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Abstract—A Write Once Memory (WOM) is a storage medium
with binary memory elements, called cells, that can change from
the zero state to the one state only once. Examples of WOMs in-
clude punch cards and optical disks. WOM-codes, introduced by
Rivest and Shamir, permit the reuse of a WOM by taking into ac-
count the location of cells that have already been changed to the one
state. The objective in designing WOM-codes is to use the fewest
number of cells to store a specified number of information bits
in each of several reuses of the memory. An WOM-code
is a coding scheme for storing information bits in cells

times. At each write, the state of each cell can be changed, pro-
vided that the cell is changed from the zero state to the one state.
The rate of , defined by , indicates the total amount
of information that is possible to store in a cell in writes. Two
WOM-code constructions correcting a single cell-error were pre-
sented by Zémor and Cohen. In this paper, we present another
construction of a single-error-correcting WOM-code with a better
rate. Our construction can be adapted also for single-error-de-
tection, double-error-correction, and triple-error-correction. For
the last case, we use triple-error-correcting BCH-like codes, which
were presented by Kasami and more recently described again by
Bracken andHelleseth. Finally, we show two constructions that can
be combined for the correction of an arbitrary number of errors.

Index Terms—Almost perfect nonlinearmapping, coding theory,
error-correctingWOM-codes, flash memories, write once memory
(WOM)-codes, write-once memories.

I. INTRODUCTION

W RITEOnceMemory (WOM) codes were first presented
by Rivest and Shamir almost three decades ago [16].

The codes were designed for memories which consist of binary
memory elements that can only be changed from a zero state

Manuscript received May 06, 2011; accepted August 29, 2011. Date of pub-
lication November 18, 2011; date of current version March 13, 2012. This work
was supported in part by the University of California Lab Fees Research Pro-
gram, Award 09-LR-06-118620-SIEP, the National Science Foundation under
Grant CCF-1116739, and the Center for Magnetic Recording Research at the
University of California, San Diego. Part of the material in this paper was pre-
sented at the 2010 IEEE International Symposium on Information Theory.
E. Yaakobi is with the Department of Electrical Engineering, California

Institute of Technology, Pasadena, CA 91125 USA, and also with the Depart-
ment of Electrical and Computer Engineering and the Center for Magnetic
Recording Research, University of California, San Diego, La Jolla, CA 92093
USA (e-mail: eyaakobi@ucsd.edu).
P. H. Siegel and J. K. Wolf, deceased, are with the Department of Elec-

trical and Computer Engineering and the Center for Magnetic Recording Re-
search, University of California, San Diego, La Jolla, CA 92093 USA (e-mail:
psiegel@ucsd.edu; jwolf@ucsd.edu).
A. Vardy is with the Department of Electrical and Computer Engineering,

the Department of Computer Science and Engineering, and the Department of
Mathematics, University of California, San Diego, La Jolla, CA 92093 USA
(e-mail: avardy@ucsd.edu).
Communicated by M. Blaum, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2011.2176465

to a one state. Examples of such memories include punch cards
and optical disks. Since then, further results have appeared on
this topic, e.g., [2], [4], [5], [7], [8], [15], [18], [23], [24]. Re-
cently, such codes have been suggested for application to flash
memories [9], [11], [14].
In a flash memory, the atomic memory element is a floating

gate cell. The cell is electrically charged with electrons and can
have multiple levels corresponding to different numbers of elec-
trons in the cell [6]. Here, we are concerned with cells that
take on two levels. The cells are arranged in rectangular arrays
called blocks. Starting from an “all-zero” state, information is
recorded in the blocks on a row-by-row basis. However, in order
to rewrite a row in a previously written block, the entire block
must first be erased, returning it to the “all-zero” state [6]. This
block-erase operation introduces a significant delay and also has
a detrimental effect on the lifetime of the memory. WOM-codes
offer a way to reduce the number of such block erasures.
In the WOM model, the problem that has received the most

attention is: what is the minimum number of cells required
to store bits times? Or, alternatively: what is the maximum
number of bits that can be written times using cells? A
code that is designed for this problem is called aWOM-code .
The rate of a WOM-code with writes is the ratio of the
total number of bits written to the memory, , to the number of
cells , that is, .
The first example of a WOM-code, presented by Rivest and

