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The Power Spectrum of Run-Length-Limited Codes 

Abstract-In this paper, a novel method is developed for computing 
formulae for the power spectra associated with run-length-limited (RLL) 
codes. Explicit use is made of a compact description of the run-length 
process associated with the RLL code. This association simplifies the 
general derivation of the power spectrum. The calculation of the spectra 
of several RLL codes popular in data storage applications is presented. 
Some of the closed-form expressions for the spectra of these widely used 
codes are new. 

I. INTRODUCTION 
INARY run-length-limited (RLL) codes, also known as 

&d, k) codes, are commonly used in magnetic and optical 
storage as well as data transmission systems. The code 
parameters d and k represent the minimum length and 
maximum length, respectively, of runs of consecutive zero 
symbols (0) between a pair of one symbols (1). 

A two-level (or saturation) waveform, W( t )  E { - 1, + 1 } , 
called the write (or transmission) signal, is used to store (or 
transmit) information. In practice, the write signal is synchro- 
nously generated from a binary modulation (or input) 
sequence { A ,  } 

m 

W ( t ) =  A , P T ( t - n T )  
n =  - m  

with clock period T where the modulating pulse function 

1, i f O l t < T ;  
0, otherwise. 

PT(t) = 

Note that the modulation sequence is the input to the 
modulator (write waveform generator) and not the raw data 
that is to be stored; in this respect, the input sequence is the 
output of the ( d ,  k )  encoder. 

It is often useful in practice to determine the power 
spectrum of the write signal W ( t ) ,  when random data is 
presented to the input of the ( d ,  k )  encoder. The power 
spectrum of the RLL code provides a measure of bandwidth 
compression as well as a means of determining the average 
interference with embedded tracking/timing/focus servo chan- 
nels due to the data signal and the signal on adjacent tracks. In 
this paper, a novel method is developed for computing the 
power spectrum of the ( d ,  k )  modulated write signal. It differs 
from previously published spectrum computation methods 
applicable to RLL coded signals, [1]-[6], in that explicit use is 
made of a compact description of the allowable sequence of 
run-lengths associated with the RLL code. This description of 
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the code sequences, referred to as the run-length diagram, 
simplifies the derivation of a general expression for the power 
spectrum of run-length-limited systems, including maxentro- 
pic sequences previously considered in [7]-[8]. In addition, it 
provides a unified approach toward calculation of explicit 
formulae for the power spectra of specific RLL codes, the 
descriptions of which can take diverse forms, including: block 
codes, finite state codes, variable length codes, and look-ahead 
codes. 

The remainder of the paper is organized as follows. Section 
I1 provides definitions and derivations of the main results. 
Specifically, in Section 11-A, the processes associated with a 
run-length code are formally defined and the basic relation- 
ships between their spectra are described. In the following 
section, Section 11-B, the general expression for the power 
spectrum is derived by making use of the run-length descrip- 
tion of a run-length-limited system of sequences. It is also 
shown here, as a special case, that the method provides a 
conceptually simple derivation of the power spectra of 
maxentropic ( d ,  k )  codes [7], [8]. Section I11 provides the 
applications of the results. The procedure for obtaining the 
necessary run-length description from a ( d ,  k )  encoder is 
applied and the spectrum computation method is then demon- 
strated for several codes of practical importance in data 
storage applications. These examples include delay modula- 
tion or MFM [9], the IBM (2, 7) [lo], the Xerox (2, 7) [ l l ] ,  
the Jacoby (1, 7) [ 121, and the Adler-Hassner-Moussouris 
(AHM) (1, 7) [ 131 codes. The closed form expressions for the 
spectra of these widely used codes, with the exception of 
MFM, are new. Appendix A describes the derivation of the 
run-length diagram and its underlying Markov chain from a 
( d ,  k )  encoder description. Appendix B provides the proofs of 
the main theorems relating to the general expression for the 
power spectrum. 

11. GENERAL FORMULA FOR RLL POWER SPECTRUM 

Section 11-A begins with the definition of several random 
processes which it is convenient to associate with RLL systems 
of sequences. Expressions relating their power spectra are 
then derived. In Section 11-B, the method for computing the 
formulae for the power spectra of these processis is outlined. 
As a straightforward application, a new and conceptually 
simple proof of the power spectrum formula for maxentropic 
( d ,  k )  sequences is presented. 

A .  Associated Processes and Power Spectrum Relations 
Formally, the binary ( d ,  k )  code sequence { b,} is defined 

as a binary sequence in which any two consecutive 1’s are 
separated by at least d and at most k consecutive 0’s.  
Associated with it are three discrete-time processes. 

