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Abstract

The capacity region of wavelength division multiplexing in nonlinear fiber optic chan-
nels with coherent communication is studied. We show that by optimally using the in-
formation from all the channels at the receiver, the loss in the capacity due to the mixing
of channels is negligible in the weakly nonlinear regime. On the other hand, with single-
channel detection, capacity saturates as the total interference power becomes comparable
to the noise power. Similar results hold for the case of channels with memory. The trans-
mitter can achieve the capacity without knowing the nonlinearity parameters. Some insight
is provided on the structure of optimal/suboptimal receivers.

1 Introduction

In order to achieve higher data rates in long haul optical fiber systems, higher signal to noise
ratios are required at the receiver. However, as the signal intensity increases, the nonlinearities
in fiber affect the signal propagation. In a wavelength division multiplexing (WDM) system,
these nonlinear effects cause the signal traveling in each frequency band to modulate the signals
at all frequencies.

It appears that the first published effort to characterize the effect of nonlinearities on the
throughput of wavelength division multiplexing (WDM) systems was the paper by Mitra and
Stark [1], in which they modeled the nonlinear crosstalk as noise. They predicted that since
the interference power grows faster than the signal power, the capacity will saturate when
interference dominates. Ho and Kahn made a further step in [2] and used the fact that in certain
regions of operation, the dominant crosstalk terms only depend on signal intensities. Therefore,
by using phase modulation at the transmitters, crosstalk becomes predictable. However, this
restriction on the modulation format reduces the capacity significantly. Xu and Brandt-Pearce
in [3] showed that by using a multiuser detector (MUD) to simultaneously detect the symbols
transmitted through all the sub-channels, the bit error probability for the practical, but restricted
case of on-off keying (OOK) can be significantly improved.

In this paper, we investigate the capacity of the nonlinear fiber optic channel with WDM
from a multiuser point of view. To model the channel, the Volterra series expansion of the
input/output relation derived in [4] is used. We define the weakly nonlinear regime as the region
where only the first nonlinear term in the Volterra series is significant, and the higher order
terms can be neglected. With this approximation, the change in the capacity region due to the
nonlinearity is shown to be negligible if optimal MUD is used at the receiver. However, if the
receiver only uses the output from one sub-channel, the capacity experiences a large reduction



from the linear case even in the weakly nonlinear regime, as indicated by earlier results. If fiber
dispersion is strong, the combination of the relative “walk-off” of the different carriers with
the nonlinear mixing causes the channel to have memory, which cannot be compensated for
passively. We show that even with this memory, the capacity region with the optimal receiver
is close to the linear case.

The rest of the paper is organized as follows. Section II defines channel model. In Section
III, we derive the capacity region with the optimal detector, for both the weak and strong
dispersion regimes. In Section IV, this capacity is compared to the capacity of the channel with
conventional single-channel detection. Section V concludes the paper.

2 Channel Model

For a single-mode optical fiber with chromatic dispersion and Kerr nonlinearity, the slowly
varying complex envelope or low-pass equivalent of the optical field,A(t, z), at timet and
distancez from the transmitter is described by the nonlinear Schrödinger equation [5]
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whereτ = t − β1z is the time in the reference frame of the moving pulse. In this equation,
α is the fiber loss factor,γ is the nonlinearity coefficient, andβ1 andβ2 are respectively the
linear and quadratic dispersion coefficients. Strong linear dispersion can result in a relative
“walk-off” between the signals traveling on different carriers, because of the difference in their
group velocities.

