
A Nearly Optimal Construction of Flash Codes
Hessam Mahdavifar, Paul H. Siegel, Alexander Vardy, Jack K. Wolf, and Eitan Yaakobi

Department of Electrical Engineering, University of California San Diego, La Jolla, CA 92093, USA
{hessam,psiegel,avardy,jwolf,eyaakobi}@ucsd.edu

Abstract— Flash memory is a non-volatile computer memory
comprised of blocks of cells, wherein each cell can take on q dif-
ferent values or levels. While increasing the cell level is easy, re-
ducing the level of a cell can be accomplished only by erasing an
entire block. Since block erasures are highly undesirable, coding
schemes — known as floating codes or flash codes — have been de-
signed in order to maximize the number of times that information
stored in a flash memory can be written (and re-written) prior
to incurring a block erasure. An (n, k, t)q flash code C is a cod-
ing scheme for storing k information bits in n cells in such a way
that any sequence of up to t writes (where a write is a transition
0 → 1 or 1 → 0 in any one of the k bits) can be accommodated
without a block erasure. The total number of available level tran-
sitions in n cells is n(q−1), and the write deficiency of C, defined
as δ(C) = n(q−1)− t, is a measure of how close the code comes
to perfectly utilizing all these transitions. For k > 6 and large n,
the best previously known construction of flash codes achieves
a write deficiency of O(qk2). On the other hand, the best known
lower bound on write deficiency is Ω(qk). In this paper, we pre-
sent a new construction of flash codes that approaches this lower
bound to within a factor logarithmic in k. To this end, we first im-
prove upon the so-called “indexed” flash codes, due to Jiang and
Bruck, by eliminating the need for index cells in the Jiang-Bruck
construction. Next, we further increase the number of writes by
introducing a new multi-stage (recursive) indexing scheme. We
then show that the write deficiency of the resulting flash codes
is O(qk log k) if q > log2 k, and at most O(k log2 k) otherwise.

I. INTRODUCTION

Flash memories are, by far, the most important type of nonvol-
atile computer memory in use today. Flash devices are employ-
ed widely in mobile, embedded, and mass-storage applications,
and the growth in this sector continues at a staggering pace.

A flash memory consists of an array of floating-gate cells,
organized into blocks (a typical block contains 218 to 220 cells).
The level or “state” of a cell is a function of the amount of
charge (electrons) trapped within it. In multilevel flash cells,
voltage is quantized to q discrete threshold values; conseq-
uently the level of each cell can be modeled as an integer in the
range 0, 1, . . . , q−1. The parameter q itself ranges from q = 2
(the conventional two-state case) up to q = 256. The most con-
spicuous property of flash-storage technology is its inherent
asymmetry between cell programming (charge placement) and
cell erasing (charge removal). While adding charge to a sin-
gle cell is a fast and simple operation, removing charge from
a cell is very difficult. In fact, flash technology does not allow
a single cell to be erased — rather, only entire blocks can be
erased. Such block erasures are not only time-consuming, but
also degrade the physical quality of the memory. For example,
a typical block in a multilevel flash memory can tolerate only
about 104 erasures before it becomes unusable. Therefore, it
is of importance to design coding schemes that maximize the
number of times information stored in a flash memory can be
written (and re-written) prior to incurring a block erasure.

Such coding schemes — known as floating codes or flash
codes — were first introduced in [3] two years ago. Since then,
a few more papers on this subject have appeared in the liter-

ature [2,4,6,8]. It should be pointed out, however, that flash
codes may be regarded as a generalization of codes for write-
once memories [1,7], that were studied since the early 1980s.

