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Abstract —We study bi-infinite sequences x = (xk)
k∈Z

over the alphabet {0, 1, . . . , q−1}, for an arbitrary q � 2,
that satisfy the following q-ary ghost pulse (qGP) con-
straint: for all k, l, m∈Z such that xk, xl, xm are non-
zero and equal, xk+l−m is also nonzero. This constraint
arises in the context of coding to combat the forma-
tion of spurious “ghost” pulses in high data-rate com-
munication over an optical fiber. We show using tech-
niques from Ramsey theory that if x satisfies the qGP
constraint, then the support of x is a disjoint union of
cosets of a subgroup kZ of Z and a set of zero density.

I. Introduction

In optical communication, a train of light pulses corresponding
to a sequence of data bits is sent across an optical fiber. At
high data rates (∼40Gbps), a nonlinear effect known as four-
wave mixing causes a transfer of energy from pulses in the kth,
l-th and m-th time slots (k, l, m need not all be distinct) into
the (k + l − m)-th time slot [1]. If this slot did not originally
contain a pulse, the energy transfer creates a spurious pulse
called a ghost pulse, which causes the original ‘0’ in that slot to
be changed to a ‘1’. Ghost pulse formation is phase-sensitive,
so it can be mitigated by changing the phases of some of the
pulses. However, an optical receiver cannot detect the phase
of a pulse, so phase cannot be used to encode information.

To counter the ghost pulse effect, we consider a constrained
coding scheme based on a class of “ghost pulse constraints.”

II. Constrained Codes for Ghostbusting

For q � 2, let Aq = {0, 1 . . . , q−1}. For x = (xk)
k∈Z

∈AZ

q , let

supp(x) = {k∈Z : xk �= 0}. A sequence x∈AZ

q is said to sat-
isfy the q-ary ghost pulse constraint if for all k, l, m∈ supp(x)
(k, l, m not necessarily distinct) such that xk = xl = xm, we
also have k + l −m∈ supp(x). Let Tq be the set of all x∈AZ

q

that satisfy the qGP constraint, and let Sq denote the set of
all binary sequences y such that there exists an x∈Tq with
supp(x) = supp(y). The object of this paper is to study the
sequences in Sq, particularly in the cases when q is 2 or 3.

To transmit a binary data sequence a0a1 . . . aM−1, we first
encode it as a subblock b0b1 . . . bN−1 of a sequence in Sq, which
is then converted to a subblock c0c1 . . . cN−1 of some sequence
in Tq. The q-ary sequence c0c1 . . . cN−1 corresponds to a train
of N light pulses, with the phases of the nonzero pulses be-
ing determined by a one-to-one mapping from {1, 2, . . . , q − 1}
to [0, 2π]. Under the simplifying assumption that only pulse
triples with the same phase can interact to create ghost pulses,
the sequence c0c1 . . . cN−1 can be transmitted without error
across an optical fiber. This is because the qGP constraint en-
sures that the positions where ghost pulses could potentially
be created already contain nonzero pulses.
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The efficiency of such a coding scheme is limited by the
capacity h(Sq) of Sq, which is defined as

h(Sq)
def
= lim

n→∞

log2 |Bq,n|

n
(1)

where Bq,n is the set of all length-n subblocks of sequences
in Sq. The closer h(Sq) is to 1, the more efficient are the qGP
constrained coding schemes. Herein, we analyze the structure
of sequences in Sq with a view towards determining h(Sq).

III. Results

The case q = 2 is easily analyzed to obtain the following simple
characterization of sequences in S2.

Theorem 1. A binary sequence x is in S2 iff supp(x) = ∅

or supp(x) = a + kZ for some a, k∈Z.

It follows from Theorem1 that |B2,n| = O(n2), which im-
plies that h(S2) = 0.

The analysis for q > 2 is considerably more difficult. Using
results from the branch of mathematics known as Ramsey the-
ory (in particular, the theorems of Schur and Szemerédi [2]),
we can prove the following result. To state this result, we need
the following definition: the upper density of a subset I ⊂ Z

is defined as d(I) = lim supn→∞
|I∩[−n,n]|

2n+1
.

Theorem 2. For q > 2, if y∈Sq then there exist an integer

k � 0 and a set I ⊂ [0, k− 1], both depending on y, such that

⋃
i∈I

(kZ + i) ⊂ supp(y) and d

(
supp(y) \

⋃
i∈I

(kZ + i)

)
= 0.

This shows that any sequence y∈Sq is “almost periodic,”
in the sense that it can be transformed into a periodic se-
quence by changing a relatively sparse subset of the 1’s to 0’s.
However, this result needs to be strengthened considerably
before we can determine h(Sq).

For q = 3, we can prove a stronger result which asserts that
any y∈S3 can be made periodic by changing at most two 1’s
to 0’s. In fact, we have a simple and complete description of
the aperiodic sequences in S3. However, the problem of fully
classifying the periodic sequences in S3 remains largely open.
We derive a characterization of such sequences, which can be
used to completely describe the sequences of prime period in
S3. Based on these results and numerical evidence, we con-
jecture that h(S3) = 0. For detailed descriptions of these re-
sults and their proofs, we refer the reader to our full paper [3].
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