To obtain an analytical input-output relation for the channel, Volterra series is applied
to derive a series expansion for the low-pass equivalent field in the frequency domain [4].
The Volterra series solution for the Fourier transform of the output low-pass equivalent field,
A (ω, z), in terms of the input low-pass equivalent field,A0(ω), up to the third order term can
be written as [4]

A(ω, z) =H1(ω, z)A0(ω)

+

∫∫
H3(ω1, ω2, ω − ω1 + ω2, z)A0(ω1)A

∗
0(ω2)A0(ω − ω1 + ω2)dω1dω2. (2)

In the absence of nonlinearity, the signal experiences attenuation from absorption and scatter-
ing, as well as dispersion. Linear dispersion results in a relative walk-off between different
carriers, and quadratic dispersion produces phase and amplitude distortion. At the receiver,
these effects can be compensated for by using an optical amplifier for the attenuation and a
dispersion compensating fiber (DCF) or an electronic equalizer for the dispersion. However,
in the presence of both dispersion and nonlinearity, the DCF cannot compensate for their joint
effect. The amplification introduces spontaneous emission noise that is well approximated for
large amplifier gains as a signal-independent additive white Gaussian noise (AWGN) in the
optical domain.

By examining the expression for the cubic and fifth order terms of the Volterra series in [4],
we observe that the ratios of the magnitudes of these terms are, respectively, orderO(δ) and
orderO (δ2), whereδ , γ|A|2

α
. Here,δ is a small and dimensionless number and is a measure of

the total phase shift in the signal due to the nonlinearity. In this paper, we confine our analysis
to the regionδ ¿ 1, and neglect all terms smaller that or comparable toδ2 in magnitude,
leaving only the linear and cubic terms listed in (2).



We consider a WDM system withK users transmitting in different wavelength-channels
with identical signal spectra. The receiver has access to the fiber output at all frequency
bands, hence the channel can be modeled as multiple-access. We futher assume that frame-
synchronism and symbol-synchronism among the users is achieved at the receiver, since the
walk-off effect of linear dispersion can be compensated for. However, as a result of this walk-
off along the fiber and the instantaneous nature of the nonlinearity, each symbol will be mod-
ulated not only by the other symbols transmitted during the same symbol period, but also by
the previous and past symbols of other channels, which cannot be compensated for by a linear
equalizer. Consequently, the nonlinear optical fiber has a memory that increases in length with
dispersion. We will first study the weakly dispersive fiber, where the channel is memoryless,
and later in Section III-C we will generalize the results to a channel with memory.

The frequency domain input to the fiber during thenth symbol period can be written as

An(ω) =
K∑

k=1

gkuk(n)V (ω − k∆ω), (3)

whereuk(n), n = 1, · · · , N is the channel-coded symbol sequence of thekth user, withN
being the block length,gk is a complex constant for normalizing the input power and phase bias
of thekth transmitter, andV (ω) is the Fourier transform of the band-limited pulse shape,v(t),
normalized to have a unit total energy. To simplify the equations, we definexk(n) = gkuk(n)
as the equivalent discrete-time channel inputs. The coded symbols satisfy a statistical and
temporal average power constraint,

1

N

N∑
n=1

E
[|uk(n)|2] ≤ 1. (4)

Hence,|gk|2 is the maximum allowed energy per symbol duration transmitted by thekth user.
For brevity, we drop the indexn in the analysis of the memoryless case.

To derive a discrete-time equivalent model for the channel, the received signal should be
projected over a set of basis functions spanning the space of all possible received signals. In the
absence of nonlinearity, it is optimal to choose the responses of the channel to the waveforms
transmitted by theK users as the basis functions, i.e. to use a matched filter for each user
followed by a sampler. Interestingly, this structure remains optimal in the weakly nonlinear
regime (Fig. 1). This can be proved by finding a set of basis functions to span the remainder
of the space not covered by the matched filters, and then showing that, given the outputs of the
matched filters, the extra information contained in the other outputs isO(δ2).

Assume that the linear dispersion is weak, so that the channel is memoryless. In this case,
using (2) and (3) the complex output of theith branch tuned to theith user’s signal can be
written as

yi = xi +
K∑

k=1

K∑

l=1

K∑
m=1

ξ
(i)
k,l,mxkx

∗
l xm + ni, (5)

where{ni} are the additive noise terms modeled as i.i.d. circularly symmetric complex Gaus-
sian random variables with varianceσ2 in both the real and imaginary dimensions. The
crosstalk coefficientsξ(i)

k,l,m are proportional toγ
α
, and can be calculated from (2) and (3). Since

the frequency bands are non-overlapping,ξ
(i)
k,l,m is only nonzero whenk − l + m = i.