Shamir, could store two bits twice using only three cells [16].
Since then, several more WOM-code constructions have been
presented, including tabular WOM-codes and “linear” WOM-
codes [16]. Wolf et al. [15] provide several extensions of the
results in [16], taking into consideration, for example, whether
or not the previous state of the memory is known to the en-
coder and/or decoder. In [2] and [7], a “coset-coding” tech-
nique based upon binary linear codes was used to construct
WOM-codes. Fiat and Shamir extended the WOM model for
multi-level cells and also studied information-theoretic limits
and code constructions for constrained sources. The capacity
region of a binary WOM was calculated by Heegard [8] and the
extension to non-binary cells with arbitrary constraints on the
cell-state transitions was calculated by Fu and Han Vinck [5].
Recently, several more WOM-codes constructions were given
in [13], [19]–[21]
Even though the problem of adapting WOM-codes to handle

memory errors was suggested in the original Rivest-Shamir
paper [16], the first construction of codes addressing this
problem wasn’t published until a few years later by Zémor [24]
and Zémor and Cohen [23]. The capacity of a noisy WOM
was studied by Heegard [8]. Recently, in [9], Jiang discussed
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the generalization of error-correcting WOM-codes for the
flash/floating codes model [10], [11], [14].
Two constructions of error-correcting WOM-codes

were given in [23]. Both constructions correct a single
cell-error during the writes. The first construction, based on a
double-error-correcting BCH code, enables one to write bits
using cells times, so its rate is roughly

. The second construction, which uses
the same number of cells, is based on a triple-error-correcting
BCH code and stores bits times. Its rate is
approximately . While there are different
ways to compare WOM-codes, we find that the appropriate
figure of merit is to compare the rates under the assumption
of a fixed number of writes. In general, the more writes the
WOM-code can support, the better the rate it can achieve.
The second construction in [23] is superior to the first one as
it achieves a better rate even though its number of writes is
smaller.
A simple scheme to construct an -error-correcting WOM-

code is based upon an existing WOM-code that stores bits
times in cells. In this scheme, each one of the cells is
replicated times so it is possible to correct any or fewer
cell-errors. If theWOM-code has rate , then the gener-
ated -error-correcting WOM-code has rate .
For example, in [7], a WOM-code which stores bits

times using cells, for is presented.
If we use this WOM-code to construct a single-error-correcting
WOM-code, then its rate, , out-
performs for large enough the rate of the two constructions in
[23].
In this paper, we present several new constructions of error-

correcting WOM-codes. In Section II, we give a precise def-
inition of the problem and the general scheme underlying our
codes. In Section III, we show our first construction of WOM-
codes that can correct a single cell-erasure. These codes can al-
ternatively detect a single cell-error. In Section IV,WOM-codes
correcting a single cell-error are presented. The last construction
is modified in Section V in order to construct double-error-cor-
recting WOM-codes. In order to correct three cell errors, in
Section VI, we find cyclic binary triple-error-correcting codes
that satisfy the following property: each of the three roots of
the code, , , , is a primitive element and every pair of
roots generates a double-error-correcting code. We show the
existence of these codes using almost perfect nonlinear (APN)
power functions [1], [12]. Finally, in Section VII, we give a
construction that uses a triple-error-correcting WOM-code to
construct WOM-codes correcting an arbitrary number of errors.
Then, another recursive construction is given which can provide
improved block-length for some rates and error-correction ca-
pabilities.

II. PRELIMINARIES

In this work, the memory elements, called cells, have two
states: zero and one. At the beginning, all the cells are in their
zero state. A programming operation changes the state of a cell
from zero to one. This operation is irreversible in the sense that

one cannot change the cell state from one to zero unless the
entire memory is first erased. The memory-state vectors are all
the binary vectors of length , . The data vectors are the
set of all binary vectors of length , . Any WOM-code
is specified by its encoding map and decoding map .

The decoding map assigns to each
memory-state vector its corresponding data vector

. The encoding map
indicates for each data vector

and previous memory-state vector , a new
memory-state vector such that , and

, for all . In case such a does not
exist, the value of the encoding map is .

Definition: An WOM-code is a coding
scheme which consists of cells and is defined by its encoding
and decoding maps, denoted by and , respectively. The
WOM-code guarantees any writes of a -bit data vector
without producing the block erasure symbol . The rate of the
WOM-code is defined as .

Remark 1: It is possible to generalize the definition ofWOM-
codes to allow an arbitrary number of bits or symbols to be
stored at each write. In this paper, we focus only on the case
where the same number of bits is written at each write. However,
we note that it is possible to change the constructions to support
the case where a different number of bits is written on each
write.
The following definitions are also used in our work.
1) An WOM-code that can correct errors is called
an e-error-correcting WOM-code.

2) An WOM-code that can detect errors is called an
e-error-detecting WOM-code.

The definition of the decoding map in the second case is ex-
tended to be , where the symbol
indicates an error detection flag.