I )  The Input Signal Process fA,j: This is the modulation 
sequence described in the Introduction, with A, E { - 1, 
+ I} ,  A ,  = 1 - 2cn where c, = c,-l d b, 

2) The Output Signal Process fXJ:  This process is 
defined by the equation 

1 
2 

x,=- ( & - & I )  

0090-6778/89/0900-0906$01 .OO 0 1989 IEEE 



GALLOPOULOS et al. : SPECTRUM OF RUN-LENGTH-LIMITED CODES 907 

with X, E (0 ,  + 1, - I } .  This process obeys I X, 1 = b, with 
the signs of its nonzero terms alternating. It is called the output 
process since it can be considered as the output of a ("partial 
response") linear filter with the modulation sequence as input. 
In terms of ' 'D-transforms, ' ' 

where (1 - D)/2 is the transfer function of the filter and 

m 

A ( D ) =  A,D", 
,=-a 

etc. In terms of the output signal, the ( d ,  k) constraint means 
that consecutive nonzero terms are separated by at least d 
occurrences of 0 and at most k; if X, f 0 then X , + I  = Xn+2 

r n i n + k + l .  
Due to the nature of most magnetic recording systems, the 

output signal {X,} often has special significance. In this 
paper, the usefulness of considering this signal relates to the 
method of computing the power spectrum in terms of the run- 
lengths; its usual significance to magnetic recording is 
irrelevant in this context. For example, the method works 
equally well for a ( d ,  k) code used in an optical recording 
system where the output signal { X, } , has no special meaning. 

3) The Run-Length Process [T,]: The term T /  simply 
counts the number of consecutive 0 ' s  together with the ending 
(or starting) 1 of thej th  run in the code sequence { b,}, so for 
a ( d ,  k) sequence T, E { d  + 1 ,  e . . ,  k + I } .  

If random data are presented to the input of a (d,  k) encoder, 
then the resulting input signal, {A,}, output signal, { X,}, and 
write signal, W ( t ) ,  are random processes with well-defined 
power spectral densities. The relationships between their 
spectra are now derived. We introduce D-transforms and 
define the spectrum of a wide-sense-stationary discrete-time 
process { Y,} by 

- -. . . -  - Xn+,-, = 0, and X,,, # 0 for some rn ,  n + d + I 5 

S,(D)= R , ( j ) D J =  E(YoY,)DJ, (1) 
J =  -a ,= - m  

where RY( j ) denotes the j t h  autocorrelation coefficient 
E (Yo TI. 

Since 

1-D 
X ( D )  = - A (D) 

2 
it follows that 

Evaluating at D = e iZrf ,  the spectra of the input and output 
processes are therefore related by the equation 

Sx(ei2*f) = (sin (-/rf))2SA(ei2*f). (24  

Recalling that the write signal W ( t )  is given by 

m 

W ( t ) =  2 A,P?-( t -nT) 
n =  - m  

where 

it follows that for all f # 0 

and for f = 0, 

S,(O)= PS,(l). 
These equations imply that, given the spectrum of the output 

process { X , } ,  the spectrum of the input signal {A,} and the 
write signal W ( t )  are determined except for the value at f = 
0. The continuous portions of the spectra of W ( t )  and {A,} 
are determined by Sx(ei2"f) by taking the limit as f + 0. The 
discrete portions of the spectra of W ( t )  and {A,} have a 
discrete spectral line at f = 0 with amplitude given by (rnW)2 
and respectively, where rnw is the mean or dc value of 
the write process, and r n A  is the mean value of the input 
process. Since the mean value of the output process is always 
zero, the means of W( t )  and { A ,  } , which are equal, must be 
computed independently of the knowledge of Sx( e'*"'). 

In the practical codes which we consider, { b,}, {A,}, and 
{ X,} are cyclostationary processes and therefore not wide- 
sense-stationary. This results from the fact that practical 
encoders are representable as finite-state machines with fixed 
input and output block lengths, where we assume that encoder 
inputs are independent and identically distributed. 

Thus, it is not possible to define the spectrum of, say, {A,} 
as the discrete time Fourier transform of its autocorrelation 
function. Instead, we define another process { Z , }  by 2, = 
An+@ where 0 is a discrete random variable uniformly 
distributed over the period r of the { A , }  cyclostationary 
process. This new process can be shown to be wide-sense- 
stationary. We can now define S A ( D )  as the spectrum of 
{ Z, } . The spectrum of the { X ,  } process can be defined in a 
similar way and it can be shown that (2a) holds even for {A,} 
and { X, } cyclostationary processes. 

Similarly, the write signal W ( t )  represents a cyclosta- 
tionary process with period 7 = rT. Extending the method 
described above to continuous time processes, we define 
another process V ( t )  by V ( t )  = W ( t  + 4) where 4 is 
uniformly distributed over the period 7.  We define Sw( f ), the 
spectrum of W ( t ) ,  as the spectrum of V( t ) .  

The relationship (2b) above holds in the context of 
cyclostationary processes as well. 

B. Calculation of the Power Spectrum of [X,] 

Assume we are given a finite-state machine (FSM) that 
generates the ( d ,  k) code in question, assuming equiprobable 
data bits. More generally, one can assume a finite-state 
transition diagram (FSTD) that generates the valid code 
sequences of a run-length constrained system according to a 
prescribed set of transition probabilities, which in most 
applications maximize the entropy of the system. 

