
Optimal Parsing Trees for Run-Length Coding of
Biased Data

Sharon Aviran, Paul H. Siegel, and Jack K. Wolf
University of California, San Diego

La Jolla, CA 92093, USA
Emails: {saviran, psiegel, jwolf}@ucsd.edu

Abstract— We study coding schemes which encode uncon-
strained sequences into run-length-limited (d, k)-constrained se-
quences. We present a general framework for the construction of
such (d, k)-codes from variable-length source codes. This frame-
work is an extension of the previously suggested bit stuffing, bit
flipping and symbol sliding algorithms. We show that it gives rise
to new code constructions which achieve improved performance
over the three aforementioned algorithms. Therefore, we are
interested in finding optimal codes under this framework, optimal
in the sense of maximal achievable asymptotic rates. However,
this appears to be a difficult problem. In an attempt to solve it,
we are led to consider the encoding of unconstrained sequences of
independent but biased (as opposed to equiprobable) bits. Here,
our main result is that one can use the Tunstall source coding
algorithm to generate optimal codes for a partial class of (d, k)
constraints.

I. INTRODUCTION

A binary sequence satisfies a run-length-limited (d, k)
constraint if it has the following two properties: successive
ones are separated by at least d zeros and the number of
consecutive zeros does not exceed k. Such sequences are called
(d, k)-sequences and have found widespread use in magnetic
and optical recording [1]. In constrained-code design, we
typically model the unconstrained user-data as a stream of
independent equiprobable bits. The focus of this paper is
on the design of efficient codes which convert such inputs
into (d, k)-sequences. Here, efficiency relates to asymptotic
(asym.) encoding rates, where the rate R of a (d, k)-code
is defined as the ratio of the average input length and the
average output length. The rate is evaluated with respect to
the Shannon capacity of the (d, k) constraint, a measure which
was shown by Shannon to equal the maximum rate achievable
by any (d, k)-code [2]. It is an established result [2] that for
any admissible (d, k) pair, the capacity exists and is given by
C(d, k) = log2 λd,k, where λd,k is the largest real root of the
constraint’s characteristic polynomial. The most efficient code
is thus a code whose rate equals the capacity. We say that such
a code achieves capacity or is capacity-achieving.

The central theme of this work is twofold: a study of prior
(d, k)-code constructions from a source coding perspective
and the construction of new (d, k)-codes based on variable
input-length (VL) source codes. The idea of constructing
(d, k)-codes from source codes is not new. For example, by
reversing a source encoder-decoder pair, the decoder of a
suitable source code can be used to encode unconstrained

Bernoulli(1/2)-distributed bitstreams into (d, k)-sequences in
a recoverable manner [3], [4]. In such designs, the choice
of source code is guided by special properties of (d, k)-
sequences with maximum-entropy (maxentropic) distribution.
Such sequences are desirable as they correspond to maxi-
mizing the code rate [2]. It is well-known that they can be
parsed into a concatenation of binary strings from the set
Γd,k = {0d1, 0d+11, · · · , 0k−11, 0k1}, where the strings are
statistically independent and identically distributed (i.i.d.) [2].
From now on, we refer to the strings in Γd,k as constrained
phrases. The constrained-phrase maxentropic distribution is
given by Λd,k = (λ

−(d+1)
d,k , λ

−(d+2)
d,k , · · · , λ

−(k)
d,k , λ

−(k+1)
d,k),

where λ
−(d+i+1)
d,k is the probability of 0d+i1. The source code

then serves as a distribution transformer (DT) between Λd,k

and a Bernoulli(1/2) distribution. The (d, k)-code thus applies
the inverse transformation so as to induce Λd,k on the output.

An alternative approach emerges from the literature on
lossless coding for transmission over noiseless, memoryless
channels with unequal symbol-transmission costs. One can
accommodate (d, k)-codes into this framework by modelling
(d, k)-sequences as the outputs of a special memoryless chan-
nel [1]. Existing literature is mainly concerned with two types
of source codes: fixed-to-variable length and variable-to-fixed
length (VFL), the latter being sparsely studied. Our work
relates to the second type. In this case, Lempel, Even, and
Cohn [5] derived an algorithm for constructing a prefix-free
code of minimum average transmission cost per source symbol
when the source symbols are equiprobable. Here, we relax the
equiprobable source assumption.