Remark 2: If after decoding on the th write, a cell which is
in state zero is erroneous, this error can be corrected (at least
theoretically) prior to the next write by changing the state of
this cell to a one. However, if after decoding on the th write,
a cell which is in state one is erroneous, the state of this cell
cannot be changed prior to the next write. In this case, however,
it is assumed that on the th write the encoder knows that
the cell’s true state is a zero. There is no problem if the encoder
wants to write a one in this cell. However, if the encoder wants
to write a zero in this cell, then the error which was corrected
on the th write will also occur on the th write because in
this case it is not possible to physically change the cell’s state.
When we say that aWOM-code is an -error-correcting code we
mean that the code will correct or fewer errors on each write
but we realize that some of the errors which were corrected on
one write could appear on subsequent writes. This information
could be used in decoding but the decoder we consider here does
not do so. We also assume here that there are no reading errors;
that is, the correct state of a cell is always read.
In this paper, we present error-detecting and error-correcting

WOM-codes, which have the following generic structure:
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1) We assume that there exists an WOM-code
. Its cells are denoted by

and called the information cells. Note that this original
code cannot correct errors.

2) The constructed code consists of the information cells
, and additional cells, called the redundancy cells, and
denoted by . The redundancy cells en-
able the decoder to correct cell-errors. That is, we get an

WOM-code with some error correction/detec-
tion capabilities.

III. SINGLE-ERROR-DETECTING WOM-CODES

In this section, we present single-error-detecting WOM-
codes. As described in Section II, we let be an

WOM-code, and its cells, called the information
cells, are denoted by . We construct an

single-error-detecting WOM-code, denoted by
.

In this construction there are redundancy cells, denoted by
, i.e., the value of in the general struc-

ture is . The code satisfies the following property: at each
write, the parity of the redundancy cells, , and the
parity of the information cells, , are the same.

Theorem 1: If is an WOM-code, then is an
single-error-detecting WOM-code.

Proof: We prove this theorem by showing the correctness
of the encoding and decoding maps. In the encoding map ,
the new data vector is encoded in the information cells by
the encoding map . If the parity of the information cells
is changed, then one of the redundancy cells is programmed.
Since there are initially redundancy cells in state zero and each
time at most one of them is programmed, there is at least one
unprogrammed cell at each write.
In the decodingmap , at most one of the cells is in error.

If the information cell’s parity is different than the redundancy
cell’s parity, then the flag is returned to indicate a single error
detection. Otherwise, the data vector is simply decoded by the
decoding map .

This scheme can be applied to all known WOM-codes. In
particular, the next example shows how to adapt the scheme to
WOM-codes which are based on Hamming codes [2], [7].

Example 1: In [2], a construction of WOM-codes, based on
Hamming codes, is presented. For , the construction gives
a WOM-code, and for , 3 a

WOM-code. In particular, the WOM-
code, presented by Rivest and Shamir [16], is a special case
of this construction for . Later, in [7] the case
was improved and WOM-codes were
presented.
For , Zémor showed that it is possible to change the con-

struction such that, excluding the first write, the number of pro-
grammed cells at each write is even [24]. Therefore, the parity
bit changes its values at most once. Thus, one redundancy cell
is sufficient for the construction and we get a

TABLE I
A CONSTRUCTION FOR THE SINGLE-ERROR-DETECTING WOM-CODE

single-error-detecting code. In fact, a similar construction to this
code with the same parameters was presented by Zémor in [24].
For , 3, the construction is slightly modified. At each

write, the redundancy cells’ parity is the complement of the in-
formation cells’ parity. Then, at most cells are
sufficient and thus a single-error-de-
tecting code exists. Table I demonstrates the construction for the

single-error-detectingWOM-code. The bold font repre-
sents the bit in the redundancy cell. A similar table can be built
for the single-error-detecting WOM-code.

IV. SINGLE-ERROR-CORRECTING WOM-CODES

In order to construct single-error-correctingWOM-codes, we
start as in Section III with an WOM-code, .
Its information cells are and we add
redundancy cells, , that form a word in

, an single-error-detecting
WOM-code. Then, we construct an single-error-cor-
recting WOM-code, denoted by , as fol-
lows.
At each write we generate a -bit vector, called

the syndrome and denoted by . The syndrome will correspond
to the redundancy bits of a Hamming code (or a shortened Ham-
ming code) of length , and will make it possible to locate an
information cell in error.
Next, and in Sections V and VI, we provide the exact specifi-

cation of the given error-correcting WOM-codes by their en-
coding and decoding maps. These maps are described algo-
rithmically using a pseudo-code notation. In this specification
we will use the encoding and decoding maps , of the
WOM-code and the encoding and decodingmaps , of
the single-error-detecting WOM-code . We let be a primi-
tive element in the extension field .
Encoding Map : The input is the memory-state vector
and the new -bit data vector . The output is either a new

memory-state vector or the erasure symbol .

1.

2.

3.

4.

5.

6.

Note that since the encoding map can write messages
of -bits each and the encoding map can write times the



YAAKOBI et al.: MULTIPLE ERROR-CORRECTING WOM-CODES 2223

-bit syndrome , the encoding map also can
write -bits times.
Decoding Map : The input is the memory-state vector

. The output is the decoded -bit data vector .

