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Abstract—A Write-Once Memory (WOM)-code is a coding
scheme that allows information to be written in a memory block
multiple times, but in a way that the stored values are not de-
creased across writes. This work studies non-binary WOM-codes
with applications to flash memory. We present two constructions
of non-binary WOM-codes that leverage existing high sum-rate
WOM-codes defined over smaller alphabets. In many instances,
these constructions provide the highest known sum-rates of the
non-binary WOM-codes. In addition, we introduce a new class
of codes, called level distance WOM-codes, which mitigate the
difficulty of programming a flash memory cell by eliminating all
small-magnitude level increases. We show how to construct such
codes and state an upper bound on their sum-rate.

I. INTRODUCTION

A write-once memory (WOM) is a storage medium whose
atomic memory elements are cells. The cells can be either
binary or can take on q > 2 different values. The main
property which distinguishes a WOM from other memories
is that values written to the storage device are non-decreasing
over a fixed number of writes. Codes for WOM systems were
first introduced by Rivest and Shamir almost three decades
ago [12]. These codes are known in the literature as WOM-
codes.

Recently, there has been a renewed interest in these codes
due to their relevance for the ubiquitous flash memories.
Flash memories are composed of floating gate cells which are
charged with electrons [6]. First generation flash memory cells
have two levels (SLC) and thus store a single bit. In recently
developed technologies, multilevel cells (MLC) can store 2 or
more bits, and this number is expected to further increase in
the future [13]. While it is relatively easy to increase a cell
level, reducing its level is possible only if the entire block
(∼ 106 cells) is first erased [6]. These erasure operations
are not only time consuming but also degrade the lifetime of
the flash memory. The endurance of a flash memory block is
mostly affected by the number of times it is erased, where this
number can be as low as 1000 erases before the memory block
is deemed unusable [6]. Hence, the goal of a WOM-code is
to maximize the total amount of information written across a
prescribed number of writes (referred to as generations).

Since the pioneering work of Rivest and Shamir [12], the
focus has been on studying binary WOM-codes with good
properties, as in [1], [7] and more recently in [10], [14]. De-
spite the fact that Fiat and Shamir studied non-binary WOM-
codes more than 20 years ago [2], only a few constructions
for such codes exist. Notable work on this topic includes the
results on the existence of some non-binary WOM-codes [3],
and an expression for the capacity region for a fixed number
of generations and levels [4]. In [10], a family of two-write
non-binary WOM-codes was given. However, these codes do

not achieve high information sum-rates since they allow each
cell to be written only once, even though the cell may not
have achieved its highest level. Huang et al. [9] used error-
correcting codes to design non-binary WOM-codes. Recently,
in [5] a two-write WOM-code was presented for q = 3
levels along with upper bounds on the sum-rates and sum-rate
properties of non-binary WOM-codes.

One of the main challenges in designing flash memory cells
with a large number of levels is to accurately program the cells
to their target level [11]. In particular, small increases in the
cell levels are hard to perform since the amount of charge that
has to be injected into the cell is infinitesimal. Therefore, an
interesting and relevant model, which circumvents these small
increases, is the one where every increase in the cell level is
no less than some specified positive value `. We call these
WOM-codes level distance WOM-codes. The capacity of such
codes is derived using a generalized result from [4]. We also
show how to design such WOM-codes suitable for this model.

This paper is organized as follows. In Section II, we define
the model for a multilevel WOM-code and state two elemen-
tary constructions of such codes. In Section III, we present our
non-binary WOM-code constructions. In Section IV, a new
class of codes, referred to as level distance WOM-codes, is
introduced and a construction of such codes is given. Section V
concludes the paper.

II. DEFINITIONS AND SIMPLE CODE CONSTRUCTIONS

We assume in this work that the cells have q values:
{0, 1, . . . , q−1}. The initial state of each cell is zero. While it
is possible to increase a cell level, it is not possible to decrease
its value. We refer to the set {0, . . . , q − 1}n as the cell-
state vectors. For two cell-state vectors x = (x1, . . . , xn),y =
(y1, . . . , yn) ∈ {0, . . . , q − 1}n, we denote x ≥ y if for all
1 ≤ i ≤ n, xi ≥ yi. Also, for n ≥ 1, 1n is the all-one row
vector of length n. All arithmetic operations described in the
following sections are performed in the ring modulo q, where
q is the number of levels in the flash memory device. We
follow the definition of WOM-codes in [10], [14] and extend
it to the non-binary setup.