An (n, k, t)q flash code C is a coding scheme for storing k
information bits in n flash-memory cells, with q levels each, in
such a way that any sequence of up to t writes can be accom-
modated without incurring a block erasure. In the literature on
flash codes, a write is always a bit-write — that is, a change
0 → 1 or 1 → 0 in the value of one of the k information bits.
Observe that in order to accommodate such a write, at least one
of the n cells must transition from a lower level to a higher
level (since a cell’s level, determined by its charge, can only in-
crease). On the other hand, the total number of available level
transitions in n flash cells is n(q−1). Thus, throughout this pa-
per, we characterize the performance of a flash code C in terms
of its write deficiency, defined as δ(C) = n(q−1)− t. Ac-
cording to the foregoing discussion, δ(C) is a measure of how
close C comes to perfectly utilizing all the available cell-level
transitions: exactly one per write. The primary goal in design-
ing flash codes can thus be expressed as minimizing deficiency.

What is the smallest possible write deficiency δq(n, k) for an
(n, k, t)q flash code, and how does it behave asymptotically as
the code parameters k and n get large? The best-known lower
bound, due to Jiang, Bohossian, and Bruck [3], asserts that

δq(n, k) >
1
2
(

q − 1
)

min{n, k−1} (1)

How closely can this bound be approached by code construc-
tions? It appears that the answer to this question depends on
the relationship between k and n. In this paper, we are con-
cerned mainly with the case where both k and n are large, and
n is much larger than k (in particular, n > k2). In Section V,
we briefly consider the case k/n = const. At the other end of
the spectrum, the case k > n has been recently studied in [5].

The first construction of flash codes for large k was reported
by Jiang and Bruck [4]. In this construction, the k information
bits are partitioned into m1 = k/k′ subsets of k′ bits each (with
k′ 6 6) while the memory cells are subdivided into m2 > m1
groups of n′ cells each. Additional memory cells (called index
cells) are set aside to indicate for each subset of k′ bits which
group of n′ memory cells is used to store them. The deficiency
of the resulting codes is at least O(

√
qn). Note that for n > k,

the lower bound on write deficiency in (1) behaves as Ω(qk),
and thus does not depend on n. Consequently, the gap between
the Jiang-Bruck construction [4] and the lower bound could be
arbitrarily large, especially when n is much larger than k.

Recently, we have proposed in [8] a completely different
construction of flash codes. These codes are based upon rep-
resenting the n memory cells as a high-dimensional array, and
achieve a write deficiency of O(qk2). Crucially, the deficiency
of these codes does not depend on n. Nevertheless, there is
still a significant gap between O(qk2) — which is the best cur-
rently known result — and the lower bound of Ω(qk).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:15 from IEEE Xplore. Restrictions apply.

In this paper, we present a new construction of flash codes
which reduces the gap between the upper and lower bounds on
write deficiency to a factor that is logarithmic in the number
of information bits k. This result is arrived at in several stages.
As a starting point, we use the “indexed” flash codes of Jiang
and Bruck [4]. In Section III, we develop new encoding and
decoding procedures for such codes that eliminate the need for
index cells in the Jiang-Bruck construction [4]. The write de-
ficiency achieved thereby is O(qk2), which coincides with the
main result of [8]. When the encoding procedure developed in
Section III reaches its limit, there are still potentially numer-
ous unused cell-level transitions. In Section IV, we show how
to take advantage of these transitions in order to accommodate
even more writes. To this end, we introduce a new indexing
scheme, which is invoked only after the encoding method of
Section III is exhausted. Thereupon, we extend this idea recur-
sively, through dlog2ke different indexing stages. This leads to
the main result of this paper, established in Theorem 3, namely

Ω
(

qk
)

6 δq(n, k) 6 O
(

max{q, log2k} k log k
)

(2)

for all n > k2, where the upper bound is achieved constructi-
vely by the flash codes described in Section IV.

Finally, in Section V, we present and briefly discuss constr-
uctions of flash codes for the case where the number of mem-
ory cells n is not significantly larger than the number of bits k.