1.

2.

3.

4.

5.

6.

7.

8.

9.

The syndrome is decoded by applying the decoding map
on the redundancy cells (line 1). The code is a single-

error-detectingWOM-code and hence by its decoding map
it is possible to determine if there is an error in one of the
redundancy cells (line 2). We distinguish between the following
two cases:
1) If one of the redundancy cells is in error, i.e., the condition
in line 2 holds, then there is no error in the information
cells and is decoded by the decoding map (line 3).

2) If there is no error in the redundancy cells, then is the
correct value of the syndrome . The received syndrome
from the received information cells is
(line 4). If (line 5), then there is no error in the
information cells and it is possible to decode the correct

value of the data vector (line 6). Otherwise, if the th
cell is in error, then . The calculation of

returns the value such that
(line 7). This identifies the erroneous cell and again we can
decode the data vector (line 8).

Thus we have proved the following theorem.

Theorem 2: If is an WOM-code, is an
single-error-detecting WOM-code, then

is an single-error-correcting WOM-code.
The next example demonstrates how to use this construction

to build specific single-error-correcting WOM-codes.

Example 2: As in Example 1, the code is chosen to be
the WOM-code for from [7].
Therefore, , and , so we can use
the single-error-detecting WOM-code from
Example 1. The resulting single-error-
correcting WOM-code has rate

which is an improvement upon the constructions in [23] and the
simple construction presented in the Introduction.

V. DOUBLE-ERROR-CORRECTING WOM-CODES

The double-error-correcting WOM-codes construction is
very similar to the single-error-correcting case in Section IV,
where the same WOM-codes , are used. There are

redundancy cells, partitioned into two -cell groups,
and . The

redundancy groups and store -bit syndrome
vectors and , respectively. The two syndromes correspond
to the two roots , of a double-error-correcting BCH code,
denoted by - , where is a primitive element in the
field . In this construction,
is assumed to be an odd integer. The code is denoted by

.
Encoding Map : The input is the memory-state vector

and the new -bit data vector . The output is either
a new memory-state vector or the erasure symbol .

1.

2.

3.

4.

5.

6.

For the decoding map , we use the single-error-cor-
recting WOM-code decoding map , which receives as
its input information cells and redundancy cells. Note
that while the code uses a fixed primitive element

, it is possible to use any other primitive
element in the field . We slightly modify
the input arguments of the decoding map such that the
primitive element is its first parameter. The modified decoding
map is denoted by . We use the decoding map
of the double-error-correcting BCH code. Its input is the

syndrome bits; its output is the error vector.
Decoding map : The input is the memory-state vector

. The output is the decoded -bit data vector .

1.

2.

3.

4.

5.

6.

7.

8.

9. -

10.

11.
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The two syndromes , are decoded using the redundancy
cells and the decoding map (line 1). If (line 2) then
there is at least one error in the redundancy cells of group ,
and at most one error in the information cells and the second
redundancy group . Therefore, it possible to decode the data
vector by applying the decoding map to the cells in
and while taking to be the primitive element (line 3). Note
that since is an odd integer, is also a primitive
element in . Similarly, if (line 4), then
we decode by applying the decoding map to the cells
and , while is the primitive element (line 5).
If according to the decoding map , no error is decoded

in both the redundancy cell groups, then either there is no error
in all the redundancy cells or there are exactly two errors in one
of the two redundancy cell groups. First, the syndromes ,
from the received information cells are calculated (line 6).
Then, we consider the following two cases:
1) If or (line 7), then necessarily there is no
error in the information cells and the -bit data vector is
calculated and returned (line 8). (This is true since if there
is at least one error in the information cells then there is no
error in the redundancy cells and neither of these equalities
holds, which is a contradiction.)

2) If and (line 9) then at least one error
occurred in the information cells and no errors in the
redundancy cells. The error vector is found by applying the
decoding algorithm of the two-error-correcting BCH code,

- , to and (line 9). Then, we know
the correct value of the information cells and it is again
possible to successfully decode the data vector (line 10).

We summarize this construction in the following theorem.

Theorem 3: If is an WOM-code, is an
single-error-detecting WOM-code, and

is an odd integer, then is an
double-error-correcting WOM-code.
The construction does not work if is an even

integer since is no longer a primitive element in the field
, and thus the decoding map in line 3 cannot

succeed. Clearly, it is possible to modify it by working over
the field and storing syndromes of

bits. However, we can also modify the construc-
tion to handle this case, without changing the field size, by
adding more cells, as we now describe.
Assume that is an even integer. The required

modifications to the encoding and decoding maps of the pre-
vious construction are as follows:
1) Instead of using the WOM-code , an
single-error-detecting WOM-code is used and we denote
it by . The additional redundancy cells are
denoted by .