Definition 1. An [n, t;M1, . . . ,Mt]q t-write non-binary
WOM-code Cq is a coding scheme on n q-ary cells. The code
Cq is specified by t pairs of encoding and decoding maps Ej
and Dj , for 1 ≤ j ≤ t, satisfying the following properties:

1) E1 : {1, . . . ,M1} → {0, . . . , q − 1}n,
2) For 2 ≤ j ≤ t,

Ej : {1, . . . ,Mj} × Im(Ej−1),
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where Im(Ej−1) denotes the image of the map Ej−1 and
for all (m, c) ∈ {1, . . . ,Mj} × {0, . . . , q − 1}n,

Ej(m, c) ≥ c.

3) For 1 ≤ j ≤ t,

Dj : {0, . . . , q − 1}n → {1, . . . ,Mj},

so that D1(E1(m)) = m for all m ∈ {1, . . . ,M1}, and
for 2 ≤ j ≤ t, Dj(Ej(m, c)) = m for all (m, c) ∈
{1, . . . ,Mj} × {0, . . . , q − 1}n.

For the convenience of the presentation of the constructions
we interpret the map E1 to be E1 : {1, . . . ,M1}× {0, . . . , q−
1}n → {0, . . . , q−1}n, where the second argument is ignored
since the cell-state vector is always all zeros.

Definition 2. The rate of a t-write WOM-code Cq on the j-th
write, 1 ≤ j ≤ t is defined to be Rj(Cq) =

log2 Mj

n , and the
sum-rate of the WOM-code Cq is

Rsum(Cq) =

t∑
j=1

Rj(Cq).

As argued in [14], it is assumed that the write number, j,
is known both to the encoder and decoder as this information
does not affect the achievable sum-rates by the constructions
we present. Note that there are two different setups we can
address when analyzing WOM-codes: we either require that on
all writes the same number of messages is stored, or we allow
the individual writes to use different numbers of messages. We
call the former problem fixed-rate WOM-codes and the latter
one unrestricted-rate WOM-codes. While this paper focuses on
the unrestricted-rate WOM-code setup, it will be mentioned
later how these constructions can be extended to fixed-rate
WOM-codes as well.

We first present two simple ways to construct non-binary
WOM-codes, and illustrate where these constructions out-
perform the best known sum-rates achieved. In Section III,
it is shown how the sum-rates achieved by these simple
constructions can in fact be improved using the codes proposed
in this paper. The simple code constructions are as follows:

1) Assume that t ≥ q−1. Suppose that a non-binary WOM-
code uses the constituent binary WOM-code “layer-by-
layer” as follows. Assume that t = 2(q−1) and let C2 be
a two-write binary WOM-code. A t-write q-ary WOM-
code is constructed such that on the first two writes
the WOM-code C2 is used on levels 0 and 1. On the
following two writes again C2 is used on levels 1 and
2 and so on. If the sum-rate of the WOM-code C2 is
R then the sum-rate of the non-binary WOM-code is
(q− 1)R. It is possible to modify the construction such
that on each level a different binary WOM-code with a
different number of writes (even one write) is used. This
modification will allow for a flexible number of writes.
For example, a 3-write WOM-code can be constructed
given 3 levels by using a binary 2-write code on the first
two generations and simply adding a binary vector for
the last write.

2) Assume that t < q− 1. For example, assume that t = 2
and q is odd. On the first write only levels 0, 1, . . . , q−12
are used, and if there are n cells, it is possible to write
n log2

(
q+1
2

)
bits of information. On the second write,

only levels q−1
2 , q+1

2 , . . . , q − 1 are used. Thus, it is
possible to write the same number of bits. If t > 2,
we simply choose t − 1 values q1, . . . , qt−1 such that
q0 = 0 < q1 < q2 < · · · < qt−1 < qt = q − 1 and on
the i-th write, 1 ≤ i ≤ t only levels qi−1, qi−1+1, . . . , qi
are used.

