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WORST CASE CODE  PATTERNS FOR MAGNETIC BURIED  SERVOS 

Paul Siege1 and Brian Marcus 

IBM Research  Laboratory 
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A technique for determining worst case run-length-limited 
(RLL) code patterns  for data-to-servo  coupling  in  magnetic 
buried servos is presented. The problem is reduced to a  general 
dynamic  programming  problem,  whose  solution  is  described. 
The general problem can require large amounts of computation, 
so a  method is also  developed to determine  approximate worst 
case  patterns by solving a classical dynamic programming 
problem using the Viterbi algorithm. An error  estimate for  the 
approximate  solution is also derived. Computational  results are 
presented for  the (2,7) RLL constraint. 

Introduction 

A magnetic buried servo head positioning system, and 
other applications of buried  servo signals were  described  in 
[1,2]. The problem of interfering signals in the servo detector 
during data write  operations was discussed there. 

We have  developed  a  technique for finding  worst  case 
patterns  for this  coupling between  the  data write  driver and 
servo detector.  These  are  important  in determining the 
attenuation required from a data write  filter or digital data 
transformation  to  control worst  case interference during data 
write  operations.  The  technique,  based on dynamic 
programming,  is  applicable to run-length-limited (RLL)  (d,k) 
constrained codestrings  which are  standard  in recording 
channels using peak detection [3]. The  technique  extends to any 
set of code  strings represented  by a finite-state transition 
diagram (FSTD). 

As an example, we considered  code  strings which satisfy 
the (2,7) constraint, which forms the basis for  the recording 
code in the IBM 3380. We calculated the power of worst case 
patterns  at several servo  frequencies and compared  this to  the 
average (2,7) power in  an  appropriate  bandwidth  around  those 
frequencies. 

- 11. Reduction to Dynamic Programming 

The finite state transition diagram (FSTD) which generates 
the (2,7) constraint in NRZ  notation is given in Fig. 1 below: 

+ I  1 - 1 5  Figure 1. 

For  each (2,7) constrained  bit string, the write  driver 
output  can  be described by a  square wave x(t) with amplitude 
levels 1 and -1. 

The power of the signal x is given by: 
2 

lim 1 
M-TM 

P(f) = - I imx(t)e-2"iftdt I 
where T=l/fb (the reciprocal of the bit frequency) and M  is the 
length of the  pattern in bits. Our problem is: 

Find  the (2,7) pattern  x(t) (called the worst  case 
pattern) which maximizes P(f)  for a given rational 
multiple of the bit  frequency f=(p/q)fb 

We note  that this is the same as maximizing the magnitude of 
the  Fourier coefficient X(f) where 

It can  be shown that  the worst case  power at f results 
from a pattern of period no greater than Nq,  where N  is the 
number of states in the  finite  state diagram for  the code 
constraints. The periodic pattern is  a "q-simple cycle". That is, 
it is a cycle of length Nq in the FSTD which begins and ends at 
the same state of the diagram and passes through  distinct states 
at all intermediate multiples of q bit time's. In particular, we 
may assume that  x(t) is of finite  duration  t where 05t   STM, 
with TMSNq. See Section IV for further discussion. 

We now  indicate how the maximization of' X(f)  can  be 
reduced to a  dynamic  programming  problem. See [4] for a 
discussion of classical dynamic programming. We re-write 

(recall that x is constant on the interval [jT,(j+l)T) ). This is a 
problem of the following general type. 

General  Dynamic  Programming Problem: 

Let G be an FSTD whose edges are labelled by complex 
numbers. Let wo, wl, ..., wk be a periodic sequence of complex 
numbers. For each  finite path,  y=eoel...eM-l, let 

M-1 

where l(ej)  denotes  the label of the jth edge, ej, in y. The 
problem is to find, for  each fixed positive integer  M,  a  path y in 
G of length  M which maximizes I g(y) I . 

In our case,  the labels l(e$ are real and are given by x(jT) 
(which can be + 1  or - l ) ,  and  the complex numbers wj are given 
by the integrals  above  in (3). A solution to  the general problem 
is described in  Section IV. 

In  order  to reduce the amount of computation  required, an 
alternative  approach was developed which produces  approximate 
worst case  patterns.  The original problem, which involves 
complex quantities, was approximated by a  problem involving 
only real  quantities. The approximate  solutions  require  only 
classical dynamic programming techniques. Details are given in 
Section  IV. An error  bound, derived in Section IV, indicates 
that  an  arbitrary degree of accuracy can be achieved  in the 
approximate  solution by repeated application of the classical 
techniques. 
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- 111. Computational  Results 

Table 1 gives approximate worst  case  patterns  for  the 
(2,7) constraint at a  range of servo frequencies. The phase used 
in the calculations was @=O. See Section IV for a discussion of 
the choice of phase 6 in the approximate solution. The  code 
clock frequency fb=48 MHz. 