2) Instead of using the root we use the root .
3) The syndromes and are calculated according to the
new roots applied to the information cells and their parity
value, which is stored in the new redundancy cells .

The input and output to the encoding map are changed ac-
cordingly where the memory-state vector is . In the
first and second lines, we use the encoding map instead of
on the cells . The syndrome values in line 3 and the

returned new memory-state vector in line 6 are also changed
accordingly.

1.

2.

3.

6.

The decoding algorithm is also very similar. Since we use the
root and also the value of the new redundancy cells, lines
3 and 6 are changed as follows. Note that is also a primitive
element and therefore the decoding map in line 3 succeeds.

3.

6.

If the decoder reaches line 9, then there is at least one error in
the information cells and redundancy cells . The main
difference in the decoding is that at this line we need to know if
there are one or two cells in error among the information cells
and redundancy cells . If there is a single error, that is, the

parity of the information cells and the parity of the additional
redundancy cells are not the same (line 9), then we can decode
the data vector using the decoding map with the root
since there is at most one error in the information cells and no
error in the redundancy cells (line 10). Otherwise, there are
exactly two errors in the information cells and redundancy
cells. The values of and which are calculated in line 11 are
of the form

for some , , , and

Therefore, the values of and , i.e., the error vector, can be
found by applying the decoding procedure - to and

(line 12). Next, the data vector can be success-
fully decoded (line 13). Note that the error vector in line 12 con-
sists of bits while for the decoding map in line 13 we need
only its first bits.

9.

10.

11.

12. -

13.

14.
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To conclude, we state the following theorem.

Theorem 4: Let be an WOM-code and be an
single-error-detectingWOM-code. Suppose

is an even integer. Then there exists an
double-error-correcting WOM-code.

VI. TRIPLE-ERROR CORRECTING WOM-CODES

From the previous sections we might think that a general
scheme to construct an -error correctingWOM-code is to com-
bine an existing WOM-code and a cyclic -error-correcting
code, where the latter code is defined by roots .
However, not every -error-correcting code would work in this
scheme. For example, in the double-error-correcting construc-
tion in Section V, the BCH code with roots and cannot
work if is an even integer. This results from
the fact that is not a primitive element and hence the code
generated only by is not a single-error-correcting code. For
arbitrary , if the cyclic -error-correcting code is defined by
roots, then a necessary but not sufficient condition for this

scheme to work is that every subset of roots generates
a cyclic -error-correcting code. We state this property in the
following definition.

Definition: Let be an integer and be different
elements in the field . Let the code
be a cyclic error-correcting code of length with
roots . The code is called a strong
e-error-correcting code if for every and every set
of distinct elements , the code

is a -error-correcting code.
We note that finding strong -error-correcting codes is a fas-

cinating problem by itself but is beyond the scope of this paper.
Next, we show how to choose the roots , , such that

is a strong triple-error-correcting code. For the
following discussion, is assumed to be a primitive element in

. The following result was proved by Kasami in [12].

Theorem 5: [12]. Let be an odd integer and
. Then, is a cyclic triple-error-correcting
code.
In [1], the authors show an alternative proof to the last the-

orem and state the following lemma.

Lemma 6: Let be an integer and . Then,
is a cyclic double-error-correcting code.

These two results imply the following lemma.

Lemma 7: Let be an integer such that , and
let . Then, the following properties hold.
1) The codes , , are cyclic single-
error-correcting codes.

2) The codes , are cyclic double-
error-correcting codes.

3) The code is a cyclic triple-error-cor-
recting code.
Proof:

1) Since , we know that is a divisor of
. Since , we con-

clude that . Therefore is a

primitive element in and the code is a
cyclic single-error-correcting code. Since ,
it follows also that , and therefore
the code is a cyclic single-error-correcting code
as well.

2) Since , the condition of Lemma 6 holds and
the code is a double-error-correcting code.
Similarly, since and , it fol-
lows that , and again by Lemma 6, the code

is a double-error-correcting code.
3) Since , is necessarily an odd integer and
since the conditions of Theorem 5 hold.
Therefore, the code is a triple-error-
correcting code.

We note that at this point the code is
“almost” a strong triple-error-correcting code. All that remains
to be shown is that the code is a double-error-
correcting code. Before doing so, we state the definition of an
almost perfect nonlinear mapping.

Definition: A mapping is called an
almost perfect nonlinear (APN) mapping if each equation

for , and has at most two solutions in
. If is an APN mapping and is of the form

then is called an almost perfect nonlinear power mapping.
The next lemma was proved in [12].

Lemma 8: If is an odd integer, , and
then the mapping over

is an APN mapping.
The proof of the next lemma follows an outline similar to that

of the proof of Theorem 1 in [1].