This work builds upon three prior (d, k)-code constructions:
the bit stuffing (BS), bit flipping (BF), and symbol sliding
(SS) algorithms. In all constructions, the input sequences are
first fed into a binary DT. The DT preserves the bitwise
independence, but results in bits that are biased towards
one of two values, i.e., they constitute an i.i.d. Bernoulli(p)-
distributed source. As these sequences are still unconstrained,
they undergo additional processing by a constrained encoder.
It is this component which varies among the algorithms.
Note that although one can directly (d, k)-encode the standard
equiprobable input, it turns out that the introduction of a bias
into the data is key to achieving improved rates [6]. Intuitively
speaking, it better conforms the data to the characteristics
of maxentropic sequences. It is also worth noting that the

ISIT 2006, Seattle, USA, July 9 14, 2006

14951424405041/06/$20.00 ©2006 IEEE

binary DT is a special case of general DT’s, such as the
ones introduced in [3], [4]. In fact, some of these source
coding techniques can be readily applied to the binary case,
where a Bernoulli(p) distribution replaces Λd,k. Hence, a
direct transformation to Λd,k requires a similar implementation
to a binary DT. Still, the schemes presented here provide
alternative methods of approximating Λd,k. The challenge here
is to approximate it with a non-conventional source, while
using simple techniques.

The rest of the paper is organized as follows. In Section II,
we review the BS, BF and SS algorithms as well as the Tunstall
algorithm [7], which generates VFL source codes of minimal
compression ratio. Section III is devoted to studying (d, k)-
codes that are based on VL source codes. We first examine
the BS, BF, and SS algorithms within the context of a general
framework for constructing (d, k)-codes from source codes
(Sec. III-A). We demonstrate that the framework gives rise to
new improved code constructions. This prompts us to search
for optimal codes, optimal in the sense of maximal achievable
asym. rates (Sec. III-B). Nevertheless, finding such codes is
a difficult problem. We therefore resort to studying a simpler
related problem, where we seek an optimal (d, k)-code for
a biased source (Sec. III-C). Interesting properties of optimal
(d, k)-codes arise, leading to a solution to the simpler problem
for a subclass of (d, k) constraints, based upon the Tunstall
algorithm. Related open problems are also discussed.

II. BACKGROUND AND RELATED WORK

A. The bit stuffing, bit flipping and symbol sliding algorithms

The bit stuffing algorithm (BS) [6] sequentially writes an
unconstrained bitstream while inserting extra bits whenever
the constraint might be violated. The encoder consists of a
binary distribution transformer (DT) followed by a bit stuffer.
The DT bijectively converts a sequence of i.i.d. unbiased
(Pr{0} = 1

2) bits into a p-biased sequence of independent
Bernoulli bits, whose probability of a 0 is some p ∈ [0, 1],
p �= 1

2 . Throughout, we refer to p as the bias. The asym.
expected rate of such conversion is h(p), where h(p) is the
binary entropy function. The p-biased sequence is then fed into
the bit stuffer, which tracks the number of consecutive zeros
in the encoded sequence. Once it equals k, a 1 followed by d
0’s are inserted (stuffed). Whenever encountering a biased 1,
d 0’s are stuffed. The decoder applies similar logic to identify
and discard the stuffed bits. The inverse DT then recovers the
unbiased input from the p-biased sequence.

The expected rate of the BS scheme is the product of the
expected rates of the two components. A tradeoff between
these two rates requires one to optimize p in order to maximize
the average overall rate. In [6], Bender and Wolf showed
that by judiciously biasing at the first step, the algorithm
achieves capacity when k = d + 1 or k = ∞, and is
near-capacity achieving for many other (d, k) pairs. A more
recent work [8] modified BS by adding a controlled flipping
of unconstrained bits before writing them. The modification,
named the bit flipping algorithm (BF), was shown to achieve

improved average rates over BS for most (d, k) constraints.
Additionally, it achieves capacity only for the (2, 4) constraint.