By a process involving splitting and merging of states, 
described in the Appendix, we show that we obtain a Markov 
chain { S , }  on states { 1, 2, . e ,  L } such that the run-length 
process { T,} is a function of the Markov chain { S,}, in the 
sensethatPr(T, = t lS ,_ , ,  . - . ,So,  T , - , ,  - - a ,  To) = Pr(T, 

This run-length process is then represented by a labeled 
directed graph, which we call the run-length diagram. Each 
directed edge connecting state i to state j has a label t ,  
corresponding to the length of the run completed. 

Also associated with each edge is the transition probability 
inherited from the underlying Markov chain, pij( t ) ,  which 
corresponds to the conditional transition probability for a run 
of length t from state i to state j, that is, the conditional 
probability of completing exactly one run of ( t  - 1 )  0's 
followed (or preceded) by a single 1, from state i to state j .  

= t I S , - , ) .  
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2 
Fig. 1 .  Example run-length diagram. 

With this description, the run-length constrained system 
assumes the form of a discrete noiseless channel [ 141, with 
variable length symbols corresponding to runs. The underly- 
ing Markov chain defines precisely the probabilities which 
maximize the entropy of the constrained system when viewed 
as an information source. 

On the run-length diagram we can define a one-step state- 
transition matrix G (D) with general entry gi, ( D )  given by 

k +  1 

gij(D)= pij(t)D'. 
f = d + l  

For example, Fig. 1 shows a two state run-length diagram 
with associated transition probabilities. The corresponding 
one step state-transition matrix is given by 

Recalling the theory of Markov chains [15], it is not hard to 
see that the general entry g;(D) of [G(D)]", n 2 0, will be 
given by 

I = n ( d + l )  

(3) 

is the equilibrium probability of a + 1 or a - 1 in the { X,, } 
process. 

Proof: The proof is given in the Appendix. 
For applications of the theorem, it is useful to outline the 

procedure of obtaining the stationary distribution vector ?r and 
the equilibrium probability p(1) of a symbol + 1 or a symbol 
- 1 in the { X,,} process. Note that G ( l )  is simply the ordinary 
one step transition probability matrix of the Markov chain 
{ S,,}. Clearly x can be obtained by solving the equation 

rG(1) = ?r 

together with the normalizing condition 

L 
7r;=l. (7) 

i =  I 

On the other hand, assuming stationarity and ergodicity of the 
run-length process { T, } , p (1) is simply the reciprocal of the 
average run-length E (T,). (See, for example, Petersen [16] .) 
An expression for E (T j )  is provided by the following 
theorem. 

Theorem 2: The mean value of the run-length process { T, }  
is given by 

E( T,)=aG'( l )uT 

where G '(1) is the derivative of G ( D )  with respect to D at the 
point D = 1 and ?r and U are as before. 

Thus, 

p ( l ) =  [?rG'(l)uT] - I .  (8) 

where p;(t)  is the conditional probability of completing 
exactly n runs of total length t , from state i to state j. (Note 
that, for n = 1, g;(D) and p;(t) are simply called gii(D) 

write 

The proof is given in the Appendix. 
We now discuss Some 
Example 1: MaXentrOpiC (d, k)  Constraints: As a special 

run-length diagram consisting of a single state. Then G ( D )  is 
a polynomial and the expression for Sx(D) reduces to 

Of 

andp..( t), respectively.) For notational convenience, we case* consider i.i.d. run-lengths { T, 1 generated by a 

a 

g p )  = P;(t)D' (4) 
I = 1  

wherep;(t) = 0 f o r t  
The following theorem gives a closed-form expression for 

the power spectrum in terms of G ( D )  in the case where the 
sum -a Rx( j ) D j  converges on the unit circle. In general, 
it corresponds to the continuous component of the power 
spectrum. The situation which occurs when the sum does not 
converge and the spectrum has a nontrivial discrete compo- 
nent will be discussed in Example 3. 

Theorem I: Assuming the Markov chain { S,,} is in 
equilibrium, the power spectrum Sx(D) of the output signal 
process { X,, } is given by 

{ n ( d  + l), . - - ,  n ( k  + l)}. 

Sx(D)  = p ( l ) ~ [ ( Z +  G ( D ) ) - ' +  (I+ G(D- ' ) ) - '  -I]uT 

where 

7r=(a1, - * e ,  7rL)  

u = ( l ,  1 ,  . * e ,  1) 

p ( l ) =  1 -P(X,=O) 

is the vector of the stationary probabilities of states 1, * * e ,  L ,  

is a vector with all L components equal to one and 

Sx(D)=p( l ) [ l -  G(D)G(D-')] / ( l+ G(D))(l + G(D- ' ) ) ,  

(9) 

the result derived in 1942 by Foley [see, for example, 171 in 
another context and recently rederived by Zehavi and Wolf 
[8]. In the case of (d ,  k) codes achieving maximum entropy 
(known as maxentropic codes) [7], the run-lengths follow a 
truncated geometric distribution with parameter X. Then 

k +  1 

G ( D ) =  X-JDJ (10) 
j = d +  1 

where X is the largest positive root of the equation xk+l = 
X k - d  + Xk-d-1  +.. .  + 1. Note that 

n-1 = 1 

and p (  1) is given by 

j = d +  I 

Example 2: Maxentropic (d,  , k , )  - (d2. k2)  Con- 
straints: Interleaved run-length-limited constraints have been 
proposed for use in optical storage channels where the 
minimum written mark length may differ from the minimum 
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4 
Fig. 2. Example of run-length diagram for periodic binary symbol process. 

allowable spacing between marks. These sequences are The formal inverse of Z + G ( D )  is given by 
characterized by parameters (dl, k l )  - (d2, k2) which 
describe the constraints on alternate run-lengths of zeros. The 

fore obtained by interleaving two (d,  k) run-length processes 
with parameters ( d l ,  k l )  and (d2, k2), respectively. 