Lemma 9: If , are integers, and ,
then is a double-error-correcting code.

Proof: Note first that is a primitive element in
since . Also,

and is an odd integer, so, according to Lemma 8,
is an APN power mapping, where . We
denote , and hence need to prove that is a
double-error-correcting code.
Assume to the contrary that the code is not a double-error-cor-

recting code. Clearly, there are no codewords of weight one or
two and hence there exists a codeword of weight three or four.
Assume there exists a codeword of weight four. Then, there
exist four integers such
that

The last two equations can be written as follows:
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for some , , and . Hence, the equation

has four different solutions: , , , . This is a contra-
diction since is an APN mapping. The case of a codeword of
weight three is handled similarly.

From Lemma 7 and Lemma 9 we conclude the following
theorem.

Theorem 10: If , are integers, , and
, then is a strong triple-error-cor-

recting code.
We are now ready to show the triple-error-correcting WOM-

code construction. Again, we use the WOM-codes , , and
assume that and is a primitive
element in . The strong triple-error-correcting
code is denoted by . Its roots are

, , , where . There
are redundancy cells, divided into four groups:
1) The first cells are used with the
information cells to construct an single-error-
detecting WOM-code .

2) The other three groups ,
, and contain

cells each. The th group, , 2, 3, stores the
-bit syndrome which corresponds to the

root .
To conclude, we describe an triple-error-

correcting WOM-code, .
Encoding Map : The input is the memory-state vector

and the new -bit data vector . The output is
either a new memory-state vector or the era-
sure symbol .

1.

2.

3.

4.

5.

6.

The new -bit data vector is encoded in the information
cells and the first group of the redundancy cells using the
encoding map (line 1). If this writing does not succeed the
symbol is returned (line 2). Otherwise, the three syndromes
, , are calculated from the information cells (line 3) and

are encoded in the last three groups of redundancy cells (line 4)
while checking their writing success (line 5). If the last three
writing operations succeed, the encoding map returns the new
memory-state vector (line 6).

In the decoding map, , we use the decoding map of the
double-error-correctingWOM-code . Note that in the de-
coding map , instead of using a double-error-correcting
BCH code, we can use any other cyclic double-error-correcting
code which is given by its two roots. Line 9 in the decoding
map is modified by substituting the decoding map of
the new cyclic double-error-correcting code. The input to the
modified decoding map is the two roots of the cyclic
double-error-correcting code, the information cells, and the
redundancy cells corresponding to the two syndromes of the

two roots.
Decoding Map : The input is the memory-state vector

. The output is the decoded data vector .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

First, the three syndromes from the last three redundancy cell
groups are decoded (line 1). If the decoded syndrome is the
error flag (line 2), then there is at least one error in the group
. In the information cells and redundancy cells , there

are at most two errors. Therefore, we decode by applying the
decoding map to and , with the roots , (line
3). The same procedure is applied if or is the error flag
(lines 4–7). Here, we use the property of that every two
out of its three roots generate a cyclic double-error-correcting
code.
After line 7, none of the syndromes , , is the error flag
. Therefore, if there are errors in these redundancy cells then
the number of errors in each of the three redundancy cell groups
is even and since there are at most three errors, at most one group
has exactly two errors. The received syndromes from
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the received cells and the differences , , are calculated
(lines 8 and 9). If the condition in line 10 holds, then the cells
and have zero or two errors. In both cases, the cells , ,
have at most two errors so it is possible to decode (line 11).
We are left with the case where the parities of the cells and
are not the same. That is, these cells have either one or three

errors. We address this case in the next lemma.

Lemma 11: The condition in line 12 holds if and only if there
is at most a single error in the information cells .

Proof: If there is at most a single error in the information
cells then at most one of the redundancy cell groups , ,
has two errors; that is, at least two of these groups do not have
errors. If there is no error in the first and second groups and
the th information cell is in error, then and

. Therefore, . This condition
clearly holds also if there are no errors in the information cells .
Similarly, if there is no error in and then , and
if there is no error in and then . Therefore,
if there is at most a single error in the information cells then
the condition in line 12 holds.
Now assume that there is more than one error in the infor-

mation cells . That is, the information cells have two or three
errors and in this case, there is no error in the redundancy cells
, , . Assume that the information cells have three errors

in locations , , . Then

for some . In this case, .
Otherwise, we get

and has a codeword of weight at most four, which
is a contradiction. Similarly, and
. The case of two errors in the information cells is handled

similarly. Hence, the condition in line 12 does not hold.