The effects that give rise to the interference terms in (5) are often classified into three
categories. Ifk = l = m = i, then the corresponding term is caused by self-phase modulation



Figure 1: Equivalent Receiver Structure

(SPM). Cross-phase modulation (XPM) produces the terms for whichk = l andm = i, ork =
i andl = m, and the rest of the terms are four-wave mixing (FWM) terms. Of these classes,
FWM is suppressed in a strongly dispersive fiber, since the signals at different frequencies
travel at different group velocities and hence walk-off too rapidly to interact. Therefore, in a
strongly dispersive fiber, FWM is much smaller than XPM, and it can be neglected.

Now we can rewrite (5) as
yi = xi + κi + ϕi + ni, (6)

whereϕi contains the FWM terms andκi contains the SPM and XPM terms. To the first order
of approximation,κi can be written as

κi = xi

K∑

k=1

jρ
(i)
k |xk|2 (7)

whereρ
(i)
k is a real constant. This means that the effect of SPM and XPM on the signal magni-

tude is negligible, and they act as phase distortion.
Throughout the paper, we assume that channel parameters, i.e. all the gains and crosstalk

coefficients, are known at both the transmitter and the receiver.

3 Capacity Region

In this section, we first study the capacity region of the memoryless system described by (5)
up to the first order of approximation, i.e. by neglecting all terms of orderO(δ2). This result
will be generalized for the channel with memory at the end of the section. Due to the space
limitation, some of the proofs and details of the derivations are omitted, and the reader is
referred to [6] for more details.

We group the inputs and outputs of the channel into two real vectorsX =
[
xT

1 · · · xT
K

]T

andY =
[
yT

1
· · · yT

K

]T

of size2K × 1, wherexk = [xR
k xI

k]
T andy

k
= [yR

k yI
k]

T are vector



representations of complex samples,xk andyk, with superscriptsR andI denoting the real and
imaginary parts, respectively. Now, we can rewrite (5) in a vector form,

Y = X + Θ + Z, (8)

whereΘ andZ contain the crosstalk and noise terms, respectively. The following proposition
gives the capacity region of the channel when each userk transmits with an average energy per
symbol duration upper-bounded byPk, i.e. |gk|2 = Pk.

Proposition 1. To the first order of approximation of the nonlinearity, the capacity region of
the memoryless coherent WDM channel described by (5) is

{
(R1, · · · , RK) : ∀k 0 ≤ Rk ≤ log

(
1 + Pk/2σ

2
)}

. (9)

Note that (9) is the same as the capacity region of the linear channel. In other words, to the
first order of approximation, nonlinearity does not affect the channel capacity.

Proof. We will first prove that (9) is an outer bound on the capacity region, and then show its
achievability.

3.1 Outer Bound on the Capacity Region

Since the gains{gi} are known at both the transmitters and the receivers, the{xi} are sufficient
statistics for the coded symbols,{ui}. Now, from the capacity region of the multiple-access
channel [7, pp. 389-390], we have

∀S ⊂ {1, · · · , K} : 0 ≤
∑
i∈S

Ri ≤ I(XS; Y |XS′), (10)

whereS ′ is the complement ofS with respect to the reference set{1, · · · , K}, andXA for
any setA is a sub-vector ofX obtained by keeping only the elements corresponding to users
whose indices belong toA. For the right-hand side of (10), using the chain rule for mutual
information, we can write

I(XS; Y |XS′) = I(XS; YS|XS′) + I(XS; YS′|XS′ , YS). (11)

This is the total amount of information that can be transferred if only the users inS are com-
municating through the channel. It can be shown that the second term isO(δ2), and therefore
can be neglected.

