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Abstract—Advances in biochemical technologies, such as syn-
thesizing and sequencing devices, have fueled many recent ex-
periments on archival digital data storage using DNA. In this
paper we study the information-theoretic capacity of such storage
systems. The channel model incorporates the main properties
of DNA-based data storage. We present the capacity of this
channel for the case of substitution errors inside the sequences
and provide an intuitive interpretation of the capacity formula for
relevant channel parameters. We compare the capacity to rates
achievable with a sub-optimal decoding method and conclude
with a discussion on cost-efficient DNA archive design.

I. INTRODUCTION

DNA-based data storage is a novel approach for long-term
archiving of digital data. It has drawn recent attention due
to significant advances in biochemical technologies, such as
synthesizing and sequencing of DNA. Experiments address-
ing many different aspects of digital data storage, such as
reliability, lifetime, random-access, and efficiency have been
published in the last decade. At the same time, the unique
nature of DNA-based storage systems has fueled theoretical
investigations in computational biology, coding theory, infor-
mation theory, and signal processing.

The process of writing and reading digital data in DNA-
based data storage basically involves three main steps. First,
the digital binary data is encoded into many short vectors over
the alphabet {A,C,G,T}, which are then synthesized as DNA
strands. In most experiments, each strand is synthesized many
times such that multiple copies of each strand are present.
Second, those strands are transferred into a storage medium
that preserves the chemical structure of DNA and ensures
robustness over a long period of time. Third and finally, when
accessing the data inside the archive, the DNA strands from
the storage medium are sequenced. Due to the nature of the
sequencer, it is generally not possible to choose which strands
are sequenced. (In contrast to [1], [2], we study the raw system
that does not include the use of primers appended to the DNA
strand to allow sequencing specific strands.) The synthesis and
sequencing may induce insertion and deletion errors, as well as
substitution errors, in the DNA strands. Using the sequencing
data, a decoder then estimates the original digital data.

As a step toward analyzing the information-theoretic ca-
pacity of DNA-based storage, this work considers the noisy
drawing channel that models the pipeline from synthesized to
sequenced DNA strands. It incorporates the unordered nature
of the sequencing process by modeling the received strands as
random draws of the input sequences together with substitution
errors inside the DNA strands. Prior work [3] has discussed
this channel for the noiseless case. We review our recent results
about the capacity of the noisy drawing channel, reported in
[4], and give an intuitive explanation of the capacity formula.
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Fig. 1: Exemplary realization of the DNA storage channel with M =
3 and N = 4. Shades highlight the origin of the received sequences.
This origin is however unknown to the receiver.

(Our work [4] has recently been extended to asymmetric error
channels [5].) We further examine achievable rates with a sub-
optimal decoding method. Finally, using the capacity formula,
we present an optimization problem that allows to design cost-
efficient storage systems. This work has been published in [6].

II. DNA STORAGE CHANNEL MODEL
A. The Noisy Drawing Channel

The input of the DNA storage channel is M sequences
X1, . . . , XM where each Xi is a vector of length L over the
binary alphabet Σ = {0, 1}. (Our results can be extended
to the quaternary DNA alphabet {A,C,G,T}.) From these
input sequences, a total of N = cM sequences are drawn
with replacement, each uniformly at random, and received
with errors. The parameter c > 0 represents the coverage
of the draws. The output of the channel is then given by
N sequences Y1, . . . , YN , each of length L. Each sequence
Yj is obtained by drawing a random input sequence XIj and
transmitting it over a binary symmetric channel (BSC) with
error probability p. We can think of the input and output
sequences as matrices X = (X1, . . . , XM ) ∈ ΣM×L and
Y = (Y1, . . . , YN ) ∈ ΣN×L. Fig. 1 illustrates an exemplary
realization of this channel.

B. Multidraw Channel
An important component of the noisy drawing channel is

the so-called multidraw or binomial channel. It captures the
fact that each input sequence Xi is observed through Di

noisy output sequences, each originating from the same input
sequence. The multidraw channel is parameterized by the
number of draws d ∈ N and error probability 0 ≤ p ≤ 1.
Its capacity, derived in [7], is as follows.

Cd = 1 +

d∑
k=0

(
d

k

)
pk(1− p)d−k log

1

1 + pd−2k(1− p)2k−d
.

III. CAPACITY OF THE NOISY DRAWING CHANNEL
Since the channel input is M sequences, each of length L,

a code over the noisy drawing channel is a set C ⊆ ΣM×L.
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Its storage rate is defined to be the number of bits that can
be stored per nucleotide, i.e., Rs = log |C|/ML. Similarly we
can define the recovery rate of a code C as the number of
information bits that can be retrieved per nucleotide that is
sequenced, i.e., Rr = log |C|/NL.