An idea similar to the first construction was proposed in [9].
In fact, it is possible to show that the proposed approach
outperforms the results reported in [9]. For example, given
20 levels and using the best two-write code provided in [14]
with the “level-by-level” approach, it is possible to obtain a
sum-rate 26.1250 for a fixed-rate WOM-code and 28.3613 for
an unrestricted-rate WOM-code which is higher than the sum-
rate 25.3 stated in [9]. The second construction outperforms
the code construction for t = 2 in [10] for q ≥ 5. In fact, for
t = 2 the sum-rate achieved by the second construction for
odd q is 2 log2

(
q+1
2

)
while the upper bound is log2

(
q(q+1)

2

)
.

That is, the sum-rate of this construction is only within

log2

(
q(q + 1)

2

)
− 2 log2

(
q + 1

2

)
= log2

(
2q

q + 1

)
< 1

from the upper bound.

III. WOM-CODE CONSTRUCTIONS

In the following we present two constructions of non-
binary WOM-codes that in many instances outperform the
two simple constructions provided earlier. In general, the first
construction provides higher sum-rate when q is smaller, but
for large q the second construction has higher sum-rate. Both
constructions build non-binary WOM-codes from WOM-codes
over a smaller alphabet size. We refer to these smaller alphabet
size WOM-codes as base codes. The sum-rates of the base
codes dictate the achievable sum-rates for the resulting non-
binary WOM-codes. In the next two subsections we present
the code constructions, followed by the sum-rate analysis.
A. Construction A

Let q,m be two positive integers. The map
φq,m : {0, . . . , q − 1}m → {0, . . . , qm − 1}

is the representation of a vector x ∈ {0, . . . , q − 1}m as
an integer according to base q (this is the inverse q-adic
expansion). Let x = (x1, . . . , xm). Then

φq,m(x) = Σm
j=1q

m−jxj .

Since this map is one-to-one and onto, its inverse map φ−1q,m

exists.
We now present the first construction. The general idea

behind this construction is to independently encode k q-ary
WOM-codes and, using φ, map these WOM-codes into an
alphabet of size qk.
Theorem 1. Let Cq be an [n, t : M1, . . . ,Mt]q t-write WOM-
code. Then, there exists an [n, t : Mk

1 , . . . ,M
k
t ]qk t-write

WOM-code.
Proof: Assume the t encoding and decoding maps of the

WOM-code Cq are denoted by Eq,j ,Dq,j , for 1 ≤ j ≤ t.
We construct an [n, t : Mk

1 , . . . ,M
k
t ]qk t-write WOM-code

which we denote by Cqk with encoding and decoding maps
Eqk,j ,Dqk,j , for 1 ≤ j ≤ t.

On the j-th write, 1 ≤ j ≤ t, the input to the map Eqk,j
is an integer wj ∈ {0, . . . ,Mk

j − 1} and the cell-state vector
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c = (c1, . . . , cn) ∈ {0, 1, . . . , qk − 1}n. Let φ−1Mj ,k
(wj) =

(wj,1, wj,2, . . . , wj,k) and for 1 ≤ ` ≤ k,
c` = (φ−1q,k(c1)`, . . . , φ

−1
q,k(cn)`), u` = Eq,j(wj,`, c`).

Then, the output of the encoding map is defined to be
Eqk,j(wj , c) = (φq,k(u1,1, . . . , uk,1), . . . , φq,k(u1,n, . . . , uk,n)) .

Note that since Cq is a WOM-code, then for all 1 ≤ ` ≤ k,
u` ≥ c` and hence Eqk,j(wj , c) ≥ c.

Similarly, we define for 1 ≤ j ≤ t the decoding map
Dqk,j : {0, . . . , qk − 1}n → {0, 1, . . . ,Mk

j − 1}
as follows. Let c = (c1, . . . , cn) ∈ {0, . . . , qk − 1}n be the
cell-state vector. For 1 ≤ ` ≤ k, let

wj,` = Dq,j(φ
−1
q,k(c1)`, . . . , φ

−1
q,k(cn)`),

then
Dqk,j(c) = φMj ,k(wj,1, . . . , wj,k).