1 
[ I +  G(D)I - 1 = 

associated two-state maxentropic run-length process is there- 1 + (2 - a -p)03 + (1 - a - p ) ~ 6  

In this case, we find 

where X is the largest positive root of the equation 

Moreover, a simple calculation shows that 

.=(- 1 1  -) 
2 ’ 2  

and 

where 

p (  1) = 2/( ET1 +ET,),  

and 

The input process corresponding to this stationary chain is 
easily seen to have mean 0. In practice, one often restricts 
attention to the subsystem of input sequences in which symbols 
+ 1 are restricted to “mark” runs and symbols - 1 are 
restricted to “space” runs, or vice versa. The mean value of 
the corresponding input process in these cases will be 

E ( TI ) - E ( T2) 

The extension to constraints obtained by interleaving n such 
RLL processes, n > 2, is straightforward. 

Example 3: Discrete Spectral Components: It is important 
to examine the case of a periodic autocorrelation function of 
the transition process {Xn}. The case is subtle and deserves 
special attention since the sum R x ( j ) D j  does not 
converge in the usual sense on the unit circle. The effect of 
periodicity is illustrated by means of the following example. 

Consider the run-length diagram in Fig. 2. By looking at 
cycles, we can easily see that the underlying binary symbol 
process is periodic with period 3. Also, 

The stationary probability distribution is 

a + p  ’ a + p  
Thus, 

?r [ I+G(D) ] - ’uT  
(a+p)  - a p ~ 2 +  ra( i  - a )  + ~ ( 1 -  , 3 1 1 0 3  - 4 3 ~ 4  

which, according to Theorem 1, is equal to 

Expanding in partial fractions 

(a2+ 0 2 )  +ape- apD2 
(a+p)2(1+03) 

T [ I+ G (D)] - U = 

2ap - abD+ ap(1- a - p)D2 

( a  f m2[1  + (1 - C Y - ~ ) D ~ ]  + - (11) 

The expression of the right-hand side of the equation shows 
clearly the two components of ( l / p ( l ) )  R x ( j ) D j .  The 
first term is the discrete component which is responsible for 
spectral lines at frequencies corresponding to the roots of the 
denominator. which are the cubic roots of - 1. The second 
term is the continuous component. Note that the denominator 
of this term has no roots on the unit circle. 

The discrete component simply corresponds to the D -  
transform of the periodic part of the autocomelation function 
R x ( j ) ,  j L 0. Since the sum R x ( j ) D j  for periodic 
Rx( j ) does not converge for ID 1 = 1 ,  we have to define the 
D-transform of the periodic parts as the limit of Cesaro sums 
[18] rather than regular sums. We then find, using inverse D- 
transforms, that the periodic part R $ ( j ) ,  j L O of the 
autocorrelation function is 

+(a - p)2 cos (3 . where a and p are the transition probabilities from state 1 to 
state 2 and vice versa, respectively. 
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Thus, the discrete part of the spectrum S$( f) will consist of 
lines of amplitude 

a 2 +  p2+ ap  
3(a + PI2 

(a - 
6(a  + P I 2  

at frequencies f 1/6 along with lines of amplitude 

at frequencies f 112. 
An argument involving Cesaro sums also accounts for the 

fact that, by substituting (11) in Theorem 1 ,  we obtain the 
correct expression for the continuous component F J D )  of the 
spectrum, namely, 

S : P )  
ap(2 - 01 - p)(2 - ( D  + D - ’ ) )  

(a+P)[l + ( l - a - P ) D 3 ] [ 1  + ( l - ~ ~ - p ) D - ~ l  . 
To finish our discussion of this example, we let a = p = 

1/2 (which incidentally yields the maximum value for the 
entropy of this Markov chain). Then 

= p ( l )  

1 

2 
R $ ( j ) = -  cos (%) , j20 

and 

P ( 1 )  S : ( D ) = T  (2 - ( D +  D - l ) ) .  

Thus, the power spectrum will consist of spectral lines of 
amplitude 1/4 at frequencies f = k 1/6 along with a 
continuous part equal to p (1) (sin (rf )) * . 