In a subsequent work, Sankarasubramaniam and McLaugh-
lin [9] generalized both BS and BF into an improved con-
struction, called the symbol sliding algorithm (SS). Their key
insight was an interpretation of BS and BF as repeatedly
applying certain bijective mappings between the strings in
the set T d,k

BS = {1, 01, · · · , 0k−d−11, 0k−d} and the phrases
in Γd,k. SS is essentially an adjustment of the mapping to
obtain further improved rates. Specifically, symbol sliding
with index j (SS(j)) corresponds to the mapping indicated
by the arrows between the two leftmost columns in Fig. 1.
The fourth column lists the probabilities that are induced on
the statistically independent constrained phrases. It can be
shown [9] that BS and BF are special cases of symbol sliding
with indices j = 0 and j = 1, respectively. The idea behind
modifying the mapping is that it changes the distribution that
is induced on the constrained phrases, and may provide a
better match to their maxentropic distribution. For example,
the probabilities induced by BS appear in the third column.
Starting with the BS-induced distribution, SS(j) amounts to
sliding p(k−d) up by j positions, while pushing each of
p(k−d−j)(1 − p), · · · , p(k−d−1)(1 − p) down by one position
(see Fig. 1). The sliding index j serves as an additional
parameter which needs to be optimized, but in turn provides
more flexibility in fitting the distribution to Λd,k. Indeed, SS
demonstrates rate gains over BF for several constraints and
additionally achieves capacity for all (d, 2d + 1) constraints.

Fig. 1. Mapping and induced probabilities of symbol sliding with index j.

B. The Tunstall algorithm

A variable-to-fixed length (VFL) code partitions an M -ary
source sequence into a concatenation of variable-length M -ary
source words that are encoded into uniform-length codewords.
The code is defined by specifying a source-word set T =
{w1, · · · , wK} and a bijective assignment of the codewords to
the source words. Throughout this paper, we restrict attention
to codes that use exhaustive and prefix-free source-word sets.
We shall work with their tree representations, which are called
parsing trees. A typical source coding problem is to find a
VFL code that minimizes the compression ratio, defined as
the ratio of average output and average input lengths. We say

ISIT 2006, Seattle, USA, July 9 14, 2006

1496

that such a code is VFL-optimal. Additionally, we assume a
memoryless and stationary source S = {s1, · · · , sM}, which
is ruled by a given probability distribution P = {p1, · · · , pM}.
Under this assumption, the problem reduces to maximizing the
expected input length Lin

T (P) =
∑

wi∈T Pr(wi, P) · L(wi),
where L(w) stands for the length of a string w and Pr(w,P)
represents its probability [7].

In [7], Tunstall provided a simple procedure to construct
a VFL-optimal parsing tree for any valid parsing tree size
|T | = K. The idea is to grow the tree from the top down by
successively extending it from the leaf of largest probability.
The algorithm goes as follows.

1) Initialize: let T := S be the tree containing the root and
its M children. The leaves of T correspond to the M
source letters and their probabilities are listed in P .

2) While |T | �= K, repeat the following operations on T :

• Select a leaf wi ∈ T with maximal probability and
add its M children to the tree,

• Compute the leaf probabilities for the extended tree.

III. A SOURCE CODING PERSPECTIVE

A. Binary-transformer algorithms revisited

Consider a system that encodes p-biased sequences into
(d, k)-sequences. The encoder parses the input stream into
binary source words, and subsequently replaces each source
word with a constrained phrase from Γd,k. The (d, k)-code,
thus, has two parameters: a set of source words T =
{w1, · · · , wk−d+1} and a bijective assignment f : T → Γd,k.
In our model, the input’s zero-memory and stationarity extends
to the source-word sequences as well as to the constrained-
phrase sequences. One can easily compute the probability
distribution PT (p) = {Pr(w1, p), · · · , P r(wk−d+1, p)} that is
induced on T as well as on Γd,k. The asymptotic average
information rate of the (d, k)-code is

Rd,k
T,f (p) =

Lin
T (p)

Lout
T,f (p)

=

∑
wi∈T Pr(wi, p) · L(wi)∑

wi∈T Pr(wi, p) · L(f(wi))
. (1)

The problem of interest is finding a code that maximizes the
rate for a given p. Such a code is said to be (d, k)-optimal.
Although the problem is mentioned in the literature [5], to the
best of our knowledge, it has not been treated for general p’s.