Example 1. Let C2 be the well-known Rivest-Shamir
[3, 2 : 4, 4]2 two-write WOM-code [12]. We use C2 as
the base code in order to construct a [3, 2 : 43, 43]23
two-write WOM-code over an alphabet with eight
symbols {0, 1, . . . , 7}. An example how to write
the new WOM-code which is described as follows.

Write Data Encoding by the Encoded values
number bits base-code C2 in the 8-ary cell

1 (01,11,10) (100,001,010) (4,1,2)
2 (00,11,01) (111,110,011) (6,7,5)

On each write, six bits are written. Assume that the informa-
tion bits on the first write are (01, 11, 10). Every pair of bits is
encoded by the Rivest-Shamir code so the output is the three
triplets of bits (100, 001, 010). Finally, the first bit from every
triplet (shown in red) is stored in the first cell according to the
mapping φ2,3. Similarly, the second, third bit (shown in black,
blue) from every triplet is stored in the second, and third cell,
respectively. The same principle applies to the second write.

Remark 1. If RA is the sum-rate of the base WOM-code Cq

in Theorem 1, then the sum-rate of the new WOM-code is
kRA.

B. Construction B
Our second construction is presented in the next theorem.

The key idea behind this construction is to divide up the q
available levels into equally sized blocks of length k. At each
generation we encode one of {0, 1, . . . , k − 1} values into a
block where the block to write into is chosen independently
according to a WOM-code.

Theorem 2. Let Cq be an [n, t : M1, . . . ,Mt]q t-write
WOM-code and k ≥ 2. Then, there exists an [n, t :
M1k

n, . . . ,Mtk
n]k(q+t−1) t-write WOM-code.

Proof: As in the proof of Theorem 1, we let Eq,j ,Dq,j for
1 ≤ j ≤ t be encoding and decoding maps of the WOM-code
Cq . We denote the t-write [n, t : M1k

n, . . . ,Mtk
n]k(q+t−1)

WOM-code we construct by Cq′ , where q′ = k(q+ t−1), and
its encoding and decoding maps are Eq′,j ,Dq′,j for 1 ≤ j ≤ t.

The input to the encoding map Eq′,j on the j-th write, 1 ≤
j ≤ t, is wj ∈ {0, . . . ,Mjk

n − 1} and a cell-state vector c.
Let (wj,0, wj,1, . . . , wj,n) be such that wj,0 = wj(mod Mj),
and (wj,1, . . . , wj,n) = φ−1k,n

(⌊
wj

Mj

⌋)
. Let

c′ =
⌊c
k

⌋
− (j − 2) · 1n

and the output of Eq,j be
c′′ = Eq,j(wj,0, c

′) + (j − 1) · 1n.
The final encoded cell-state vector is

c = k · c′′ + (wj,1, . . . , wj,n).

It is straightforward to verify that the cells cannot reduce their
value but for abbreviation, we skip the details here.

The decoding map Dq′,j : {0, . . . , q′ − 1}n →
{0, 1, . . . ,Mjk

n − 1} for 1 ≤ j ≤ t is defined as follows.
Let c ∈ {0, . . . , q′ − 1}n be the cell-state vector and let
c′′′ =

⌊
c
k

⌋
− (j − 1) · 1n, then

wj,0 = Dq,j(c
′′′),

and for 1 ≤ i ≤ n, wj,i ≡ ci(mod k). Finally, we decode

wj,0Mj + φk,n(wj,1, . . . , wj,n).

Example 2. Let C2 be the [3, 2 : 4, 4]2 Rivest-Shamir two-
write WOM-code with encoding maps E2,1 and E2,2. We use
C2 as the base code to construct a [3, 2 : 4·33, 4·33]9 two-write
WOM-code over an alphabet with symbols {0, 1, . . . , 8}.

Suppose that on the first write we receive a message
(w1,v1) such that w1 = (0, 1) and v1 = (0, 1, 2). We have
c1 = E2,1(w1) = (1, 0, 0). Then, on the first write the code-
word is c = (3, 1, 2). Similarly, on the second write we receive
a message (w2,v2) such that w2 = (0, 0) and v2 = (2, 1, 2).
Then we have that c2 = E2,2(w2,

⌊
c
3

⌋
) = (1, 1, 1). The

resulting second write codeword is (8, 7, 8).