To summarize, if the underlying binary symbol process is 
periodic with period p, we compute * [ I  + G(D)] - ’uT  = 
P ( D ) / Q ( D )  where Q(D)  = U ( D ) V ( D ) ,  with U ( D )  
having all the roots on the unit circle and V ( D )  all the roots 
not on the unit circle. We now expand into partial fractions to 
obtain 

The periodic part R $ ( j ) ,  j 2 0 of the autocorrelation 
function can be determined from T ( D ) / U ( D )  when the latter 
is expanded as a formal power series in the parameter D. Since 
R%( j ) is known to be an even function o f j ,  the whole of the 
periodic part of the autocorrelation function is known. The 
discrete part of the spectrum is determined by this periodic 
part of R x ( j ) .  The continuous part of the spectrum is 
obtained by applying Theorem 1 .  

We remark that the existence of a non-trivial discrete 
spectrum can be determined readily by examination of the 
roots of det [I + G(D)]  which lie on the unit circle. In order 
to better understand which roots can occur, we make use of the 
identity 

det [ I -  G2(D)]  
det [ I -  G(D)]  

det [I+ G(D)]  = 

If the underlying binary symbol process corresponding to 
G ( D )  has period p , by the Perron-Frobenius theorem [ 191, 
(1 - D P )  divides det [ I - G ( D ) ] ,  and all roots which lie on 
the unit circle are accounted for by this factor. 

With respect to Gz(D) ,  there are two cases to consider. 
Case I :  G(l) is a matrix with period 2. 
Then the binary process underlying G 2 ( D )  has period p, 

TABLE I 
ENCODING TABLE FOR MFM 

and the condition on G(l)  implies that the roots of det [I - 
G2(D)]  which lie on the unit circle are all accounted for by a 
factor (1 - which divides det [I - G 2 ( D ) ] .  The 
spectral lines therefore occur at frequencies corresponding to 
the roots of 1 - DP. 

Case 2: G(l) is a matrix with period unequal to 2 
Then the binary process underlying G 2 ( D )  will have period 

either p or 2p. 
If the period is p, then the roots of the numerator which lie 

on the unit circle are all accounted for by a factor (1 - D P )  
which divides det [ I - G2(D) ] .  These roots are cancelled by 
the roots of the denominator, implying that the discrete 
spectrum is trivial (no spectral lines). 

If the period is 2p, then the roots of the numerator which lie 
on the unit circle are all accounted for by a factor (1 - D z P )  
which divides det [ Z - G 2 ( D ) ] .  The roots of the denominator 
are cancelled, leaving the roots of (1 + DP). The spectral 
lines therefore occur at frequencies corresponding to the roots 
of 1 + DP. 

111. APPLICATIONS 
In this section, we use the preceding theorems to derive 

explicit formulae for the power spectra of several of the most 
widely used run-length-limited codes: the rate 1/2 (1, 3) code 
known as MFM, delay modulation, or Miller code; the rate 
1/2 (2, 7) codes introduced by IBM and Xerox; and the rate 
213 (1, 7) codes derived by Jacoby and Adler-Hassner- 
Moussouris. The formula for the power spectrum of MFM has 
been previously published [9],  and we present it here simply to 
illustrate the method. The formulae for the (2, 7) and (1, 7) 
codes are new. In all of the described codes, data bits are 
assumed to be generated by an equiprobable binary source. 

A .  MFM Code 
Modified frequency modulation (MFM) is a simple example 

of a rate 1/2 (1, 3) code. The coding rules are easily described 
in words: a data bit “ 1 ”  generates the codeword “01,” and a 
data bit “0” generates a codeword “10” if preceded by a data 
bit “0,” or a codeword “00” if preceded by a data bit “ 1 . ”  

These rules are easily translated into a two-state FSM 
representation of the code, as shown in Table I. 

The state “a” represents the condition that the previous 
data bit was a “1,” while the state “b” indicates that the 
previous data bit was a “0.” A FSTD representation of the 
MFM code sequences is obtained from the FSM diagram by 
restricting edge labels to show codewords only, as seen in Fig. 
3(a). The run-length diagram for MFM is easily obtained from 
the FSTD by the method described in the appendix, as shown 
in Fig. 3(b) and (c). 

From the run-length diagram and the associated Markov 
chain, the matrix G ( D )  can be readily obtained. Specifically, 
we find 

1 1  
- D 2 + -  D4 
2 4  

G ( D )  = 

1 i D 3  D21 
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nn -- 
01 lo 

TABLE I1 
IBM AND XEROX (2, 7) CODES 

D a t a  Code D a t a  Code 
10 0100 1 xo 
11 1000 01 0001 

001 000010 000 000100 
010 100100 000 001001 
011 001000 
0010 00100100 
0011 00001000 

IBhf code Xerox code 
-Y z 1, t f  possible; else 0 

(C) 

(c) Run-length diagram for MFM code. 
Fig. 3. (a) FSTD for MFM code. (b) Modified FSTD with inserted states. 

To obtain 7r, we simply solve the system of equations 

Solving, we get 

Write Spectra for (1.3) 
T= 1 

Fig. 4. 
Frequency 

3) write signal spectra: rnaxentropic (dashed) and implemented 
(solid). 

2 1  
B. (2, 7) Codes ,- -, 

Two popular rate 112 (2, 7) codes are the IBM [lo] and 
Xerox [l 11 codes. The encoding tables for these variable 
length codes are shown in Table 11. 