Similarly, we can derive (d, k)-codes for systems that op-
erate on unbiased data and utilize a DT to introduce a bias
into the data before parsing takes place. The problem then
is to find a pair (p, (T, f)) of a bias and a parsing-tree code
that jointly maximize the asymptotic average overall rate of
the system, given by Id,k

T,f (p) = Rd,k
T,f (p) · h(p). Before we

proceed to examine parsing trees in more detail, we point out
the following useful property of such (d, k)-optimal codes.

Lemma 1: Given a bias p and a (d, k)-code (T, f), let
vi = f−1(0d+i−11) for all 1 ≤ i ≤ k − d + 1. If V =
(v1, · · · , vk−d+1) satisfies the condition

Pr(v1, p) ≥ Pr(v2, p) ≥ · · · ≥ Pr(vk−d+1, p) (2)

then Rd,k
T,f (p) is maximum over all assignments of Γd,k to T .

Lemma 1 implies that a search for a maximal-rate code need
only account for the one code that optimizes the assignment
for each of the candidate parsing trees. Such a code assigns the
shortest phrase to the most probable word, the next shortest
phrase to the second most probable word, and so on. We can
thus omit the assignment f when referring to a code.

Recall that in Section II-A, we interpreted BS, BF and
SS as particular mappings between the strings in T d,k

BS =
{1, 01, · · · , 0k−d−11, 0k−d} and the phrases in Γd,k. Observ-
ing that T d,k

BS is exhaustive and prefix-free, we can view BS,
BF and SS as special cases of codes under the above-described
framework. The sole difference between the algorithms is their
specified assignments of the constrained phrases to the input
words, leading to different constrained-phrase probabilities.
From now on, we shall refer to T d,k

BS as the BS tree.
Consider now an optimal assignment for the BS tree. It is

attained by listing the input words in order of non-increasing
probability and by assigning increasingly longer phrases to
them. However, we have seen that the ordering varies with p,
and consequently, so does the optimal assignment. A search for
this assignment is implicitly performed by the SS algorithm.
The sliding of p(k−d) up to any index j > 0 (see Fig. 1)
attempts to rearrange the induced probabilities in the desired
order. It can be shown that when optimizing for j, the algo-
rithm slides p(k−d) up to its proper position in the ordered set.
In summary, BS and BF apply fixed assignments irrespectively
of the bias. In contrast, the extension to SS results in optimized
assignment per given bias, and can thus potentially achieve
improved rates over the former two algorithms.

Having optimized both the assignment and the bias per the
BS tree, we wish to examine the achievable rates associated
with other parsing trees. For a given bias, each parsing tree
of size k − d + 1 may be considered in conjunction with its
optimal assignment. We now remind the reader that the SS
algorithm was motivated by the idea that a judicious shuffling
of the BS probabilities could result in an improved match
to the maxentropic vector Λd,k [9]. Nevertheless, can other
trees induce probabilities that provide an even better match? In
what follows, we are initially interested in finding the tree and
bias that jointly maximize the overall rate of a scheme which
includes a DT. We then address a somewhat simpler problem
of finding the (d, k)-optimal tree when the bias p is given.
Although the first problem is more interesting in the context
of bit stuffing, an efficient solution to the second problem may
simplify the solution and analysis of the first.