II. PRELIMINARIES

Let us now give a precise definition of flash codes that were in-
troduced less formally in the previous section. We use {0, 1}k

to denote the set of binary vectors of length k, and refer to the
elements of this set as information vectors. The set of possible
levels for each cell is denoted by Aq = {0, 1, . . . , q−1} and
thought of as a subset of the integers. The qn vectors of length
n over Aq are called cell-state vectors. With this notation, any
flash code C can be specified in terms of two functions: an
encoding map E and a decoding map D. The decoding map
D : An

q → {0, 1}k indicates for each cell-state vector x∈An
q

the corresponding information vector. In turn, the encoding
map E : {0, 1, . . . , k−1}×An

q → An
q ∪ {E} assigns to every

index i and cell-state vector x∈An
q , another cell-state vector

y = E(i, x) such that y j > x j for all j and D(y) differs from
D(x) only in the i-th position. If no such y∈An

q exists, then
E(i, x) = E indicating that block erasure is required. To boot-
strap the encoding process, we assume that the initial state of
the n memory cells is (0, 0, . . . , 0). Henceforth, iteratively ap-
plying the encoding map, we can determine how any sequence
of transitions 0 → 1 or 1 → 0 in the k information bits maps
into a sequence of cell-state vectors, eventually terminated by
the block erasure. This leads to the following definition.

Definition. An (n, k)q flash code C(D, E) guarantees t writes
if for all sequences of up to t transitions 0 → 1 or 1 → 0 in the
k information bits, the encoding map E does not produce the
block erasure symbol E. If so, we say that C is an (n, k, t)q
code, and define the deficiency of C as δ(C) = n(q−1)− t.

In addition to this definition, we will also use the following
terminology. Given a vector x = (x1, x2, . . . , xm) over Aq, we
define its weight as wt(x) = x1 + x1 + · · ·+ xm (where the
addition is over the integers), and its parity as wt(x) mod 2.

III. INDEX-LESS INDEXED FLASH CODES

Our point of departure are the so-called indexed flash codes,
due to Jiang and Bruck [4], that were briefly described in Sec-
tion I. In this section, we eliminate the need for index cells —
and, thus, the overhead associated with these cells — in the
Jiang-Bruck construction [4]. This is achieved by “encoding”
the indices into the order in which the cell levels are increased.

As in [4], we partition the n memory cells into m groups of
n′ cells each. However, while in [4] the value of n′ is more or
less arbitrary, in our construction n′= k. We henceforth refer
to such groups of n′= k cells as blocks (though they are not
related to the physical blocks of floating-gate cells which com-
prise the flash memory). We will furthermore use, throughout
this paper, the following terminology. We say that:

I a block is full if all its cells are at level q−1;
I a block is empty if all its cells are at level zero;
I a block is active if it is neither full nor empty;
I a block is live if it is not full (either active or empty).

In our construction, each block represents exactly one bit. This
implies that the total number of blocks, given by m = bn/kc,
must be at least k, which in turn implies n > k2. If n is not
divisible by k, the remaining cells are simply left unused. Fi-
nally, we also assume that either k is even or q is odd. If this
is not the case, we can invoke the same construction with k
replaced by k + 1 (and the last bit permanently set to zero).

The key idea is that each block is used to encode not only
the current value of the bit that it represents, but also which of
the k bits it represents. The value of the bit is simply the par-
ity of the block. The index of the bit is encoded in the order
in which the levels of the k cells are increased. For example, if
the block stores the i-th bit, first the level of the i-th cell in the
block is increased from 0 to q−1 in response to the transitions
0→ 1 and 1→ 0 in the bit value. Then, the same procedure is
applied to the (i+1)-st cell, the (i+2)-nd cell, and so on, with
the indices i + 1, i + 2, . . . interpreted cyclically (modulo k).
This process is illustrated in the following example.
Example. Suppose that k = 4 and q = 3. If a block represents
the first bit, then its cell levels will transition from (0, 0, 0, 0)
to (2, 2, 2, 2) in the following order:

(0000) → (1000) → (2000) → (2100) → (2200)
→ (2210) → (2220) → (2221) → (2222)

On the other hand, for a block that represents the second bit,
the corresponding cell-writing order is given by:

(0000) → (0100) → (0200) → (0210) → (0220)
→ (0221) → (0222) → (1222) → (2222)

The cell-writing orders for blocks that represent the third and
fourth bits are given, respectively, by