By expanding the first term on the right hand side of (11) we obtain

I(XS; YS|XS′) = h(YS|XS′)− h(YS|X). (12)

Since the interference terms are deterministic functions of{xi}, the second term reduces to

h(ZS) = |S| log
(
2πeσ2

)
, (13)

where we have used the fact that the noise terms are i.i.d. Gaussian random variables. This
expression is independent of the distribution of{xi}, hence for maximizing the mutual infor-
mation it suffices to maximize the first term in (12) with respect to the probability distribution
of X. This term satisfies

h(YS|XS′) ≤
∑
i∈S

h(yi|XS′), (14)



with equality if{yi} are independent. Furthermore, for eachi ∈ S we have [7, p. 234]

h(yi|XS′) = Eχ [h(yi|XS′ = χ)]

≤Eχ

[
1

2
log

(
(2πe)2 · det

(
cov

[
y

i
|XS′ = χ

]))]
, (15)

with equality ify
i
is a Gaussian2-vector givenXS′.

To simplify the expressions, we introduce the notations

pR
i := E[(xR

i )2], vR
i :=

(
var[xR

i ]
) 1

2 , µR
i := E[xR

i ]/vR
i , (16)

respectively for the power, standard deviation, and normalized mean ofxR
i , and similarlypI

i ,
vI

i , andµI
i for xI

i . Also we define

qi := cov[xR
i , xI

i ]/v
R
i vI

i , (17)

to denote the correlation coefficient ofxR
i andxI

i . By some algebra, the determinant in (15)
can be expanded as

det
(

cov
[
y

i
|XS′ = χ

])
=

(
pR

i + σ2 − ci

)(
pI

i + σ2 + ci

)−[
q2
i (v

R
i )2(vI

i )
2 + qiO(P 2δ)

]

− [
(µR

i )2(vR
i )2pI

i + µR
i O(P 2δ)

]−[
(µI

i )
2(vI

i )
2pR

i + µI
i O(P 2δ)

]
, (18)

where
ci , E

[
xR

i xI
i ρ

(i)
i |xi|2

]
, (19)

andρ
(i)
i , as used in (7), is the SPM coefficient for theith channel. Using the AM-GM inequality

and the power constraint,Pi, for the first term we have

(
pR

i + σ2 − ci

) (
pI

i + σ2 + ci

)≤
[(

pR
i + σ2 − ci

)
+

(
pI

i + σ2 + ci

)

2

]2

≤ (
Pi/2 + σ2

)2
, (20)

with equality if pR
i = pI

i = Pi/2 andci = 0. Furthermore, all the three bracketed expressions
on the right-hand side of (18) have the form

az2 + O(aδ)z, a > 0, (21)

wherez respectively denotesqi, µR
i , andµI

i in these expressions. Expression (21) is positive
for |z| À δ, and equals zero for|z| = 0. Also, for |z| = O(δ), (21) becomesO(aδ2), or
equivalently,O(P 2δ2), which is negligible compared to the largest term in (18), which ispR

i pI
i .

Hence, to the first order of approximation, all the three bracketed expressions in (18) are lower-
bounded by zero. This observation along with (20) yields

det
(

cov
[
y

i
|XS′ = χ

])
≤ (

Pi/2 + σ2
)2

. (22)

This result can be combined with (10)-(15) to conclude that

0 ≤
∑
i∈S

Ri ≤
∑
i∈S

log
(
1 + σ−2Pi/2

) ∀S ⊂ {1, · · · , K}, (23)

which can be rewritten in the form of (9), as an outer bound on the capacity region.



3.2 Achievability of the Bound

A direct approach to prove the achievability would be to show that with a certain selection
of probability densities for the source symbols,ui, inequalities (14), (15), and (22) become
equalities. Equality can be achieved in (22) by selecting{ui} to be i.i.d. circularly-symmetric
complex Gaussian random variables with variance1/2 per complex dimension. Moreover,
in the absence of FWM, this distribution makes the set{yi} independent and Gaussian; thus
equality can be achieved in (14) and (15), as well. This results from the fact that each trans-
mitted symbol has a uniformly distributed phase, hence it remains uniform and independent
of other signals even with a phase distortion added by XPM and SPM. However, when FWM
is present, even though (15) can be asymptotically satisfied using a central limit theorem ap-
proach, the joint dependence of{yi} cannot be neglected.