B. Jointly optimal bias and parsing-tree code

Although one can obtain a closed-form expression for the
average rate associated with each tree and each bias, the
complexity of the rate expressions makes analysis intractable.
For that reason, numerical optimization was carried out, con-
sidering all possible parsing trees of size k − d + 1 and all
biases p such that 0 < p < 1. In addition, the fast-growing
number of candidate trees confined the search to small values
of k−d. For each such value, a broad range of (d, k) pairs was
considered. Table I shows optimal trees for numerous (d, k)

ISIT 2006, Seattle, USA, July 9 14, 2006

1497

TABLE I

OPTIMAL PARSING-TREE CODES FOR VARIOUS (d, k) CONSTRAINTS

(d, d + 3) Best (d, d + 4) Best (d, d + 5) Best
Constraint Tree Constraint Tree Constraint Tree

(0,3) 1 (0,4) BS (0,5) BS
(1,4) SS (1,5) BF (1,6) 5
(2,5) SS (2,6) 3 (2,7) 6
(3,6) SS (3,7) SS (3,8) SS
(4,7) SS (4,8) 3 (4,9) SS

(5,9) 3 (5,10) SS
(6,11) 7

5 ≤ d ≤ 30 2 6 ≤ d ≤ 30 4 7 ≤ d ≤ 30 8

Fig. 2. The asymptotically optimal trees for (d, d + 3), (d, d + 4) and
(d, d + 5) constraints, and the general form of the BS tree.

constraints, where k − d = 3, 4 and 5. We refer to the trees
by arbitrary labels, where Fig. 2 depicts trees number 2, 4, 8
as well as the general form of the BS tree and Fig. 3 depicts
all other optimal trees. Additionally, for the BS tree, we point
out the most efficient of the three algorithms.

It can be seen from Table I that for many constraints, there
exists a code construction which outperforms SS. This means
that certain trees give rise to constrained-phrase distributions
which provide a better match to the maxentropic vector Λd,k

than the BS-tree’s induced distribution. For example, when
k − d = 3 and 5 ≤ d ≤ 30, the distribution P2(p) = {(1 −
p)2, p(1−p), p(1−p), p2} leads to improved performance over
the BS distribution P d,d+3

BS (p) = {1−p, p(1−p), p2(1−p), p3}.
Another interesting effect is a convergence towards a spe-

cific (d, k)-optimal tree, starting from a certain d. Although
we have not proved that this indeed holds for d’s larger than
30, we shall call these trees the asymptotically optimal trees.
We outline the difference between these trees and the BS tree
using the following definitions. We say that a binary tree is a
skew tree if it is obtained by either consistently extending its
rightmost leaf or by consistently extending its leftmost leaf.
In contrast, a balanced tree of size K is a binary tree where
each subtree of the root is of the same height if K = 2D for
some D, or where the two subtrees differ in height by at most
1 and are balanced as well if K �= 2D. Clearly, the BS tree is

Fig. 3. Other optimal trees for (d, d+3), (d, d+4) and (d, d+5) constraints.

a skew tree, while the asym. optimal trees are all balanced.
A few questions arise. Do the asym. optimal trees maintain

their optimality as d approaches infinity? If so, is there an
asym. optimal tree for any given k − d? Can we characterize
these trees, for example, by their skewness? Lastly, how can
one efficiently find these trees? These questions are difficult
to address without a good insight into the joint optimization
problem. In the following subsection we try to pursue a better
understanding of the problem by studying a related problem.

C. Optimal parsing tree codes for a given bias

We next tackle the problem of finding a (d, k)-optimal tree
when the bias is given; that is, we remove the DT from the
system. However, this problem is still hard and has not been
addressed in prior literature. The only case that was solved
algorithmically is when p = 0.5 [5]. Therefore, we resorted
to an exhaustive search over all possible parsing trees of size
k − d + 1 for each of the (d, k) pairs considered before and
for each bias p ∈ (0, 1).