The derivation of the run-length diagram for the IBM code 
is shown in Fig. 5. The initial FSTD is a one-state representa- 
tion of the variable-length block code, Fig. 5(a). After 
inserting additional states in order to ensure one code symbol 
per edge, there are 9 states denoted A ,  B, * , Z for which all 
incoming edges are labled with “ I . ”  The remaining states 
have all incoming edges labeled with “0.” Consequently, no 
state splitting is required, Fig. 33). It can be seen easily that 
in the final run-length diagram, state merging will reduce the 
number of states to only 3. Specifically, states B, F, and Z have 
identical outgoing edge structure and are combined to form 
state 1. Likewise, D and G combine to form state 2, and A,  C, 

Finally, as explained in Theorem 2, ~ ( 1 )  = ( r,) 
where 

8 
3 

E (  T, )nG’( l )uT=-  . 

Therefore, 

3 
P(1)’i * 

Evaluating (5),  we arrive at the power spectrum for the 
output signal process associated with MFM 

1 -  10- 6(D +D - I )  + 4(D2 +D - 2 )  - 4(D3 +D - 3 )  + (D4 + D - 4 )  
9 + 6(D2 +D - 2 )  + 2(D4 + D  - 4 )  

S,y(D) = - 
8 

The power spectrum for the input process associated with 
MFM is then computed to be 

SA (D) 

1 6 +  ( D + D - ’ ) + 2 ( D 2 + D - 2 ) -  ( D 3 + D - 3  
=- [ 

2 9 + 6(D2 +D - 2 )  + 2(D4 +D - 4 )  

It is not difficult to check, using the conditions described at 
the end of Section 11-B, that the discrete spectrum is trivial (no 
spectral lines). 

The write signal power spectrum of the MFM code at 
frequency f, Sw( f ), is compared to that of the maxentropic 
(1, 3) code in Fig. 4. 

E, W merge into state 3. The result is a three-state run-length 
diagram. Fig. 5(c). 

It is a welcome coincidence that the Xerox code has the 
same run-length diagram as the IBM code. A simple proof of 
this is shown in Fig. 6. The Xerox code is equivalent to a two- 
state variable-length code, in which state “a” corresponds to 
the condition that the past code sequence ends in 2 or more 
symbols “0” (implying the next X = 1 in Table IT), and state 
“b” represents less than 2 (implying the next X = 0). The 
corresponding FSTD is shown in Fig. 6(a). Insertion of 
additional states along the loops at state b, Fig. 6(b), followed 
by merging of states with a single incoming edge from state b 
with label “00,” Fig. 6(c), reproduces the one-state variable- 
length block code representation of the IBM code, Fig. 6(d). 
The two codes therefore generate the same set of code 
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(C) Fig. 6. (a) Finite-state variable length diagram for Xerox (2, 7) code. (b) 
Diagram with inserted states for Xerox (2, 7) code. (c) After merging of 
states with “00” incoming edge label. (d) Reduction of Xerox ( 2 , 7 )  code to 
IBM (2, 7) code. 

Fig. 5.  (a) Variable length block code diagram for IBM (2, 7) code. (b) 
Diagram with inserted states for IBM (2, 7) code. (c) Reduced run-length 
diagram for IBM (2, 7) code. 

sequences, but the assignment of data sequences to code 
sequences is different. 

For the (2, 7) code run-length diagram, the one step state- 
transition matrix can be found to be 

Using (8), we get 

19 
P(1) =- 84 

4 8  
1 1  1 1 1 1 - ~ 4 + - ~ 6 + - D s  - D 4 + - D 6  - D ’ + - D ’  
4 8 16 8 16 

Using (6) and (7), we can solve for the stationary The power spectrum of the input signal process associated 
probability vector ?r to get with these (2, 7) codes is found to be 

3 9  

19 ’ 19 ’ 19 
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Fig. 7. (2, 7) write signal spectra: maxentropic (dashed) and implemented 
(solid). 
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TABLE 111 
JACOBY (1, 7) ENCODING TABLES 

-. 

Data Code Data Code 
00 101  00.00 101.000 
01  100 00.01 100.000 
10 001 10.00 001.000 
11 010 10.01 010.000 

Basic Table Violation Substitution Table 

101/d 100/d 001/d 010/d 000/d 

101/c l o o k  001/c 01o/c ooo/c 

1OO/v 100/b 010/v 010/b OOOlb 

101/v 100/a 001/v OlO/a 000/a 

where 

P(D) = 1956+ 732(D+D-’) + 212(D2 + D - 2 )  

-- 38 1 (D3  + D - 3,  + 27(D4 + D - 4 )  - 204(D5 + D 
+ 4(D6+D-6) - 80(D7 + D - 7 )  + 16(D8+D-*) 

’) 

+ 24(D9 + D -9)  + 24(D1° + D  - l o )  

and 

Q(D) = 162 + 8(D2 + D - 2 )  + 64(D4 + D -4 )  

+ 16(D6+D-6). 
It is again not difficult to check, using the conditions 

described at the end of Section 11-B, that the discrete spectrum 
is trivial (no spectral lines). 