We show the achievability of (9) for the general case by using a simple and generally sub-
optimum interference cancellation scheme. Given the vector of received samples,Y , we use
yi as an estimate ofxi for eachi, and use these estimates to cancel the crosstalk in the outputs.
Then, we detect eachxi again from the corresponding sample, assuming that the other users’
symbols are random.

To explain this method and its performance, let’s assume that useri is the user of interest.
Recall the expression (5) for the channel output samples. Now, we form the test statistic

zi = yi −
K∑

k=1

K∑

l=1

K∑
m=1

ξ
(i)
k,l,myky

∗
l ym. (24)

and use it as the only reference for detectingxi (and/orui), throwing away all the extra in-
formation in{yk}. Expanding (24) using (5), and neglecting all the higher order terms, we
obtain

zi = xi +ni −
K∑

k=1

K∑

l=1

K∑
m=1

(ξ
(i)
k,l,m + ξ

(i)
m,l,k)(nk + θk)x

∗
l xm

−
K∑

k=1

K∑

l=1

K∑
m=1

ξ
(i)
k,l,mxk(n

∗
l + θ∗l )xm, (25)

whereθk contains all the crosstalk terms on channelk. Finding the capacities of the channels
with input-output pairs(xi, zi), i = 1, · · · , K gives a set of achievable rates for the original
channel. The mutual information of(xi, zi) can be written as

I(xi, zi) = h(zi)− h(zi|xi). (26)

We assume that the symbols generated by each user,ui, are i.i.d. Gaussian random variables.
Since the remainder of crosstalk is at least two orders smaller thanxi, we can neglect it

when calculatingh(zi). Hence, we we have

h(zi) = log
(
2πe(Pi/2 + σ2)

)
. (27)

On the other hand, when evaluatingh(zi|xi), we can’t neglect the crosstalk terms, since the
crosstalk terms may not be negligible compared to noise, which is the dominant term now. As
in Section III-A, we can upper bound this conditional entropy by

Eχ

{
1

2
log

(
(2πe)2 var[zR

i |xi = χ] · var[zI
i |xi = χ]

)}
, (28)



with equality if zR
i andzI

i are independent and Gaussian givenxi. We can also upper bound
the product of variances in (28) by

E
[
(zR

i )2|xi = χ
] · E [

(zI
i )

2|xi = χ
] ≤ 1/4E

[|zi|2
]2

, (29)

Using the properties of XPM and FWM, it can be shown that

E
[|zi|2

]
= 2σ2. (30)

Finally, by combining (30) with (26)-(29), we obtain the lower bound

I(xi, zi) ≥ log(1 + σ−2Pi/2). (31)

This result implies that with a simple interference cancellation scheme the upper bound of
Section III-A is achievable. Note that in this scheme, the transmitter doesn’t use the crosstalk
coefficients. Hence, to the first order of approximation, (9) is the capacity region of the channel,
independent of whether the transmitter has the crosstalk parameters or not.

3.3 Capacity Region of the Channel with Memory

In a channel with strong dispersion, the relative walk-off between signals traveling at different
frequencies along with nonlinear mixing introduces (finite) memory to the channel. In this
case, (5) should be rewritten to consider this effect by adding the dimension of time to the triple
summation on the right-hand side. As an extension of Proposition 1, the following proposition
determines the capacity region of this channel.

Proposition 2. To the first order of approximation of the nonlinearity, the capacity region of
the coherent multiuser WDM channel with memory is the region given by (9).