Suppose we fix k − d and we inspect the various rate
functions, while gradually increasing d, starting from d = 0.
When examining the (d, k)-optimal code per bias, we noticed
that a fixed pattern emerges once a certain d value is crossed.
Specifically, past this point (and up to d = 30), it appears that
the (d, k)-optimal tree per bias is fixed, and that the range
of biases (0 < p < 1) is divided into continuous subintervals,
each corresponding to a certain optimal tree. We found that the
d thresholds for k−d = 3, 4 and 5 are 3, 6 and 6, respectively.
Yet, our most interesting finding is that the fixed (d, k)-optimal
tree for each considered bias is, in fact, the Tunstall tree for
that bias. We can intuitively explain it as follows. A code
maps the input words into phrases of various lengths ranging
from d + 1 to k + 1. When d is considerably larger than
the fixed k − d, the variation in phrase lengths is negligible,
and they are approximately equal. That said, it only seems
reasonable that the VFL-optimal coding scheme will prove to
be an efficient scheme in those cases as well. Still, there seems
to be more to these observations than the given interpretation,
as the observed d thresholds are comparable to the (k − d)’s.

It is interesting to find whether the revealed behavior indeed
applies to arbitrarily large d’s and (k − d)’s. The next lemma
settles this question by asserting the conjectured properties.

Lemma 2: Let m > 0 be an integer and TTun(p) be a
Tunstall tree of size m + 1 that corresponds to a p-biased
binary memoryless source. Then, there exists an integer dm,
such that for any (d, d + m) constraint with d ≥ dm, the
following holds for all 0 < p < 1:

Rd,d+m

TT un(p)(p) ≥ Rd,d+m
T (p) (3)

for any parsing-tree code T where |T | = m + 1.
Proof: For any (d, d + m)-code T , we can write

Rd,d+m
T (p) =

Lin
T (p)

d +
∑m+1

i=1 Pr(vi, p) · i
=

Lin
T (p)

d + Lsub
T (p)

(4)

where vi = f−1(0d+i−11), and where both Lsub
T (p) and

Lin
T (p) are independent of d. Now, TTun(p) attains the max-

ISIT 2006, Seattle, USA, July 9 14, 2006

1498

imum rate for any p if and only if (3) holds for any T of
size m + 1. Substituting (4) into (3) and rearranging terms,
we obtain the following equivalent condition for any T and p:

d·

(
1

Lin
T (p)

−
1

Lin
TT un(p)(p)

)
≥

Lsub
TT un(p)(p)

Lin
TT un(p)(p)

−
Lsub

T (p)

Lin
T (p)

. (5)

Clearly, the right-hand side of (5) as well as the expression in
parenthesis on the left-hand side are independent of d. Since
a Tunstall tree maximizes Lin

T (p), we have

1

Lin
T (p)

−
1

Lin
TT un(p)(p)

≥ 0 ∀ 0 < p < 1. (6)

Furthermore, it can be shown that the inequality (6) is strict
whenever T is not a Tunstall tree. Hence, for a large enough
d, the left-hand side of (5) will be greater than its right-hand
side for all p. In case T is another Tunstall tree (a Tunstall
tree is not always unique), one can show that it achieves the
same rates as TTun. We complete the proof by setting dm to
the smallest d for which (5) holds for all parsing trees.

In light of Lemma 2, we proceed to examine additional
characteristics of Tunstall trees. Here we present results by
Fabris et al. [10], pertaining to the relationship between the
bias and the structure of the Tunstall tree. They define a Tun-
stall region to be the set of all source probability distributions
that are optimally encoded by the same Tunstall code. An
analysis of the binary case results in a full characterization
of these regions. Representing the source distribution by its
bias p, it is proved that the Tunstall regions have the form of
continuous subintervals of the unit interval. As noted earlier,
there exist biases for which the Tunstall tree is not unique, thus
implying that the subintervals are not necessarily disjoint. It
can be shown, however, that the performances of the multiple
Tunstall codes are the same, hence one can choose a single
representative tree per bias. To resolve this ambiguity, Fabris et
al. slightly modify the Tunstall algorithm, so that it generates a
unique tree. Consequently, each p belongs only to one Tunstall
region, and so the regions form a partition of (0, 1) into distinct
subintervals. Fig. 4 shows an example from [10] demonstrating
the segmentation of the interval (0.5, 1) into three Tunstall
regions in the case when the tree size is 6. The paper provides
a simple method to compute the region boundaries and at the
same time, to construct all trees. It is interesting to observe
the structure of the two Tunstall trees at the extremes of the
half-unit interval. These are always the balanced tree, which
is optimal at least for p = 0.5, and the skew tree (the BS tree),
which is optimal in the neighborhood of p = 1.