The write signal power spectrum of the IBM/Xerox codes at 
frequency f, Sw( f ), is compared to that of the maxentropic 
(2, 7) code in Fig. 7. 

C. ( I ,  7) Codes 
Two rate 2/3 (1, 7) codes that appear in disk storage 

products are the Jacoby code [12] and the AHM (IBM) code 
[13]. The Jacoby code is a “look-ahead’’ code, and is defined 
by the encoding rules shown in Table 111. The basic encoding 
table in used when the resulting codeword will not cause a 
violation of the d = 1 constraint. Certain juxtapositions of 
data words, however, would lead to violations in the code 
sequence. In these cases, one changes the assignment of the 
current and preceding codewords in accordance with the 
violation substitution table. 

The AHM code is described by the finite-state-machine 
shown in Table IV, with states designated by the letters “a,” 

The FSTD for the AHM (1, 7) code is shown in Fig. 8(a). 
The run-length diagram and associated Markov chain are 
derived using the method of the Appendix. The three state run- 
length diagram is shown in Fig. 8(b). 

The run-lenmh diagram for the Jacoby code turns out to be 

“ b , 9 7  L L c , 9 9  “d,” and < r U . 9 9  

913 

n 

00 1 

(b) 

run-length diagram for AHM ( 1 ,  7) code 

TABLE IV 
AHM (1, 7) ENCODING TABLES 

Fig. 8.  (a) Finite-state transition diagram for AHM (1, 7) code. (b) Reduced 

a b c  d V 
State 

Data 

TABLE V 
FSM DESCRIPTION OF JACOBY (1, 7) CODE 

b c  d v  

FSM with states “a,” “6,” “c,” “d” corresponding to the 
condition that the previous data block was “00,” “01,” 
“10,” or “11,” respectively (and caused no violation), and 
state “U” corresponding to the condition that a violation has 
occurred. Edge labels are obtained from the look-ahead code 
table by delaying the output codewords by one block. This 
delay accounts for the dependence of the output codeword on 
one look-ahead data block. The resulting FSM table is shown 
in Table V. 

Restricting to codeword labels in the diagrams corresDond- 
identical to that of the AHM code. To see this easily, define a ing to Tables IV and V produces FTSD’s which are ideitical. 
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Write Spectra for (1.7) 

T =  1 

Frequency 

Fig. 9. (1, 7) write signal spectra: maxentropic (dashed) and implemented 
(solid). 

As in the case of the (2, 7) codes, the two independently 
discovered (1, 7) codes generate identical sets of code 
sequences, but use different assignments of data sequences to 
code sequences. 

Remark: T. Howell [20] has observed that the set of code 
sequences of the (1, 7) code is invariant under time reversal. 
This fact can be proved readily from Fig. S(b) by noting that 
the run-length diagram is invariant under reversal of the 
arrows on the directed edges. 

The one step state-transition matrix for the (1, 7) code is 
given by 

f 
1 

- D 3 + -  D6 
4 16 

1 
6 

1 - D 4  G ( D )  = 

1 
- D 2 + -  Ds 
5 10 I‘ 

Using (6), (7), and (S), we obtain 

described at the end of Section 11-B, that the discrete spectrum 
is trivial (no spectral lines). 

The write signal power spectrum of the Jacoby/AHM codes 
at frequency f, Sw( f ), is compared to that of the maxentropic 
(1, 7) code in Fig. 9. 

Finally, in Fig. 10, the write signal spectra of the MFM, (2, 
7) and (1, 7) codes are compared at fixed data rate. 

D. Spectrum at Zero Frequency 
It is often of value to have a measure of the spectrum at zero 

frequency of the channel input signal process [7]. The 

1 1 5 5 
- D 3 + -  D6 
4 16 12 48 

- D z + -  D s  

and 

7 3  
240 

p ( l ) = -  . 
The power spectrum of the input signal process associated 

with these (1, 7) codes is given by 

1 
S / l (D)=-  - 

15 V ( D )  

where 

U ( D )  = 15681 + 4591(D + D - I )  - 48(D2 + D -’) 

+ 5665(D3 + D - 3 )  + 1498(D4+ D - 4 )  

- 8 8 9 ( D 5 + D - 9 +  892(D6+D-9 

+408(D7+ D - 7 )  - 100(D8 + D - ’ )  
and 
V ( D )  = 1665 + 968(D3 + D - 3 )  

+ 280(D6 + D - 6 )  + 32(D9 + D - 9 ) .  
Once again, it is not difficult to check, using the conditions 

3 3 1 1 
- D 4 + -  D7 
20 80 4 16 

- D 3 + -  D6 

J 

implemented codes discussed in this section all have vanishing 
discrete spectral lines at zero frequency, so, using the 
formulae for code spectral densities that we have derived, it is 
now an easy matter to find the value of Sa (1) for MFM and the 
implemented (2, 7) and (1, 7) codes. The results are given in 
Table VI. The values for the corresponding maxentropic run- 
length constrained systems, discussed in Example 1, are 
included for comparison purposes. 

