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Abstract —We study bi-infinite sequences x = (1), c;
over the alphabet {0,1,...,g—1}, for an arbitrary q > 2,
that satisfy the following ¢-ary ghost pulse (¢GP) con-
straint: for all k,l,m € Z such that z, x;, ., are non-
zero and equal, zy4;_,, is also nonzero. This constraint
arises in the context of coding to combat the forma-
tion of spurious “ghost” pulses in high data-rate com-
munication over an optical fiber. We show using tech-
niques from Ramsey theory that if x satisfies the ¢GP
constraint, then the support of x is a disjoint union of
cosets of a subgroup kZ of Z and a set of zero density.

I. INTRODUCTION

In optical communication, a train of light pulses corresponding
to a sequence of data bits is sent across an optical fiber. At
high data rates (~40Gbps), a nonlinear effect known as four-
wave mixing causes a transfer of energy from pulses in the kth,
I-th and m-th time slots (k,l, m need not all be distinct) into
the (k+ ! — m)-th time slot [1]. If this slot did not originally
contain a pulse, the energy transfer creates a spurious pulse
called a ghost pulse, which causes the original ‘0’ in that slot to
be changed to a ‘1’. Ghost pulse formation is phase-sensitive,
so it can be mitigated by changing the phases of some of the
pulses. However, an optical receiver cannot detect the phase
of a pulse, so phase cannot be used to encode information.
To counter the ghost pulse effect, we consider a constrained
coding scheme based on a class of “ghost pulse constraints.”

II. CONSTRAINED CODES FOR GHOSTBUSTING

For g > 2,let Ay ={0,1...,q—1}. For x = (Tx),y € AZ let
supp(x) = {k €% : z # 0}. A sequence x € A~ is said to sat-
isfy the g-ary ghost pulse constraint if for all k, [, m € supp(x)
(k, 1, m not necessarily distinct) such that zp = z; = xm, we
also have k +1 —m € supp(x). Let 7, be the set of all x € A%
that satisfy the ¢GP constraint, and let S; denote the set of
all binary sequences y such that there exists an x € 7; with
supp(x) = supp(y). The object of this paper is to study the
sequences in Sq, particularly in the cases when ¢ is 2 or 3.

To transmit a binary data sequence agasi ...an—1, we first
encode it as a subblock bob; . ..bn_1 of a sequence in Sy, which
is then converted to a subblock cocy ... cn—1 of some sequence
in 7;. The g-ary sequence coc; . ..cn—1 corresponds to a train
of N light pulses, with the phases of the nonzero pulses be-
ing determined by a one-to-one mapping from {1,2,...,¢—1}
to [0,27]. Under the simplifying assumption that only pulse
triples with the same phase can interact to create ghost pulses,
the sequence cpci...cn—1 can be transmitted without error
across an optical fiber. This is because the ¢GP constraint en-
sures that the positions where ghost pulses could potentially
be created already contain nonzero pulses.
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The efficiency of such a coding scheme is limited by the
capacity h(Sq) of Sy, which is defined as

def

h(Sq) lim

n—oo

log, |Bg.n|
2 ) M
where By, is the set of all length-n subblocks of sequences
in 8;. The closer h(S,) is to 1, the more efficient are the ¢GP
constrained coding schemes. Herein, we analyze the structure
of sequences in §; with a view towards determining h(Sy).

III. RESULTS

The case ¢ = 2 is easily analyzed to obtain the following simple
characterization of sequences in Ss.

Theorem 1. A binary sequence x is in Sz iff supp(x) = @&
or supp(x) = a + kZ for some a, k € Z.

It follows from Theorem 1 that |B2.,| = O(n?), which im-
plies that h(S2) = 0.

The analysis for ¢ > 2 is considerably more difficult. Using
results from the branch of mathematics known as Ramsey the-
ory (in particular, the theorems of Schur and Szemerédi [2]),
we can prove the following result. To state this result, we need
the following definition: the upper density of a subset I C Z

is defined as d(I) = limsup,,_, %ﬁnﬂ

Theorem 2. For g > 2, if y €S, then there exist an integer
k>0 and a set I C [0,k — 1], both depending on y, such that

J(*Z + i) C supp(y) and d <SUPP(Y) \Jkz + i)) =0.

i€l i€l

This shows that any sequence y € S; is “almost periodic,”
in the sense that it can be transformed into a periodic se-
quence by changing a relatively sparse subset of the 1’s to 0’s.
However, this result needs to be strengthened considerably
before we can determine h(Sy).

For ¢ = 3, we can prove a stronger result which asserts that
any y € S3 can be made periodic by changing at most two 1’s
to 0’s. In fact, we have a simple and complete description of
the aperiodic sequences in S3. However, the problem of fully
classifying the periodic sequences in S3 remains largely open.
We derive a characterization of such sequences, which can be
used to completely describe the sequences of prime period in
S3. Based on these results and numerical evidence, we con-
jecture that h(S3) = 0. For detailed descriptions of these re-
sults and their proofs, we refer the reader to our full paper [3].
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