immink, “Coding techniques for the noisy mag-
netic recording channel,” IEEE Trans. Commun., vol. 37, pp. 413-
419, May 1989.

1461 L. Barbosa, “Minimum noise pulse slimmer,” IEEE Trans. Mag-
net., vol. MAG-17, no. 6, pp. 3340-3342, Nov. 1981.

[47] J . Ashley and P. Siegel, “A note on the Shannon capacity of run-
length-limited codes,” IEEE Trans, Inform., Theory, vol. IT-33, no.

[48] R. Adler, M. Hassner, and J. Moussouris, “Method and apparatus
for generating a noiseless sliding block code for a (I , 7) channel with
rate 2 /3 ,” U.S. Patent 4,413,251, 1982.

[49] A. Weathers and J . Wolf, “A new rate 2 / 3 sliding-block code for
the (I , 7) runlength constraint with the minimal number of encoder
states,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pt. 11, pp. 908-
913, May 1991.

[50] T. Howell, “Statistical properties of selected recording codes,” IEM
J. Res. Develop., vol. 3 3 , no. 1, pp. 60-73, Jan. 1989.

[SI] P. Funk, “Run-length-limited codes with multiple spacing,” IEEE
Trans. Magnet., vol. MAG-18, no. 2, pp. 772-775, Mar. 1982.

[52] D. Rugar, “Magnetooptic direct overwrite using a resonant bias coil,”
IEEE Trans. Magnet., vol. 24, no. 1, pp. 666-669, Jan. 1988.

[5 3] D. Rugar and P. Siegel, “Recording results and coding considera-
tions for the resonant bias coil overwrite technique,” in G. R. Knight
and C. N . Kurtz, Eds, Topical Meeting on Optical Data Storage,
Proc. SPIE, 1989, vol. 1078, pp. 265-270.

[54] T. Weigandt, “Magneto-optic recording using a (2, 18, 2) run-length-
limited code,” S.M. thesis, Mass. Inst. Technol., Cambridge, MA,
1991.

[5 5] J . Eggenberger and A. M. Patel, “Method and apparatus for imple-
menting optimum PRML codes,” U.S. Patent 4,707,681, Nov. 17,
1987.

(561 B. Marcus, A. Patel, and P. Siegel, “Method and apparatus for im-
plementing a PRML code,” U S . Patent 4,786,890, Nov. 1988.

(571 S . Williams, “Covers of non-almost-finite-type systems,” Proc.
AMS, vol. 104, pp. 245-252, 1988.

4, pp. 601-605, July 1987.

1 T m

. I

MARCUS er al.: FINITE-STATE MODULATION CODES 31

[58] R. Fischer, “Graphs and symbolic dynamics,” Colloquia Math. So-
cietatis Janos Bolyai, (Topics in Information Theory), vol. 16, pp.

[59] M. Boyle, B. Kitchens, and B. Marcus, “A note on minimal covers
for sofic systems,” Proc. Amer. Math. Soc., vol. 95, no. 3, pp. 403-
411, Nov. 1985.

[60] M. Nasu, “An invariant for bounded-to-one factor maps between
transitive sofic subshifts,” Ergod. Theory Dynam. Syst., vol. 5, pp.

New York:

New

New York: Wiley, 1975.

229-243, 1975.

89-105, 1985.
[61] F. R. Gantmacher, The Theory of Matrices, Vol. I I .

1621 E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed.

[63] I. N. Herstein, Topics in Algebra, 2nd ed.

Chelsea, 1959.

York: Springer-Verlag, 1981.

Brian H. Marcus (M’84) attended Claremont
Men’s College, Claremont, CA, received the B.A.
degree from Pomona College, Claremont, CA,
and the M.A. and Ph.D. degrees in mathematics
from the University of Califomia, Berkeley, in
1975.

From 1975 to 1983 he was Assistant Professor
and then Associate Professor of Mathematics at
the University of North Carolina, Chapel Hill.
Since 1983 he has been a Research Staff Member
at IBM Almaden Research Center, San Jose, CA.

Paul H. Siege1 (M’82-SM’90) was bom in Berke-
ley, CA, in 1953. He received the B.S. degree in
mathematics in 1975 and the Ph.D. degree in
mathematics in 1979, both from the Massachu-
setts Institute of Technology, Cambridge.

He joined the Research Staff at IBM in 1980.
He is currently manager of the Signal Processing
and Coding Project at the IBM Almaden Research
Center, San Jose,CA. His primary research inter-
est is the mathematical foundations of signal pro-
cessing and codinrr, especially as applicable to

Y _, L . _.
digital data storage channels. He holds several patents in the area of coding
and detection for digital recording systems. He has taught courses in in-
formation and coding at the University of Califomia, Santa Cruz, and at
Santa Clara University, and was a Visiting Associate Professor at the Uni-
versity of Califomia, San Diego, while at the Center for Magnetic Record-
ing Research during the 1989-1990 academic year. He was elected by Phi
Beta Kappa in 1974. He held a Chaim Weizmann Fellowship during a year
of postdoctoral study at the Courant Institute, New York University. He is
currently a member of the Board of Governors of the IEEE Information
Theory Society. He was a CO-Guest Editor of the May 1991 Special Issue
on Coding for Storage Devices of the IEEE TRANSACTIONS ON INFOR-
MATION THEORY, and was a member of the Program Committee for the
1991 Intemational Symposium on Information Theory.

Jack K. Wolf (S’54-M’60-F’73), for a photograph and biography, see this
issue, p. 4.

1 - I I -