According to Lemma 11, if the condition in line 12 holds,
then there is at most a single error in the information cells .
At most one of the redundancy cell groups , , has errors.
Therefore, at least two out of the three decoding maps in line
13 succeed, and the function , which outputs the majority
of the three decoded values, returns the correct value of . In
line 14, there are at most three errors in the information cells
and no errors in the redundancy cell groups , , , so it is
possible to find the error vector (line 14) and decode (line 15).
We conclude with the following theorem.
Theorem 12: If is an WOM-code, is an

single-error-detecting WOM-code, and
, then is an

triple-error-correcting WOM-code.

VII. MULTIPLE ERROR-CORRECTING WOM-CODES

In this section, we study how to correct an arbitrary number
of errors with a WOM-code. As described in the Introduction, a
simple scheme to construct an -error-correcting WOM-code is
done by using an existing WOM-code and replicating each one
of its cells times. A first improvement upon this scheme
can be achieved by replicating each cell only times. Then,
instead of using a regular WOM-code, a single-error-detecting
WOM-code is applied. In the decoding procedure, the value of
each cell is the majority value among its replicas that are not
detected to be in error. In the rest of the section we will show
how to use similar ideas in order to construct betterWOM-codes
that correct any specified number of errors.
Let us first show another property of the triple-error-cor-

recting WOM-code studied in Section VI.

Lemma 13: Let be an triple-error-cor-
recting WOM-code constructed in Theorem 12. Then the code

can correct four erasures.
Proof: Assume first that there are no erasures in the redun-

dancy cell groups , , and , so we know the correct values
of the syndromes , , and . Assume also that there are at
most four erasures in the information cells . Since the code

corrects three errors, its minimum distance is at least
seven and hence it can correct up to six erasures and, a fortiori,
four erasures.
If each redundancy cell group , , has at most one error,

then it is still possible to successfully decode the three syn-
dromes since each syndrome is stored using a single-error-de-
tecting WOM-code, and we can then decode the erased infor-
mation cells as in the first case.
If one of the three redundancy groups has at least two era-

sures, then the information cells and two other redundancy
groups contain at most two erasures. Therefore, it is again pos-
sible to successfully decode the erasure values.

The next theorem confirms the validity of the first construc-
tion for an -error-correcting WOM-code.

Theorem 14: Let be an triple-error-correcting
WOM-code. Then there exists an -error-cor-
recting WOM-code.

Proof: Let us denote the cells of the WOM-code by
. The constructed -error-correcting WOM-code

is denoted by and its cells are denoted by
. We use two

transformations in the validation of the construction. The first
transformation

transforms a memory-state vector of cells

into a memory-state vector of cells
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by taking the majority of every group of cells. That is, for
all

If the number of ones and number of zeros are equal, then ,
the erasure symbol. The second transformation

transforms a memory-state vector of cells

to a memory-state vector of cells

such that for all and

That is, every cell is replicated times.
In the encoding map , the new vector data and

memory-state vector of cells are received. Then, the
new memory-state vector is updated according to

First, a memory-state vector of cells is generated by the trans-
formation on the memory-state vector of the cells, .
Then, the encoding map is invoked on the memory-state
vector and data vector . Finally, the new memory-state
vector of cells is transformed back to cells to generate
the new memory-state vector.
In the decoding map , the memory-state vector of

cells is the input and is decoded according to

As in the encoding map, first a memory-state vector of cells
is generated from the memory-state vector of cells and
is the input to the decoding map of the WOM-code . The
output data vector from is the output data vector of the
decoding map.
If there are at most errors in then in the memory-state

vector there are at most three errors and erasures or exactly
four erasures. Since is a triple-error-correcting WOM-
code it can correct three errors and erasures and according to
Lemma 13 it can correct four erasures as well.

The next example demonstrates how to use the previous con-
struction in order to construct a four-error-correcting WOM-
code.

Example 3: Let us illustrate how to construct a two-write
four-error-correcting WOM-code. We start with the
WOM-code by Rivest and Shamir [16]. Repeating this
WOM-code ten times gives us a WOM-code. In order
to apply Theorem 12, we use a single-error-detecting
WOM-code obtained by repeating the WOM-code
twice, appending two cells to store a single bit twice, and then

appending two more cells for the error-detection. Thus, we get a
triple-error-correcting WOM-code. Then, according

to Theorem 14 there exists a four-error-correcting
WOM-code. In order to use the simple construction we intro-
duced at the beginning of this section, one needs to replicate
five times a single-error-detecting WOM-code of the
WOM-code. Thus the number of cells is at least .
Roth [17] suggested another, recursive construction of mul-

tiple-error-correcting WOM-codes, based upon the following
approach. Assume that is an WOM-code, and as-
sume that there exists a linear -error-correcting code of length
and redundancy . Then, a syndrome of bits is recur-

sively stored using another -error-correcting WOM-code. This
process can be recursively repeated multiple times until we use
an -error-correcting WOM-code which can be constructed ac-
cording to Theorem 14. We validate the recursive step of this
construction in the next theorem and then show an example of
how to use the construction.