APPENDIX A 
DERIVATION OF RUN-LENGTH MARKOV CHAIN 

The run-length diagram is derived by a sequence of 
transformations of the finite-state transition diagram (FSTD) 
of the binary constrained system. First, states are inserted 
along edges of the initial FSTD as required to ensure that each 
edge generates a single symbol, as shown schematically in 
Fig. 11. 

The next objective is to represent the system by a FSTD in 
which each state has all of its incoming edges labeled 
identically. This is accomplished by performing input splitting 
operations on the states of the diagram, as illustrated in Fig. 
12. Fig. 12 shows a local transformation at state s of the FSTD 
G which we refer to as an input splitting at state s. The result is 
a FSTD G’ with the property that each state derived from s in 
the splitting has all of its incoming edges labeled identically 
with either “0” or “1.” Note that G‘ generates the same 
system of constrained sequences as G. 

The input splitting operation is repeated at all states as 
required to produce a FSTD W with the desired property. The 
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Fig. 10. Write signal spectra of MFM, IBM ( 2 ,  7), and IBM (1, 7) codes at 
fixed data rate. 

TABLE VI 
SPECTRUM AT ZERO FREQUENCY FOR MAXENTROPIC AND 

IMPLEMENTED CODES 

Constraint Maxentropic Implemented  
( 1 9 3 )  : 2 3  1 = .20 
(2-7)  = .52 - : .38 
(1 ,7 )  : .73 $ 5 .tj3 

?&-- 
Fig. 1 I .  Insertion of states along edge. 

Fig. 12. Schematic of input splitting at state s. 

states in H which have all incoming edges labeled with the 
binary symbol “1 ,” denoted { sI, . . . , sL}, correspond to the 
states in the run-length diagram, denoted { ul, . * * , uL } . A run 
of length t is a sequence o f t  - 1 symbols “0” followed by a 
symbol “1 .” There is an edge with label t from ai to uj in the 
run-length diagram if and only if there is a path of length t in 
W from si to si which generates a run of length t .  

The run-length diagram can sometimes be simplified by 
transformations called input merging and output merging. Fig. 
13 shows the local transformation corresponding to the input 
merging of states s and s’ , in which the two states are merged 
into a single state U ,  provided that they have identical outgoing 
edge structure; that is, the set of “next states” and corres- 
ponding edge labels is identical for both states. The resulting 
state U has this outgoing edge structure, and its incoming edges 

n 

W 

Fig. 13. Schematic of input merging. 

are obtained by merging the set of edges incoming to s and s’ . 
A depiction of an output merging transformation, which has a 
completely analogous description, is obtained by reversing the 
direction of all edges in Fig. 13, as shown in Fig. 14. 

Finally, we remark that these merging operations based on 
the run-length diagram structure will preserve the measure of 
maximum entropy on corresponding system of sequences. All 
of the examples considered in the applications (Section 111) use 
this maxentropic measure. 

If a different measure is used, however, the input (respec- 
tively, output) merging operations can be carried out only if 
they respect the conditional measure on sequences emanating 
from (respectively, terminating at) the two states. 

APPENDIX B 

PROOFS OF THEOREMS 

Proof of Theorem 1 
Define 

m 

* d o )  = DJ P[Length of 1 consecutive T, 
j= 1 

is j / run started]. 

This represents a generating function for probabilities of 
sequences produced by I consecutive runs, where the coeffi- 
cient of DJ corresponds to the probability associated with all 
sequences of I runs of total length j .  It follows that 

/=0,2,4; . . I =  1,3, 

m 

= 1 + DJ * { P[Length of an even number of 
j =  I 

consecutive T, is j / run started] 

-P[Length of an odd number of consecutive 

* Ti is j / run started]} 

m 

j =  I 
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Thus, we obtain 

S,y(D)=p(l)a([Z-  (G(D))’] - G(D) * [I- (G(D))2] 

+ [I-(G(D-’))2]-’ - G ( D - ’ )  

[I- (G(D ‘))2] I - I ) u  

=p(l) T([  I+ G(D)] + [I+ G(D - I ) ]  - I ) u  ‘. 
This proves Theorem 1 .  

Proof of Theorem 2 

The general entry g; (1) of G ’ (1) is 

k +  1 

g i p ) =  tpij(t). 
Fig. 14. Schematic of output merging 

f=d+l 
Referring to (l), we can express the power spectrum as 

Therefore, 

I odd I 

For { T, }  i . i .d. ,  

where 

+(D) = P( T,)D’. 
1 

The power series identity 

1 m  

1 -+(Dl * + U - ’ )  
(1 + 440)) * (1 + +(D - I ) )  * 

=p(l) . 

This recovers the result of Example 1 .  

described by one-step transition matrix G ( D )  
More generally, for { T, } generated by a run-length diagram 

@.,(D) = d G(D)lIU ‘. . \ -  I L . I 2  

L L k + l  

?rG’( l )uT=C 2 t?r;pv(t) 
i = l  j = 1  / = d + l  

= tP(run has length 

= E (  T,,). 

/ = d +  1 
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