Remark 2. If RB is the sum-rate of the base WOM-code
Cq in Theorem 2 then the sum-rate of the new WOM-code is
t log2 k +RB .

C. Sum-Rate Analysis
Assume that each cell has q levels. We seek to construct a t-

write WOM-code according to Theorem 1 with a WOM-code
Cq′ of sum-rate R, which uses q′ levels such that (q′)k = q.
Then, the sum-rate of the new WOM-code is k · R and if
Cq′ is a capacity achieving WOM-code then the sum-rate is
log2 q
log2 q′ · log2

(
q′+t−1
t−1

)
. This value is maximized when q′ is

maximized and since k ≥ 2, we get q′ ≤ √q, so the best sum-
rate one can achieve is 2 · log2

(√
q+t−1
t−1

)
, where we assume

for simplicity that
√
q is an integer number.

Similarly, if a cell has q levels, then we construct a t-
write WOM-code according to Theorem 2. Here, a WOM-
code Cq′ of sum-rate R uses q′ levels for q = k(q′ + t − 1).
The maximum sum-rate t log2

(
q

q′+t−1

)
+ log2

(
q′+t−1

t

)
is

maximized when q′ is maximized and since k ≥ 2, we get
q′ ≤ q/2− (t−1) and thus the maximum achievable sum-rate
is t+ log2

(
q/2
t

)
where we assume that q is even.

Hence, for any given t, q the best sum-rate that is possible
to achieve is the maximum between these two expressions.
However, non-binary WOM-codes are not easy to find in
general. A different approach to evaluate the sum-rate is to
start with a base code and a prescribed number of writes.
Assume we are given a WOM-code with q′-ary cells such
that its sum-rate is R. By Construction A, we can construct a
WOM-code with cells of qA = (q′)kA levels and its sum-rate
is kA · R. By Construction B, we can construct a WOM-code
for qB = kB(q′ + t − 1) and its sum-rate is t log2 kB + R.
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Comparing the resulting expressions for RA and RB provides
the following result.
Lemma 1. If qA = qB = q, then for fixed t Construction B
yields a better sum-rate than Construction A if and only if

R ≤
t log2

(
q

q′+t−1

)
logq′(q)− 1

.

In general, in order to evaluate the best approach to con-
struct a multiple-write non-binary WOM-code, one should
consider the two elementary constructions we stated in Sec-
tion II as well as Constructions A and B. Since these
constructions are based upon some base WOM-codes, the
parameters of the base WOM-code as well as the desired non-
binary WOM-code dictate the resulting sum-rate. There exist
conditions under which one of the four constructions stated in
this paper gives the highest sum-rate. We omit the details due
to the lack of space and leave them to an extended version of
this work.

Next, we state the highest sum-rates we found for some non-
binary WOM-codes. Table I and Table II are the result of ap-
plying Construction A to the best known multiple write binary
WOM-codes found in [14] and [10]. For q = 16, 32, 64, 128,
the sum-rates listed in Table III are the result of applying the
ternary two-write WOM-code in [5] to Construction B.

It is important to note that the tables below present the high-
est sum-rate known WOM-codes for the parameters shown.

TABLE I
ACHIEVED SUM-RATES FOR q = 4 BY CONSTRUCTION A

t Achieved Sum-rate Capacity
2 2.9856 3.3219
3 3.2200 4.3219
4 3.7128 5.1293
5 3.9328 5.8074
6 4.2594 6.3923
7 4.3394 6.9069

TABLE II
ACHIEVED SUM-RATES FOR q = 8 BY CONSTRUCTION A

t Achieved Sum-rate Capacity
2 4.4784 5.1699
3 4.8300 6.9069
4 5.5692 8.3663
5 5.8992 9.6294
6 6.3891 10.7448
7 6.5091 11.7448

TABLE III
ACHIEVED TWO-WRITE SUM-RATES BY CONSTRUCTION A AND B

q Achieved Sum-rate Capacity
4 2.9856 3.3219
8 4.4784 5.1699
16 6.3083 7.0875
32 4.4784 9.0444
64 10.3083 11.0224

128 12.3083 13.0112

The tables shown here are for unrestricted-rate WOM-codes,
but the constructions provided in this paper can be applied to
fixed-rate WOM-codes as well. The only requirement for a
fixed-rate WOM-code created using Construction A or B is
that the base WOM-code be fixed-rate as well. The results are
left for an extended version of this paper.