Proof. Denote byXN
S andY N

S the matrices containing respectively all the inputs and outputs
of the channel at time-slots1 to N and subchannels with indices inS ⊂ {1, · · · , K}. Since
the users are frame-synchronous and the channel has finite memory, we can use the following
theorem to derive the capacity region.

Theorem 1. (Verd́u, [8]) The capacity region of a frame-synchronous multiple-access channel
with finite memoryM is given by

C = Closure

(
lim inf
N→∞

1

N
CN

)
. (32)

whereCN is given by

⋂
S

{
(R1, · · · , RK) : 0≤

∑

k∈S

Rk≤I(XN
S ; Y N |XN

S′)

}
. (33)

The channel model in the presence of memory can be visualized as a simple generalization
of the memoryless channel, where vectors in (8) are replaced by matrices, i.e., we deal with
both frequency and time indices. However, the properties of interference terms are preserved,
hence we can use some of the results obtained in the previous section. Following the same
approach as Section II, we can show that

I(XN
S ; Y N |XN

S′) ≤
∑
i∈S

N∑
n=1

log

(
1 +

σ−2

2
E

[|xi(n)|2]
)

. (34)
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Figure 2: Capacity versus Transmit Power per Channel. Gaussian pulses with bandwidth
80GHz, γ = 1W−1Km−1, β = −20ps2/Km, α = 0.25dB/Km. The dashed line corresponds
to the mutual information with single-user detection if the users are forced to transmit with the
maximum power.

The inner summation will be maximized if all the symbols of each user have equal average
energies. Then, we will have

I(XN
S ; Y N |XN

S′) ≤ N
∑
i∈S

log
(
1 + Pi/2σ

2
)
. (35)

Similar to the previous subsection, this bound is achievable if the symbols transmitted in dif-
ferent time slots and sub-channels are all independent Gaussian random variables. Finally,
plugging (35) into (33) and dividing byN completes the proof.

4 Comparison and Discussion

To determine the capacity gain of multiuser detection, we need to calculate the capacity with
a single-wavelength detector. In this scheme, all the symbols from the interfering users are
treated as random sequences. Hence, as opposed to the case of optimal multi-wavelength de-
tection, the crosstalk terms don’t vanish inh(yi|xi), making it difficult to compute. Fortunately,
since the transmitted symbols are independent, the sum of crosstalk terms in (5) form a third
order “weighted U-statistic,” which obeys a central limit theorem for large numbers of users,
although these term are not independent [9]. This enables us to model the interference as
Gaussian noise to compute the entropy given a certain realization ofxi, which then should be
averaged overxi.

The capacity per user has been plotted versus the transmit power per user in Fig. 2 for a
WDM channel with 32 users. It is assumed that users are transmitting with equal powers and
symbol rates, and the channel is memoryless. It should be emphasized that all the results are
valid as long as the fundamental assumption of weak nonlinearity holds. The uncertainty in
the result due to this assumption can be estimated by computing the ratio of the total crosstalk
power to the signal power, e.g. in (5). For the values plotted in Fig. 2, this uncertainty is



1% at P = 5 dBm and5% at P = 9 dBm. It is observed that within the range of accept-
able accuracy, the achievable rates with the single-wavelength detection scheme saturate as the
crosstalk power becomes comparable to the noise power, while the optimal scheme can achieve
the capacity of a linear fiber.

5 Conclusion

We derived the multiuser capacity region of WDM in a nonlinear fiber using a weak nonlin-
earity approximation. If the outputs of the fiber at all sub-channels are used for detection, the
nonlinear crosstalk doesn’t change the capacity. This result holds also if the channel has mem-
ory due to the walk-off between different carriers. Every point in the capacity region can be
achieved if each user transmits Gaussian distributed channel-coded symbols, without knowing
the nonlinearity parameters. On the other hand, if only the output of one sub-channel is used,
the capacity will saturate when the crosstalk dominates. It is concluded that the crosstalk intro-
duced by nonlinearity does not severely limit the capacity of optical fibers, as long as the weak
nonlinearity assumption is not violated.
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