(0000) → (0010) → (0020) → (0021) → (0022)
→ (1022) → (2022) → (2122) → (2222)

and
(0000) → (0001) → (0002) → (1002) → (2002)

→ (2102) → (2202) → (2212) → (2222)

Note that, unless a block is full, it is always possible to deter-
mine which cell was written first and, consequently, which of
the k = 4 bits this block represents. �

We now provide a precise specification of an (n, k)q flash
code C based upon this idea, in terms of a decoding map D0
and an encoding map E0. In what follows, these maps are de-
scribed algorithmically, using (C-like) pseudo-code notation.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:15 from IEEE Xplore. Restrictions apply.

Decoding map D0 : The input to this map is a cell-state vector
x = (x1|x2| · · · |xm), partitioned into m blocks of k cells. The
output is the information vector (v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);

for (j = 1; j 6 m; j = j + 1)
if (active(x j))
{{ i = read index(x j); vi = parity(x j); }}

Encoding map E0 : The input to this map is a cell-state vector
x = (x1|x2| · · · |xm), partitioned into m blocks of k cells, and
an index i of the bit that has changed. Its output is either a cell-
state vector y = (y1|y2| · · · |ym) or the erasure symbol E.

(y1|y2| · · · |ym) = (x1|x2| · · · |xm);

for (j = 1; j 6 m; j = j + 1)
if (active(x j) ∧ (read index(x j)== i))
{{ write(y j); break; }}
if (j == m + 1) // active block not found
for (j = 1; j 6 m; j = j + 1)
if (empty(x j)) {{ write new(i,y j); break;}}
if (j == m + 1) // no empty blocks remain
return E;

To complete the specification of the flash code C(D0, E0),
let us elaborate upon all the functions used in the pseudo-code
above. The functions active(x), respectively empty(x),
simply determine whether the given block is active, respectiv-
ely empty. The function parity(x) computes the parity of x,
defined in Section II. Note that the parity of a full block is al-
ways zero (since k(q−1) is even, by assumption). The function
read index(x) computes the bit-index encoded in an active
block x = (x0, x1, . . . , xk−1). This can be done as follows.
Find all the zero cells in x. Note that these cells always form
one cyclically contiguous run, say x j, x j+1, . . . , x j+r (where
the indices are modulo k). Then the index of the corresponding
bit is i = j + r + 1 (mod k). If there are no zeros in x, there
must be exactly one cell, say x j, whose level is strictly less
than q−1. In this case the bit-index is i = j + 1 (mod k). The
function write(y) proceeds along similar lines. Find the sin-
gle cyclically contiguous run of zeros in (y0, y1, . . . , yk−1),
say y j, y j+1, . . . , y j+r. If y j−1 < q−1, increase y j−1 by one;
otherwise set y j = 1. If there are no zeros in y, find the unique
cell y j such that y j < q−1 and increase its level by one. Fin-
ally, the function write new(i,y) simply sets yi = 1.

Theorem 1. The write deficiency of the flash code C(D0, E0)
described above is at most

(k− 1)
(

(k + 1)(q−1) − 1
)

= O
(

qk2) (3)

Proof. Note that at each instance, at most k of the m blocks
are active. The encoding map E0(i, x) produces the symbol E

when there are no more empty blocks, and none of the active
blocks represents the i-th bit. In the worst case, this may occur
when there are k − 1 active blocks, each using just one cell
level. This contributes (k− 1)

(

k(q−1)− 1
)

unused cell lev-
els. In addition, there are at most k − 1 cells that are unused
due to the partition into m = bn/kc blocks of exactly k cells.
These contribute at most (k − 1)(q−1) unused cell levels.

IV. NEARLY OPTIMAL CONSTRUCTION

It is apparent from the proof of Theorem 1 that the deficiency
of the flash code C(D0, E0), constructed in Section III, is due
primarily to the following: when writing stops, there are still
potentially numerous unused cell levels. The key idea devel-
oped in this section is to continue writing after the encoding
map E0 produces the erasure symbol E, utilizing those cell lev-
els that are left unused by E0. Obviously, it is not possible to
continue writing using the same encoding and decoding maps.
However, it may be possible to do so if, at the point when E0
produces the erasure symbol E, we switch to a different encod-
ing procedure, say E1. In fact, this idea can be applied itera-
tively: once E1 reaches its limit, we will transition to another
encoding map E2, then yet another map E3, and so on.