Servo Worst Case 
Frequency Period ( 2 , l )  Pattern 

(run lengths) (fraction) (MHz) (bits) 

31/32 4.5 16 
f/12 4.0 6 

7f/96 3.5 48 
1/16 3.0 8 

51/96 2.5 144 
1/24 2.0 36 
1/32 1.5 16 
f/48 1.0 144 
f/96 0.5 48 

6 5 5  
6 
1 1 7 1 1 1 6  
8 
88883388883388883388833 
8 3 3 8 3 3 8  
8 3 5  
8383383833838338383383833838 
8 3 8 3 8 3 8 3 4  

Table 1 

Notes: 
1. Run lengths  represent the number of NRZI  zeros (0) 

plus the ending NRZI  one  (1).  For example, 6 5 5 refers to  the 
N R Z I p a t t e r n O O O O O 1 O O O O 1 O O O O 1 .  

2. The period refers to  the period of the  (2,7) NRZI  code 
pattern. The write current waveform associated to  the  pattern 
will have twice the period shown if the number of runs in the 
pattern is odd, and  the same period if the number of runs is 
even. For example,  repetition of the  pattern 6 gives a waveform 
which is +1 for 6 bit times, then -1 for 6 bit times, and so on. 
The waveform period is 12 bits, twice the period of the  (2,7) 
pattern. In fact, all the frequencies  except f/48 have an  odd 
number of runs in the  pattern, so the waveform will have twice 
the period shown in the table. 

U 

-1 OJ 
V 

Figure 3. 
Frequency (MHz) 

Figure 2. 

Table 2  compares the power in decibels (db) of worst case 
patterns  and  the ideal (2,7) code  spectrum to  the unit power 
sinusoid at various frequencies.  The resolution bandwidth used 
in these  calculations was 93.75 kHz, corresponding to  the use of 
512 points  in the calculations of the discrete  Fourier  transforms 
in the 48 MHz bandwidth. Figure 2 shows the Lheoretical, 

Servo 
Frequency Worst  Case 

Power (db) Power (db) 
Ideal (2.7) 

(fraction) (MHz) Patterns (in 93.15 kHz) 

31/32 4.5 
f/12 4.0 

l f /96 3.5 
f/16 3.0 

51/96  2.5 
f/24 2.0 
f/32 1.5 
f/48 1.0 
f/96 0.5 

- 1.02 
-0.91 
-0.99 
-0.91 
-3.99 
-5.35 
-1.31 
-1.21 
-7.68 

Table 2 

-17.81 
-19.86 
-21.66 

-24.45 
-23.18 

-25.39 
-26.10 
-26.60 
-26.88 

cx i d d ,  (2,7) cude power spectrum i n  a 6 M1-l~ bandwidt,h [7], 
The approximate  worst  case patterns have from  17  to  22  db 
more Power in the 93.75 kHz bandwidth  at these Servo 
frequencies  than  the ideal  spectrum, which represents  the 
spectrum of a "typical" (2,7)  pattern. 

For  an example of a pattern worse than  the  one  found by 
the @=O approximation,  consider fb/48. The pattern y found 
has I Y(fb/48) I =0.286976, whereas the  240 bit pattern x given 
by the runs 

83834  83833  83833  83833  838 

has 1 X(fb/48) I =0.287306. Note that I Y I / I X I =0.998851, 
in  agreement with the  error bound discussed in the next section. 

IV. Theoretical Results - 

General dynamic  programming  problem: Exact  solution 

Let A(M,i,j) be  the  set of paths  of  length M which start  at 
vertex i and  end  at vertex j. Suppose that y=eo...eM-l 
maximizes I g(y) I on A(M,i,j).  See  Eq. (4).  Let {=eo...eM-2 
and let j* be  the terminal  vertex of e ~ - 2 .  It is not necessarily 
true that { maximizes I g I on A(M-l,i,j*)  even in the case 
where both the  labels l(ek)  and  the weights Wk are real. For 
example, consider the FSTD  in Fig. 3  with Wk=l,  for all k, and 
M=2,  i=j=u. 

This contrasts with classical dynamic programming where 
the labels and weights are real and  one is trying to maximize g 
instead of I g I . There  it is true  that if y maximizes g on 
A(M,i,j), then { maximizes g on A(M-l,i,j*). 

Nevertheless,  something  can be said about { in the general 
case. Namely, g({) is an  extreme  point of the convex hull of 
g(A(M-1,id). 

!So,  one cqn modify the classical dynamic  programming 
technique by saving, as survivor sequences for each  initial state i 
and terminal state j, only those { such that g({) is an extreme 
point of the convex hull of g(A(M,i,j)).  An algorithm for 
computing extreme  points in the plane is contained in [8]. This 
solution contrasts with classical dynamic programming (such as' 
the Viterbi  algorithm),  in which one saves only 1 survivor path 
for each  i and j. 