IV. LEVEL DISTANCE WOM-CODES

In this section we introduce a new class of WOM-codes
which we call level distance WOM-codes. A level distance

WOM-code is a WOM-code with the additional property that
any cell level increase is not less than `, for some fixed ` > 0.

Definition 3. An [n, t, `;M1, . . . ,Mt]q t-write `-level distance
WOM-code Cq is an [n, t;M1, . . . ,Mt]q t-write WOM-code
with encoding and decoding maps Ej ,Dj , for 1 ≤ j ≤ t which
satisfies the following additional constraint. For all 1 ≤ j ≤ t
and (w, c) ∈ {1, . . . ,Mj}×{0, . . . , q−1}n, if Ej(w, c)i > ci
for some 1 ≤ i ≤ n, where i denotes the index of the cell-state
vector, then

Ej(w, c)i − ci ≥ `.
Given q, ` > 0, the transition matrix of the constraint for the

level distance WOM-codes is A`,q = (ai,j)0≤i,j≤q−1, where
for 0 ≤ i, j ≤ q − 1, ai,j = 1 if j − i ≥ ` or i = j. For
all other values of i and j, ai,j = 0. Hence, according to a
general result proved in [4], the capacity for sum-rate of any
t-write `-level distance WOM-code with q-ary cells is

log2(1q · (A`,q)t−1 · 1Tq ).

In order to construct level distance WOM-codes we use the
construction of WOM-codes in Theorem 1 where the base
WOM-code is binary. The main idea of the construction in
Theorem 1 is that a cell with q = 2k levels stores k bits which
belong to a binary WOM-code, and thus can only change
irreversibly from a zero to a one. Therefore, the cell level,
according to the map φ2,k, always increases when the bits
change. In order to modify this WOM-code such that it will be
a level distance WOM-code, first we need to eliminate all one
level increases in the cells. In order to eliminate the increase
from level zero to level one, and from level q−2 to level q−1,
we add some artificial levels that will not be used to represent
information but only to guarantee the level distance property.
However, this constraint will not be enough. Other one level
increases occur when the first bit changes its value. In order
to eliminate these small increases we change the map φ2,k as
follows. The new map

ψ′k : {0, 1, . . . , 2k − 1} → {0, 1}k

is defined by an ordering of all the binary vectors in {0, 1}k.
These binary vectors are ordered first by their weight and then
all the vectors in the same weight-group are ordered according
to their value by the map φ2,k. That is, the ordering of the
vectors in {0, 1}k is defined to be v0,v1, . . . ,v2k−1:

1) v0 = (0, 0, . . . , 0), v2k−1 = (1, 1, . . . , 1).
2) For 1 ≤ i ≤ k− 1, v∑i−1

j=0 (k
j)
, . . . ,v∑i

j=1 (k
j)

are all the

weight-i binary vectors such that for
∑i−1

j=0

(
k
j

)
≤ j <

h ≤
∑i

j=1

(
k
j

)
, φ2,k(vj) < φ2,k(vh).

Next, we add 2(k − 2) more artificial levels to construct the
map

ψk : {0, 1, . . . , 2k + 2(k − 2)− 1} → {0, 1}k ∪ {B},
where the symbol B represents an unused level, as follows:

1) ψk(0) = ψ′k(0), ψk(2k + 2(k − 2)− 1) = ψ′k(2k − 1).
2) For 1 ≤ i ≤ k−2 and 2k+(k−3) ≤ i ≤ 2k+2(k−2)−2,

ψk(i) = B.
3) For ` ≤ i ≤ 2k + (k − 4), ψk(i) = ψ′k(i− (k − 2)).