Assuming that k ≡ 0 (mod 4), here is one way to continue
writing after the encoding map E0 has been exhausted. When
E0 produces the erasure symbol E, we say that the first stage of
encoding is over and transition to the second stage, as follows.
First, we re-examine the cell-state vector x = (x1|x2| · · · |xm)
and re-partition it into 2m = 2 bn/kc blocks of k/2 cells each.
Most of these smaller blocks will be already full, but we may
find some m1 of them that are either empty or active (live). Ob-
serve that m1 6 2(k− 1) since at the end of the first stage,
there are at most k − 1 active blocks of k cells, and each of
them produces at most two live (non-full) blocks of k/2 cells.

If m1 > k, we can continue writing as follows. Once again,
each of the m1 blocks will represent exactly one bit; as before,
the value of this bit is determined by the parity of the block. As
part of the transition from the first stage to the second stage,
we record the current information vector (v0, v1, . . . , vk−1) in
the first k of the m1 live blocks, say x1, x2, . . . , xk. To this end,
whenever parity(xi) 6= vi−1, we increase the level of one
of the cells in xi by one; otherwise, we leave xi as is.

Since the blocks now have k/2 cells rather than k cells, it is
no longer possible to encode in each block which of the k infor-
mation bits it represents. Therefore, we set aside for this pur-
pose 2(k−1)dlogq(k+2)e index cells (that are not used during
the first stage). These cells are partitioned into 2(k−1) blocks
of µ = dlogq(k+2)e cells each, which we call index blocks.
Henceforth, it will be convenient to refer to the blocks of k/2
cells as parity blocks, in order to distinguish them from the
index blocks. Initially, the first k index blocks u1, u2, . . . , uk
are set so that ui = i (in the base-q number system), which
reflects the fact that the information bits v0, v1, . . . , vk−1 are
stored (in that order) in the first k live parity blocks. The next
m1 − k index blocks are set to (0, 0, . . . , 0), thereby indicat-
ing that the corresponding (live) parity blocks are available to
store information bits. The last 2(k−1)−m1 index blocks are
set to (q−1, q−1, . . . , q−1) to indicate that the correspond-
ing parity blocks are full (in fact, nonexistent). Finally, it is
possible that in the process of enforcing parity(xi)= vi−1
for the first k live parity blocks, some of these blocks become
full (this happens iff wt(xi) = (k/2)(q−1)− 1 and vi = 0
at the end of the first stage, since k/2 is even by assump-
tion). To account for this fact, we set the corresponding index
blocks to (q−1, q−1, . . . , q−1). This completes the transition
from the first stage to the second stage, which is invoked when
the encoding map E0 produces the erasure symbol E.

Let us now summarize the foregoing discussion by giving
a concise algorithmic description of the transition procedure.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:15 from IEEE Xplore. Restrictions apply.

Transition procedure T1 : Partition the memory into 2 bn/kc
parity blocks of k/2 cells, and identify the m1 6 2(k−1) par-
ity blocks x1, x2, . . . , xm1 that are not full. If m1 < k, output
the erasure symbol E and terminate. Otherwise, set the 2(k−1)
index blocks u1, u2, . . . , u2k−2 as follows:

ui =







i for i = 1, 2, . . . , k
0 for i = k + 1, k + 2, . . . , m1
qµ − 1 for i = m1+1, m1+2, . . . , 2k− 2

(4)

where µ = dlogq(k+2)e is the number of cells in each index
block, then record the information vector (v0, v1, . . . , vk−1) in
the first k live parity blocks x1, x2, . . . , xk, as follows:

for (i = 1; i 6 k; i = i + 1)
if (parity(xi) 6= vi−1)
{{ increment(xi); if (full(xi)) ui = qµ − 1;}}

The function full(x) determines whether the given block x
(which could be a parity block or an index block) is full. The
function increment(x) increases by one the level of a cell
(does not matter which) in the given live block.