Theorem 15: Let be an WOM-code, be a linear
-error-correcting-code of length and redundancy , and
be an -error-correcting WOM-code. Then there exists
an -error-correcting WOM-code.

Proof: The -error-correcting WOM-code we construct
has cells which are partitioned into two groups. The
first group has cells and is denoted by .
The second group consists of cells and is denoted by

.
In the encoding map the memory-state vector of cells,
and new data vector are received. The output is a new

memory-state vector . The data vector is stored in the
first cells using the encoding map of the WOM-code

Let be the parity check matrix of the linear -error-correcting
code . In the next step a syndrome of bits is calculated
using the new value of the bits

Then, the syndrome is stored in the cells using the encoding
map of the WOM-code

In the decoding map, the memory-state vector is the
input and the output is the data vector of bits.We assume that

, defined above, is the stored memory-state vector and
. First, the syndrome of bits is decoded by applying

the decoding map of the -error-correcting WOM-code

The success of this decoding map is guaranteed since there are
at most errors in and theWOM-code can correct errors,
that is, . Another syndrome is calculated from the cells
and the parity check matrix
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Let be the error-vector in the first group of the memory-state
vector whose weight is at most , i.e., . Then

Therefore, the syndrome that corresponds to the error vector
is and it is possible to find it by applying the decoding map
of the code to

Finally, the data vector is decoded by applying the decoding
map of the WOM-code to the memory-state vector

A necessary condition to efficiently apply this scheme recur-
sively is that , the number of redundancy bits of the -error-cor-
recting code, not be greater than the number of information bits
. Otherwise, the number of cells in the next step of the recur-
sion would be greater than the total number of cells . The code
constructed in Example 3 cannot be used for just this reason.
If we start with the WOM-code for

, , and then use a four-error-correcting-
code, the number of redundancy bits is roughly and so the
number of information bits for the next WOM-code in the re-
cursion is greater than the number of the information bits that
theWOM-code needs to store. The next example shows another
case where this scheme can outperform the construction in The-
orem 14.

Example 4: In this example, we start with the
WOM-code constructed by Cohen et al. [2]. In order to use this
WOM-code in a larger block of cells, one can simply repeat
the WOM-code in successive groups of 23 cells. For example,
repeating the code 89 times provides us with a
WOM-code. In order to construct a four-error-correcting
WOM-code according to the construction in Theorem 14, it is
necessary to first build a triple-error-correcting WOM-code.
In this case , , and we will
construct a single-error-detecting WOM-code that stores 11
bits three times. This can be done according to Section III
and the WOM-code, so we receive a
single-error-detecting WOM-code. The condition of Theorem
12 holds, i.e., , and thus we can construct
a triple-error-correcting
WOM-code. Finally, by applying Theorem 14, we can construct
a four-error-correcting WOM-code.
Next, we construct the code according to Theorem 15. Again,

let us start with the WOM-code and use a four-
error-correcting code of length 2047. Specifically, we use a four-
error-correcting BCH code of redundancy bits, so we
need to store 44 bits three times while correcting four errors. In
order to apply Theorem 14, we need to first construct a triple-
error-correcting WOM-code which stores 44 bits three times.
Note that now and , so a single-error-
detecting code that stores seven bits three times is required.

Cohen et al. [2] also constructed a WOM-code and,
therefore, there exists a WOM-code. By simply adding
three more cells to store one more bit three times we construct a

WOM-code. The latter WOM-code provides us with a
single-error-detecting WOM-code. Since

, Theorem 12 again applies, and we can construct a
triple-error-correcting WOM-code.

Next, by applying Theorem 14, we can construct a
four-error-correcting WOM-code. Finally, we get a

four-error-correcting WOM-code,
thereby improving upon the first construction.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we constructed error-correcting WOM-codes.
All the proposed constructions had the same structure in the
sense that we started with an existing WOM-code and
then added more redundancy cells that enabled the WOM-code
to detect or correct errors. We started with a construction of
a single-error-detecting WOM-code. Then, we showed how to
use this construction along with Hamming codes in order to
construct single-error-correcting WOM-codes. Building upon
this, we constructed double-error-correcting WOM-codes when

is an odd integer and when is an even
integer.
We proceeded to construct triple-error-correcting WOM-

codes. Here, we introduced the notion of strong cyclic error-cor-
recting codes, for which the roots of the generator polynomial
have the property that any subset of distinct roots generate
a -error-correcting code. We showed how to find strong
triple-error correcting codes and used them in the construction
of triple-error-correcting WOM-codes. The triple-error-cor-
recting WOM-codes were used in one construction, which then
formed the basis of a recursive construction that sometimes
yields better multiple-error-correcting WOM-codes.
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