An example of the map ψk for k = 3 is shown in Table IV.
The level distance property is proved in the next lemma.
Lemma 2. If a cell has 2k + 2(k− 2) levels and stores k bits
according to the map ψk such that the bits do not decrease
their value, then every cell level increase is not less than k−1.
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TABLE IV
ORDERING OF THE MAP ψ3 .

level Third Bit Second Bit First Bit
0 0 0 0
1 B B B
2 0 0 1
3 0 1 0
4 1 0 0
5 0 1 1
6 1 0 1
7 1 1 0
8 B B B
9 1 1 1

Proof: Assume that the cell stores the vector v which
is changed to be u and u ≥ v. If v = (0, . . . , 0) or u =
(1, . . . , 1) then it is clear that ψk(u)−ψk(v) ≥ k−1 because
of the k− 2 artificial levels after the first level and before the
last one. Assume that the weight of v is w where 1 ≤ w ≤
k − 1 and v = (vk, . . . , v1). Consider the following cases:

1) Assume w = 1, and vi = 1 for 1 ≤ i ≤ k. For any cell
level increase there are at least k − i +

(
i−1
2

)
≥ k − 2

vectors before the new target level. k− i in the weight-
group of weight one and

(
i−1
2

)
in the following weight-

group.
2) Assume 2 ≤ w ≤ k − 3 and vk = 1. Then, there are at

least
(
k−1
w+1

)
≥ k− 1 vectors that start with a zero in the

weight-(w + 1) group of vectors and hence every cell
level increase is greater than k − 1.

3) Assume w = k − 2 and vk = 1. Assume further that
the first m positions of v are equal to 1. Then there
are at least

(
k−m−1
w−m−1

)
vectors that are below vk in the

same weight-group if m 6= w and 0 if m is equal to w.
Furthermore, there are m vectors in the weight group
w+1 = k−1 above vk where the one of the first m−1
bits is a 0. It follows then that every cell increase is at
least k − 1.

4) Assume 2 ≤ w ≤ k − 2 and vk = 0. Then, there are at
least

(
k−1
w−1

)
≥ k − 1 vectors that start with a one in the

same weight-group and again every cell level increase
is greater than k − 1.

The next theorem summarizes this construction.
Theorem 3. Let C2 be an [n, t;M1, . . . ,Mt]2 t-
write binary WOM-code. Then, there exists an
[n, t, `;M `+1

1 , . . . ,M `+1
t ]2`+1+2(`−1) t-write `-level distance

WOM-code.
Proof: The proof follows from the proof of Lemma 2 and

the proof of the construction of Theorem 1.
Example 3. Let us consider the WOM-code construction in
Example 1. The Rivest-Shamir [3, 2 : 4, 4]2 two-write WOM-
code is used to construct a [3, 2 : 43, 43]23 two-write WOM-
code over an alphabet with eight symbols. In order to modify
this construction we use the map ψ3 in Table IV instead of the
map φ2,3. The example to write the bits is changed as follows.

Write Data Encoding by the Encoded values
number bits base-code C2 in the 10-ary cell

1 (01,11,10) (100,001,010) (4,2,3)
2 (00,11,01) (111,110,011) (7,9,6)

Note that the sum-rate of the level distance WOM-code
is the same as the sum-rate of a code constructed using

Theorem 1. In this construction we just had to use more levels
in order to guarantee the level distance property. It is possible
to apply a similar modification to the second construction in
order to produce a level distance WOM-code. We save the
details for an extended version of this paper.

V. CONCLUSION
In this work, we explored two basic constructions for non-

binary WOM-codes that leverage existing high sum-rate binary
WOM-codes. In general, the performance of the resulting
non-binary WOM-code is dependent on the sum-rate of the
underlying base code and a direct implication of this work is
that high sum-rate WOM-codes over a smaller alphabet sizes
can yield high sum-rate WOM-codes over larger alphabets.

In addition, we introduced a new class of codes, called
level distance WOM-codes. These codes target the inherently
difficult process of programming the flash memory cell to a
specified threshold value by fixing a lower bound on the mag-
nitudes by which each cell is increased between writes. The
upper bound on the sum-rate of such codes is easily derived
by the tools in [8], and we presented here a construction of
such codes.
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