During second-stage encoding and decoding, we will need
to figure out for each active parity block x which of the k in-
formation bits it represents. To this end, we will have to find
and read the index block u that corresponds to x. How exactly
is the correspondence between parity blocks and index blocks
established? Note that, upon the completion of the transition
procedure T1, there is the same number of live parity blocks
and live index blocks; moreover, the j-th live index block cor-
responds to the j-th live parity block, for all j. The encoding
procedure will make sure that this correspondence is preserved
throughout the second stage: whenever a parity block becomes
full, it will make the corresponding index block full as well.

We are now ready to present the encoding and decoding maps
which are, again, specified in C-like pseudo-code notation.
Decoding map D1 : The input to this map is a cell-state vector
x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2), partitioned into 2m
parity blocks, of k/2 cells each, and 2(k−1) index blocks. The
output is the information vector (v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);

for (` = j = 1; j 6 2m; j = j + 1)
{{

if (full(x j)) continue; //skip full blocks
while (full(u`)) ` = ` + 1;//skip full blocks
i = u`; ` = ` + 1;
if (i 6= 0) vi−1 = parity(x j);}}

Given an index i of the bit that has changed, the encoding map
E1 first tries to find an active parity block x that represents the
i-th information bit. If such a block is found, it is incremented
and checked for getting full (in which case the corresponding
index block is set to qµ − 1). If not, another live parity block is
allocated to represent the i-th information bit. If no more live
parity blocks are available, the erasure symbol E is returned.
Encoding map E1 : The input to this map is a cell-state vector
x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2), partitioned into 2m
parity blocks and 2(k−1) index blocks, and an index i of the
information bit that changed. Its output is either a cell-state vec-
tor y = (y1|y2| · · · |y2m|| u′

1|u′
2| · · · |u′

2k−2) or the symbol E.

(y1|y2| · · · |y2m) = (x1|x2| · · · |x2m);
(u′

1|u′
2| · · · |u′

2k−2) = (u1|u2| · · · |u2k−2);

for (` = j = 1; j 6 2m; j = j + 1)
{{

if (full(x j)) continue;
while (full(u`)) ` = ` + 1;
if (u` == i + 1)
{{

increment(y j);
if(full(y j)) u′

` = qµ − 1;
break;

}}
else ` = ` + 1;

}}
if (j == 2m + 1) // active block not found
for (` = j = 1; j 6 2m; j = j + 1)
{{

if (full(x j)) continue;
while (full(u`)) ` = ` + 1;
if (u` == 0)
{{

u′
` = i + 1;
if (parity(x j) 6= vi)increment(y j);
if (full(y j)) u′

` = qµ − 1;
break;

}}
else ` = ` + 1;

}}
if (j == 2m + 1) // no more available live blocks
return E;

Note that when the second encoding stage terminates, there
are at most k − 1 parity blocks that are not full, comprising at
most k(k− 1)/2 cells (at most k(k− 1)(q−1)/2 cell-levels).

Once the maps D1 and E1 are understood, it becomes clear
that the same approach can be applied iteratively. The result-
ing flash code C∗ will proceed, sequentially, through s differ-
ent encoding stages E0, E1, . . . , Es−1, where s = dlog2 ke. In
describing this code, we shall assume for the sake of simplic-
ity that k is a power of two, that is k = 2s. If not, the same
code can be used to store 2s > k information bits, of which the
last 2s − k are set to zero. Note that this will not change the
order of the resulting write deficiency.

To accommodate the encoding maps E1, E2, . . . , Es−1, we set
aside for each map a batch of 2(k− 1) index blocks, with each
index block consisting of µ = dlogq(k+2)e cells. The transi-
tion procedure Tr which bridges between the encoding maps
Er−1 and Er (for some r∈{2, 3, . . . , s−1}) is identical to the
transition procedure T1, except for the following differences:

D1. The r-th batch of index blocks is used; and
D2. The parity blocks consist of k/2r cells each.