General dynamic  programming  problem:  Approximate  solution 

Let C$ be a fixed angle. Then, assuming that  x(t) is of 
finite  duration, OltSTM,  and viewing X(f) as  a  real 
2-dimensional vector, we have: 

h(x) = X(f).(cos@,sin@) = 's x(t)cos( 'p + -)dt . (5) 
TM 2apt 

TM 0 PT 

The  left-hand side is the projection of X(f) onto a ray through 
the origin at angle 9. See Fig. 4. 
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The right-hand side is the correlation  of x(t) with a cosinusoid 
of phase @ and frequency f .  If @ were the argument of X(f), 
then (5) would give exactly I X(f) I .  Unfortunately, the value 
of arg X(f) is not  known  in advance. So, we just choose @=O. 
Observe, by cyclically shifting  x an integral multiple of  bit 
times, that maximizing (5) with @=O yields the same solution  as 
maximizing (5) with @ =2apj/q,  j=O,l, ..., q-1. If q is large, 
then  the @=O solution gives a  good  approximation to  the 
solution of the original problem, as  indicated by the error  bound 
below. Maximizing (5) with respect  to a quantized  set of 
phases, say @k=2vpk/qN, k=O, ..., N-1, gives improved 
estimates. The error E(p,q,N) in the estimate of the maximum 

I X(f) I is obtained  as follows: Let x be  the worst case pattern 
and let I X(f) I be  the magnitude of its  Fourier  coefficient at f .  
Let y be  the  pattern  found by the approximation using N 
quantized phases, and  let I Y(f) I be  the associated magnitude. 
Then, 

I X(f) I cos8/21 I X(f) I costvl I Y(f) I 5 I X(f) I (6) 

and 

E(P,q,N) = I X(f) I - I Y(f) I I I X(f) I (l-costv) (7) 

I I X(f) I (l-cos(8/2)) = I X(f) I (l-cos(2ap/qN)) . 
See Fig. 5. As N+m, E(p,q,N) approaches 0. If q  is  large,  N 
need not  be very large to  get good  approximate  worst  case 
patterns.  For  example, if q=48   and   N=l ,  
E(1,48,1)<0.002 I X(fb/48) I .  

Figure 5. 

The  approximate problem of maximizing (5) reduces to a 
dynamic programming problem by rewriting the integral as: 

M-1 
h(x) = x(jT) [cos( 'p + T ) L  1 cos - 2aps 

4 ds (8) 
M j=o 

This  fits  into  the  framework of the general  dynamic 
programming problem mentioned  above, with the special feature 
that  both  the labels of the edges (x(jT)=+ 1 or  -1)  and  the 
numbers  wj (the quantity  in  brackets  above) are real numbers. 
If we were maximizing h(x), instead of its  absolute value, this 
would be  the familiar classical dynamic programming problem, 
from which the  Viterbi decoding algorithm is derived [5]. 

Since we maximize I h(x) I, we must solve instead  two 
classical dynamic programming problems - namely, maximize 
both  h(x)  and  -h(x),  or equivalently, separately maximize and 
minimize h(x). (See  [6] for  another application of classical 
dynamic programming techniques to computation of worst case 
patterns  for intersymbol  interference  in  amplitude detection 
channels.) 

Periodic worst case patterns 

The worst  case pattern  can  be viewed as a path which 
gives the largest value of I g(y) I per edge, irrespective of length 
M. So, we want to maximize 

I g(y) I /M (9) 

Since M  is typically very large in practical  applications, we 
idealize this problem and maximize instead: 

over the  set of infinite paths y. Here, yM means the truncated 
path  yM=eo...eM-l. 

Assume initially that all of the wi are equal to 1. Then  in 
this case the maximum of (10) is achieved by a simple periodic 
cycle in  the graph, that is, a closed path eo...eM-l, all of whose 
edges are distinct, repeated infinitely.  This can  be seen by 
noting  that  there  are simple periodic cycles which come 
arbitrarily close to achieving the maximum of (10) (we omit the 
proof for reasons of space). Since a simple periodic cycle has 
length at most N, where  N is the number of vertices  in the 
FSTD,  this gives a  finite  solution to  the idealized problem in this 
special case. 

In general, the sequence of wi is periodic of some period 
q, such as  the powers of e-2?rip/q. We can reduce this to  the 
previous special case by replacing the original FSTD G by a new 
FSTD  H.  The  vertices of H are {(i,k): i = l ,  ..., N and k=l ,  ..., 43. 
For each edge e in G, from  vertex i to vertex j, there  are q 
edges in  H,  from (i,k) to  (j,   k+l (mod q)),  k=l, ..., q. The 
corresponding  edge labels in  H are l(e)wk. Application of the 
special case  above to H yields the general case. 

From  these  considerations, we see that  there exists a path 
in  G which maximizes (10) and is generated by a simple periodic 
cycle of length at most Nq. The dynamic programming problem 
can  therefore be solved in  a  finite  number of steps. 

- V. Conclusions 

Methods for computing worst case  and  approximate worst 
case RLL code patterns for magnetic buried servo have been 
described. The methods  were  applied to  the  (2,7)  RLL 
constraint. For the range of servo  frequencies considered, the 
worst case  patterns were found  to have  approximately 20  db 
greater power than  an "average" (2,7)  pattern in a 100 kHz 
bandwidth  about  the  servo  frequency. 
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