Assume a codeword X ∈ C has been transmitted over the
noisy drawing channel and Y ∈ ΣN×L has been received.
A decoder for a code C is then a mapping dec : ΣN×L 7→
C ∪{fail}, dec(Y ) = X̂ , where fail denotes a decoding failure,
i.e., the decoder cannot find any suitable codeword.

We will set M = 2βL and N = cM for some fixed 0 < β <
1, 0 < c, and let L go to infinity. Let β, c, and p be fixed and
given. We say a rate Rs is achievable, if there exists a family
of codes C(M × L) ⊆ ΣM×L with storage rate Rs together
with a decoder dec : ΣN×L 7→ C(M × L) ∪ {fail} such that
the decoding error probability tends to zero, as L → ∞, with
M = 2βL and N = cM . The capacity of the noisy drawing
channei, C(β, c, p), is the supremum of achievable rates and
is given as follows [4].
Theorem 1 Fix 0 < c, 0 ≤ p < 1

8 , and 0 < β < 1−H(4p)
2 .

Then, the capacity of the noisy drawing channel is given by

C(β, c, p) =

∞∑
d=0

Poic(d)Cd − β(1− e−c), (1)

where Poic(d) =
e−ccd

d! is the probability mass function of the
Poisson distribution with expected value c and H(p) is the
binary entropy function.

The result holds for, e.g., all p ≤ 0.075 and β ≤ 1
20 . Most

recent experiments have parameters within this region [8], [9].
Conceptually, the noisy drawing channel can be split into

two sub-channels. The first sub-channel transmits each input
sequence Xi, i = 1, . . . ,M , over one of M parallel multidraw
channels, each with Di draws. The second sub-channel then
randomly permutes the resulting set of sequences comprising
the draws of all Xi, i = 1, . . . ,M . The first term of the capac-
ity formula corresponds to the capacity of the first sub-channel.
The rate loss associated with the uncertainty introduced by the
second sub-channel is exactly the second term in the formula.
A precise analysis supports this interpretation [4], [10].

Fig. 2 shows the capacity for β = 1/20 and different values
of coverage c over a range of values of p. Note that the plot
is limited to error probabilities of at most p = 0.075 due to
the parameter limitation in Theorem 1. The figure also shows
achievable rates using a suboptimal decoder based on majority
voting. This decoder first performs a bitwise majority decision
on all sequences that stem from the same input sequence. We
see that the overall rate loss with respect to the capacity is
relatively small over a range of channel parameters.

IV. DESIGN OF COST-EFFICIENT DNA ARCHIVES
Most publications to date focus on the storage rate Rs to

evaluate their results. More recently, however, the interest in ef-
ficient design with respect to both storage rate Rs and recovery
rate Rr has increased. We now present an optimization-based
approach to designing cost-efficient DNA storage systems. We
let β and p be fixed parameters to be chosen by the system
engineer. While β is usually determined by the length of the
DNA sequences and the amount of digital data to be stored,
p is given by the synthesis and sequencing technologies. The
costs associated with DNA-based data storage are mainly due
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Fig. 2: Capacity of the noisy drawing channel for different values of
c, over a range of error probabilities p, with β = 1

20
. The dashed

lines show achievable rates for suboptimal majority vote decoding.

to the synthesis and sequencing of DNA strands. To this end,
assume we are given a synthesis machine that incurs a cost of
γs per nucleotide. Further, we use a sequencing machine that
has an associated cost γr per read of a single nucleotide of
DNA. Using a code of storage rate Rs and recovery rate Rr,
the total cost associated with writing and reading a single bit
to and from the archive is

γ(β, c, p) =
γs
Rs

+
γr
Rr

=
1

C(β, c, p)
(γs + cγr) (2)

where we assumed the usage of a capacity-achieving storage
code, i.e., Rs = C(β, c, p), and used the relation Rs = cRr.

Note that in comparison to [3] we additionally incorporate
the error probability p into the system design. We can optimize
(2) over c for given β and p. Currently the synthesis cost is
a factor of roughly 104 larger than the sequencing cost [3]
and we thus set γs

γr
= 104. For p = 0.02 and β = 1

20 ,
one obtains that c∗ ≈ 11.4 minimizes the cost, while for
p = 0.05, we obtain c∗ ≈ 14. Note that smaller synthesis
costs will push the optimum c∗ towards smaller values, since
the sequencing costs become more apparent. One can extend
this cost optimization to reflect the dependence of costs on
the synthesis and sequencing quality p and perform a joint
optimization over c and p.
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