In addition to D1 and D2, the decoding/encoding maps Dr and
Er differ from D1 and E1 in that “2m” should be replaced by
“2rm” throughout, where m stands for bn/kc as before. There
are no other differences.

Theorem 2. For s = dlog2ke, the write deficiency of the flash
code C∗ defined by the sequence of decoding/encoding maps
D0,D1, . . . ,Ds−1 and Eo, E1, . . . , Es−1 is O

(

qk log2k/log q
)

.

Proof. We consider the worst-case scenario for the number
of cell levels that are either unused or “wasted” in the overall
encoding procedure. As before, there are at most k − 1 cells
that are unused due to the partition into bn/kc blocks, of ex-

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:15 from IEEE Xplore. Restrictions apply.

actly k cells each, at the very first encoding stage. These cells
contribute at most (q−1)(k− 1) unused cell levels. The index
blocks for the s − 1 encoding maps E1, E2, . . . , Es−1 contain
2(k − 1)(s − 1)µ cells altogether, thereby wasting at most

2(q− 1)(k− 1)(s− 1)dlogq(k+2)e = O
(

qk log2k
log q

)

(5)

cell levels. In each of the s− 1 transition procedures, the situ-
ation parity(xi) 6= vi−1 can occur at most k times, and each
time it occurs a single cell level is wasted. Finally, as in Theo-
rem 1, when the encoding process Eo, E1, . . . , Es−1 terminates
there are at most k − 1 parity blocks that are not full and, in
the worst case, each of them uses just one cell level. How-
ever, now these parity blocks contain only dk/2s−1e = 2 cells
each, and thus contribute at most (k− 1)(2q− 3) unused cell
levels. Putting all of this together, we find that at most

(q−1)(k−1)
(

2(s−1)dlogq(k+2)e + 3
)

+ k(s−1) (6)

cell levels are wasted or left unused. Clearly, this expression is
dominated by (5), and thus bounded by O

(

qk log2k/log q
)

.

For large q, the upper bound of O
(

qk log2k/log q
)

on the
deficiency of our scheme can be improved by using a more ef-
ficient “packaging” of index blocks in the flash memory. As
before, we allocate a batch of 2(k − 1) index blocks to each
encoding stage except E0. But now, every index block will oc-
cupy µ′ = dlog2(k+2)e cells rather than µ = dlogq(k+2)e
cells, and the indices will be written in binary rather than in
the base-q number system. This allows index blocks that cor-
respond to successive encoding stages to be “stacked on top
of each other” in the same memory cells. Specifically, the en-
coding stage E1 will use only cell levels 0 and 1 to record the
indices in its index blocks. Once this stage is over, the index
information recorded during T1 and E1 is no longer relevant,
and the level of all the 2(k− 1)µ′ cells in the 2(k− 1) index
blocks can be raised to 1. Thereafter, provided q > 3, the tran-
sition procedure T2 and the encoding map E2 can use cell lev-
els 1 and 2 to record the relevant index information in the same
memory cells. Proceeding in this manner, we can accommo-
date up to q− 1 batches of index blocks in 2(k− 1)µ ′ memory
cells. We shall refer to this indexing scheme as stacked binary
indexing and denote the resulting flash code by C′.

Theorem 3. The write deficiency of the flash code C′ defined
by the sequence of decoding/encoding maps D0,D1, . . . ,Ds−1
and Eo, E1, . . . , Es−1 that use stacked binary indexing is at most
O(qk log k) if q > log2 k, and at most O(k log2 k) otherwise.

Proof. With stacked binary indexing, the number of cell le-
vels wasted in all the 2(k− 1)(s− 1) index blocks is at most

2(q − 1)(k − 1)

⌈

s − 1
q − 1

⌉

dlog2(k+2)e (7)

Although for most values of k and q this is strictly less than (5),
all the other terms in (6) are still dominated by (7).