The above-mentioned properties of Tunstall codes are es-
pecially appealing in the context of the complex optimization
problem with which we dealt in Section III-B. For every (d, d+
m) pair where d ≥ dm, the following two-stage approach
greatly simplifies it. First, one can carry out the algorithm
described in [10] to compute the Tunstall regions and trees.
Subsequently, one can evaluate the rate associated with the
proper tree at each bias and proceed to optimize the overall
rate. This way, optimization is restricted to a limited number

Fig. 4. Tunstall regions with their corresponding trees for K = 6. After [10].

of Tunstall trees, which can be easily constructed. An upper
bound derived in [10] implies that the number of candidate
Tunstall trees will not exceed the order of (k−d) log(k−d) –
a significantly smaller number than the number of all parsing
trees. Lemma 2, in conjunction with the results of [10], also
provides some insight into the asym. convergence pattern we
observed in Table I. The lemma suggests that from a certain
d onwards, only a few fixed Tunstall trees, among which is
the BS tree, are competing for the maximum. Moreover, one
can verify that the asym. optimal trees in Table I are always
the balanced Tunstall trees. Although we can not infer that
this will always be the case, we can narrow down the “asym.
candidates” to the relatively small set of Tunstall trees.

We have shown that there exists a threshold behavior of
the (d, k) constraints for which the (d, k)-optimal code is
always a Tunstall code. However, we did not compute the
d threshold, nor provide a method for doing so. Moreover,
devising a general algorithm that generates the (d, k)-optimal
tree given arbitrary d, k and p remains an open problem.

ACKNOWLEDGMENT

This research was supported in part by NSF Grant CCR-
0219582, part of the Information Technology Research Pro-
gram and by the CMRR at UCSD.

REFERENCES

[1] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, pp. 2260–2299, Oct. 1998.

[2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pt. I, pp. 379–423, Jul. 1948.

[3] K. J. Kerpez, “Runlength codes from source codes,” IEEE Trans. Inf.
Theory, vol. 37, no. 3, pp. 682–687, May 1991.

[4] G. N. N. Martin, G. G. Langdon, and S. J. P. Todd, “Arithmetic codes for
constrained channels,” IBM J. Res. Develop., vol. 27, no. 2, pp. 94–106,
Mar. 1983.

[5] A. Lempel, S. Even, and M. Cohn, “An algorithm for optimal prefix
parsing of a noiseless and memoryless channel,” IEEE Trans. Inf. Theory,
vol. 19, no. 2, pp. 208–214, Mar. 1973.

[6] P. E. Bender and J. K. Wolf, “A universal algorithm for generating
optimal and nearly optimal run-length-limited, charge constrained binary
sequences,” in Proc. IEEE Int. Symp. Information Theory, San Antonio,
TX, Jan. 1993, p. 6.

[7] B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disser-
tation, Georgia Institute of Technology, Atlanta, GA, 1967.

[8] S. Aviran, P. H. Siegel, and J. K. Wolf, “An improvement to the bit stuffing
algorithm,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2885–2891, Aug.
2005.

[9] Y. Sanakarasubramaniam and S. W. McLaughlin, “Capacity achieving
code constructions for two classes of (d, k) constraints,” submitted to
IEEE Trans. Inf. Theory, Jun. 2004.

[10] F. Fabris, A. Sgarro, and R. Pauletti, “Tunstall adaptive coding and
miscoding,” IEEE Trans. Inf. Theory, vol. 42, no. 6, pp. 2167–2180, Nov.
1996.

ISIT 2006, Seattle, USA, July 9 14, 2006

1499