Remark. If we need to store k symbols, rather than bits, over
an alphabet of size ` > 2, the same flash code can still be used,
with an appropriate interface. With the linear womcode of [7],
the `-ary symbols can be represented using `− 1 bits in such
a way that any symbol change corresponds to a single bit tran-
sition. The flash code C′ can be now applied as is, and the re-
sulting write deficiency is O

(

max{q, log2k`} k` log k`
)

.

V. FLASH CODES OF CONSTANT RATE

All of our results so far pertain to the case where n > k2. In
this section, we briefly examine the situation where both k and
n are large, while k/n = R for some constant R < 1. Observe
that write deficiency δ(C) = n(q−1)− t is not an appropriate
figure of merit in this situation: a trivial code that guarantees
t = 0 writes achieves write deficiency n(q−1) = k(q−1)/R,
which is within a constant factor 2/R from the lower bound (1).
Thus we will state our results in terms of the guaranteed num-
ber of writes t rather than the write deficiency δ(C).

If q = 2, we can easily guarantee Ω(n/ log k) writes as fol-
lows: partition the n cells into blocks of size dlog2ke and each
time an information bit changes, record its index in the next
available block. For q > 2, the same method guarantees about
bn/ logqkc = Ω(n log q/ log k) writes, but we can do better.

Let us partition the n cells into two groups: the index group
consisting of n − k cells and the parity group consisting of k
cells. The index group is then subdivided into m = b(n−k)/sc
blocks, each consisting of s = dlog2ke cells. The writing pro-
ceeds in q − 1 phases. During the first phase, every time an
information bit changes, its index is recorded in binary (using
cell levels 0 and 1) in the next available index block. After m
writes, the first phase is over. We then copy the k information
bits into the k cells of the parity group, and raise the level of
all cells in the index group to 1. The second phase can now
proceed using cell levels 1 and 2, and recording changes in in-
formation bits relative to the values stored in the parity group.
At the end of the second phase, the current values of the k bits
are recorded in the parity cells using levels 1 and 2. And so on.
This simple coding scheme achieves

m(q − 1) =
n(q−1)(1− R)

log2 k
= Ω

(

nq
log k

)

(8)

writes (where the middle expression ignores ceilings/floors by
assuming that k is a power of two and that n − k is divisible
by log2 k). If q is odd and R > 0.415, we can do a little better
by using the ternary number system (cell levels 0, 1, 2) in both
the index group and the parity group. In this case, the size of
the parity group is dk/ log23e cells and 1− R in (8) can be re-
placed by (log23−R)/2. Finally, for all R > 0.755 and q− 1
divisible by three, the quaternary alphabet is optimal, leading
to a factor of (2− R)/3 rather than 1− R in (8).

REFERENCES
[1] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans.

Inform. Theory, vol. 30, pp. 470–480, September 1984.
[2] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating codes for

expected performance,” Proc. 46-th Allerton Conf. Communication, Con-
trol and Computing, pp. 1389–1396, Monticello, IL, September 2008.

[3] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint information
storage in write asymmetric memories,” Proc. IEEE Intern. Symposium
on Information Theory, pp. 1166–1170, Nice, France, June 2007.

[4] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” Proc.
IEEE International Symposium on Information Theory, pp. 1741–1745,
Toronto, Canada, July 2008.

[5] A. Jiang, M. Landberg, M. Schwartz, and J. Bruck, “Universal rewriting in
constrained memories,” Proc. IEEE International Symposium on Informa-
tion Theory, Seoul, Korea, July 2009.

[6] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” Proc. IEEE International Symposium on Information
Theory, pp. 1731–1735, Toronto, Canada, July 2008.

[7] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-
mation and Control, vol. 55, pp. 1–19, December 1982.

[8] E. Yaakobi, A. Vardy, P.H. Siegel, and J.K. Wolf, “Multidimensional flash
codes,” Proc. 46-th Allerton Conference on Communication, Control and
Computing, pp. 392–399, Monticello, IL, September 2008.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:15 from IEEE Xplore. Restrictions apply.

